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Abstract
Background: Aspergillus nidulans is a member of a diverse group of filamentous fungi, sharing many
of the properties of its close relatives with significance in the fields of medicine, agriculture and
industry. Furthermore, A. nidulans has been a classical model organism for studies of development
biology and gene regulation, and thus it has become one of the best-characterized filamentous fungi.
It was the first Aspergillus species to have its genome sequenced, and automated gene prediction
tools predicted 9,451 open reading frames (ORFs) in the genome, of which less than 10% were
assigned a function.

Results: In this work, we have manually assigned functions to 472 orphan genes in the metabolism
of A. nidulans, by using a pathway-driven approach and by employing comparative genomics tools
based on sequence similarity. The central metabolism of A. nidulans, as well as biosynthetic
pathways of relevant secondary metabolites, was reconstructed based on detailed metabolic
reconstructions available for A. niger and Saccharomyces cerevisiae, and information on the genetics,
biochemistry and physiology of A. nidulans. Thereby, it was possible to identify metabolic functions
without a gene associated, and to look for candidate ORFs in the genome of A. nidulans by
comparing its sequence to sequences of well-characterized genes in other species encoding the
function of interest. A classification system, based on defined criteria, was developed for evaluating
and selecting the ORFs among the candidates, in an objective and systematic manner. The
functional assignments served as a basis to develop a mathematical model, linking 666 genes (both
previously and newly annotated) to metabolic roles. The model was used to simulate metabolic
behavior and additionally to integrate, analyze and interpret large-scale gene expression data
concerning a study on glucose repression, thereby providing a means of upgrading the information
content of experimental data and getting further insight into this phenomenon in A. nidulans.

Conclusion: We demonstrate how pathway modeling of A. nidulans can be used as an approach
to improve the functional annotation of the genome of this organism. Furthermore we show how
the metabolic model establishes functional links between genes, enabling the upgrade of the
information content of transcriptome data.
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Background
Aspergillus nidulans, also known as Emericella nidulans,
as it can undergo sexual reproduction in its life cycle in
addition to the non-perfect (asexually reproducing) form
that characterizes aspergilli, is an important member of
the filamentous fungal genus Aspergillus. This genus
encompasses a large diversity of species of great medical
and economical relevance. In the medical and agricultural
fields, A. flavus and A. parasiticus represent major produc-
ers of mycotoxins (e.g. aflatoxins) that can contaminate
important food and feed crops, while A. fumigatus may
cause serious diseases in immuno-compromised animals
and humans (e.g. invasive pulmonary aspergillosis).
From a biotechnological viewpoint, Aspergillus species
represent important industrial producers of diverse prod-
ucts, such as industrial enzymes (e.g. amylases by A. niger
and A. oryzae), bulk chemicals (e.g. citric acid by A. niger),
and pharmaceuticals (e.g. lovastatin, a cholesterol lower-
ing-agent, by A. terreus).

Whereas the first efforts made in fungal genome research
have focused on yeasts, there has been an increasing focus
on filamentous fungi due to their medical, agricultural
and biotechnological importance. There are quite large
differences between yeast and most filamentous fungal
genomes, with the latter exhibiting larger genomes owing
to larger centromers and lower gene density per nucle-
otide length as well as the presence of far more genes. Fur-
thermore, many of the filamentous fungal genes have a
more complex structure due to the presence of multiple
introns [1]. A. nidulans has become one of the model
organisms of choice for filamentous fungal genome
research as it is a representative of the important group of
aspergilli, but also because this fungus has served as a
model organism for studies of cell development and gene
regulation [2]. It is one of the most extensively studied
organisms in the fields of genetics and biochemistry, and
this is obviously of great value in the identification of the
function of orphan filamentous fungal genes and charac-
terization of the biological roles of their products.

Genome-sequencing projects of several Aspergillus spe-
cies have recently been completed (A. fumigatus, A. nidu-
lans, A. niger, A. oryzae, A. parasiticus) or are nearing
completion (A. flavus, A. terreus) [3,4]. In particular, the
genomic sequence of A. nidulans (strain FGSC A4) was
released by the Broad Institute of MIT and Harvard, with
a13-fold coverage, in Spring 2003 [5]. The size of its
genome is approximately 31 Mb, and it is organized in 8
chromosomes. 9,541 open reading frames (ORFs) were
predicted using automated gene prediction tools
(FGENESH, FGENESH+, and GENEWISE), and PFAM
(protein family) [6] matches were identified by Hmmer
analysis. However, due to the highly conservative criteria
adopted in the gene naming process, and also due to the

relative low number of genes characterized before whole
genome sequencing, more than 90% of all ORFs identi-
fied are called hypothetical or predicted proteins.

In order to improve the predictions and improve the
annotation, automatically assigned genes should be sub-
jected to manual curation. Herein, integration of different
types of data and combination of diverse genomic tools
play a major role. Functional assignments of genes based
on genomic data may be complemented with information
providing biochemical and physiological evidence. Of
special importance in functional genomics are high-
throughput data generated by post-genomic techniques
(e.g. transcriptome data using hybridization arrays [7]),
which provide genome-wide screens of gene function
[3,8,9]. In addition to similarity-based tools (e.g. BLAST
[10], FASTA [11]), a number of methods are available for
comparative genomics that combine various types of
genomic evidence, such as protein fusion events [12],
gene clustering on the chromosome [13], occurrence pro-
files or signatures [14], shared regulatory sites [15], which
enable the so-called "gene context analysis" [16].

Metabolic reconstructions can give a valuable contribu-
tion to functional genomics, by uncovering missing met-
abolic functions (i.e., functions not assigned to genes)
and hence putting forward the identification of the corre-
sponding genes [16,17]. The underlying idea is that larger
functional systems (e.g. metabolic pathways) require the
presence of their components or elementary functional
units (e.g. enzymatic steps) in order to be operative.
Hence, in this approach, efforts are directed towards dis-
covering (uncharacterized) genes within the sequenced
genome that have a defined role in the metabolism, in
opposition to strategies that aim at predicting the func-
tions of a given set of genes known to be present. Compar-
ative genome analysis may then be accomplished with
well-characterized genes of related organisms, by employ-
ing diverse tools of comparative genomics (based on
sequence similarity and gene context), and a prioritized
list of potential candidate genes for the function of inter-
est generated. The functional assignment of genes may be
verified eventually by using experimental techniques. This
approach has been previously described by Osterman and
Overbeek [16], and a computational method has been
developed for automated large-scale predictions of pro-
tein function [18]. This framework has been applied to
prokaryotes (Thiobacillus ferrooxidans [19]) and eukary-
otes (human [20]), and here we used it for the annotation
of metabolic genes within the genome of A. nidulans.

In particular, we focused on the functional annotation of
the genes involved in the central metabolism of this fun-
gus, as well as on the biosynthetic pathways of relevant
secondary metabolites. For the purpose, we reconstructed
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the central metabolic network of A. nidulans, based on
detailed metabolic reconstructions of other eukaryotes,
namely A. niger [21], Saccharomyces cerevisiae [22], and
Mus musculus [23]. In what concerns the secondary
metabolism, pathways for the biosynthesis of penicillin in
Penicillium chrysogenum [24] and aflatoxins in different
species of Aspergillus [25] were used as templates. Path-
way prediction was also supported by available informa-
tion on the biochemistry and physiology of A. nidulans.
Our analysis assigned functions to 472 orphan ORFs in
the metabolism of A. nidulans, by employing similarity-
based tools of comparative genomic analysis (BLAST) and
using public (non-redundant) databases of genes and pro-
teins of established function [26]. These functions repre-
sented either missing enzymatic activities, for which no
ORFs had been previously identified, or previously
assigned functions, for which additional isogenes were
discovered. The functional assignments made for the indi-
vidual ORFs were integrated into a mathematical model
that can be used to simulate metabolic behavior, thereby
enabling a comprehensive and integrative analysis of met-
abolic functions in A. nidulans. Furthermore, the infor-
mation contained in the metabolic reconstruction can be
exploited for the analysis of large-scale transcription data.
To illustrate this, the reconstructed metabolic network of
A. nidulans was used in connection with an algorithm
developed by Patil and Nielsen [27] for the large-scale
analysis of gene expression profiles, in particular for stud-
ying transcriptional responses to specific genetic changes
in A. nidulans (deletion of the regulatory gene creA) [28].
In a previous study, the metabolic network reconstructed
in this work was employed in the study of the effects of
changes in the environmental conditions (carbon source)
on the transcriptome profiles of A. nidulans [29].

Results
Metabolic reconstruction and identification of candidate 
ORFs
The pathways predicted to take part in the central metab-
olism of A. nidulans, as well as those involved in the bio-
synthesis of secondary metabolites of interest, are listed in
Tables 1 and 2 and Additional file 1. Our analysis assigned
metabolic roles to 472 ORFs within the genome of A. nid-
ulans that had not been annotated earlier (Table 1). In
total, 666 ORFs were associated to functions in the meta-
bolic reconstruction, including 194 previously annotated
ORFs in the Aspergillus nidulans Database [5]. However,
the correlation between the ORFs and metabolic func-
tions is rather complex, because about 92 ORFs were
found to be constituents of enzyme complexes, more than
100 ORFs were considered to be multifunctional, and
approximately 190 ORFs to encode various isoenzymes.
The reconstructed metabolic network included 676
unique biochemical reactions (551 cytosolic, 103 mito-
chondrial, 5 glyoxysomal, and 17 extracellular) and 113
unique transport processes. The analysis did not include
transporters, and hence the transport reactions considered
were based on those existing in related organisms, based
on previous annotations for A. nidulans or concerned dif-
fusional processes. Moreover, Additional file 1 includes
information on the common metabolic reactions to A.
nidulans and A. niger or S. cerevisiae networks.

Table 2 presents the number of biochemical reactions
involved in each part of the metabolism considered in the
analysis, as well as the number of transport processes. In
addition, Table 2 shows the number of unique reactions
and transport processes predicted to participate in the dif-
ferent parts of the metabolism of A. nidulans that are
common to the metabolic networks of A. niger and S. cer-
evisiae.

Table 1: Number of ORFs associated to the metabolic reactions in the metabolic reconstruction for A. nidulans.

Part of metabolism No. of previously annotated ORFs [5] No. of newly annotated ORFs Total no. of ORFs1

Biochemical reactions 188 468 656
C-compound metabolism 96 166 262
Energy metabolism 14 40 54
Aminoacid metabolism 40 125 165
Nucleotide metabolism 10 44 54
Lipid metabolism 13 97 110
Secondary metabolism 16 14 30
Nitrogen and sulphur metabolism 2 3 5

Transport processes 6 3 9

TOTAL 194 472 666

1 The total number of unique ORFs in the metabolic network may be different from the sum of the number of ORFs in the different parts of the 
metabolism, because there are ORFs which code functions in several parts of the metabolism.
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Evaluation of functional assignments
The reliability of the functional assignments was evalu-
ated according to the criteria described in Materials and
Methods, and the candidate ORFs were classified into cat-
egories, as shown in Additional file 1. The definition of
these criteria, in particular of the cut-off values in the E-
values of BLAST searches, was found to strongly determine
the number of candidate ORFs to consider for each meta-
bolic function, and hence the reactions to include in the
metabolic network for A. nidulans. The lists of the ORFs
considered for each of the metabolic functions, for differ-
ent stringencies of the criteria (i.e. cut-off in E-values) is
presented in Additional file 2, whereas the data presented
in Additional file 1 refer to a cut-off E-values of 1E-50.

Functions with no ORF associated
After employing the algorithm described above, some of
the metabolic functions predicted to occur in A. nidulans
still remained without a link to a specific ORF in the
genome. These metabolic functions corresponded to bio-
chemical conversions for which no ORFs (hits) were iden-
tified by homology-based comparative analysis, or to
those candidate ORFs that were subsequently neglected
for not complying with the criteria considered (see Results
– Evaluation of functional assignments). Nevertheless, 33
of these metabolic functions (or biochemical reactions)
were considered to be part of the metabolic network, since

they were essential for growth (see Results – Essential
genes).

Metabolic model
The metabolic reconstruction served as a basis to develop
a mathematical model that describes the stoichiometry of
all the metabolic processes in A. nidulans. The model
comprised 1213 metabolic reactions, of which 1095 were
biochemical transformations and 118 were transport
processes. In addition, the model included 732 metabo-
lites that could be balanced, i.e. metabolites whose net
rate of their formation could be balanced with their net
rate of consumption. Out of the 1213 reactions, there
were 794 unique reactions (681 unique biochemical con-
versions and 113 unique transport processes), i.e. 419 of
the reactions in the metabolic network were redundant.
All the reactions in the metabolic network are listed in
Additional file 1, along with a list of the abbreviations
considered for the metabolite names (Additional file 2).
Compartmentation was considered and the allocation of
the biochemical conversions and metabolites to the dif-
ferent intracellular compartments (cytosol, mitochondria,
and glyoxysomes) was based on the metabolic models for
A. niger and S. cerevisiae. Besides catabolic and biosyn-
thetic pathways, the model also included polymerization
reactions and a reaction describing the formation of bio-
mass, which was considered as a drain of building blocks

Table 2: Total number of biochemical conversions and transport processes in the reconstructed metabolic network of A. nidulans and 
comparison with the metabolic networks of A. niger (316 unique reactions) and S. cerevisiae (843 unique reactions).

Part of metabolism Total no. of metabolic reactions 
network (no. of unique)

No. of unique reactions common to other metabolic 
networks

A. niger1 S. cerevisiae

Biochemical reactions 1095 (6811) 191 580

C-compound metabolism 463 (220) 157 160
Energy metabolism 20 (17) 11 13
Aminoacid metabolism 238 (171) 3 170
Nucleotide metabolism 144 (114) 17 114
Lipid metabolism 175 (122) 1 115
Secondary metabolism 42 (25) 1 3
Nitrogen and sulphur metabolism 8 (7) - 4

Polymerization, assembly and 
maintenance

5 (5) 1 1

Transport processes 118 (113) 60 59

TOTAL 1213 (794) 251 639

The number of unique reactions in the metabolic network of A. nidulans is shown in parenthesis. The metabolic functions may be or not assigned to 
ORFs.
1 Note that the metabolic network for A. niger is only detailed for the metabolism of C-compounds (the other parts of the metabolism are 
represented by lumped reactions) [21], which justifies the relatively low number of reactions in common to both networks in what concerns the 
other parts of the metabolism.
2 6 non-enzymatic steps are included.
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or macromolecules in appropriate ratios to produce 1
mmol of monomers in the macromolecule or 1 g dry-
weight (DW), respectively. These ratios were calculated
based on the composition of the macromolecules in terms
of building blocks (taken from A. oryzae [30]) and on the
composition of biomass in terms of macromolecules
(taken from A. nidulans [31] for lipids and A. oryzae [30]
for the remaining macromolecules). A reaction represent-
ing the consumption of ATP for non-growth associated
purposes was also included in the metabolic model. The
ATP costs in the polymerization of amino acids and nucle-
otides were predicted based on reports for P. chrysoge-
num [32]. Furthermore, the ATP requirement for the
assembly of macromolecules (19 mmol ATP/g DW) and
for maintenance (2.85 mmol ATP/(g DW.h)) were esti-
mated based on experimental biomass yields of A. nidu-
lans grown in glucose-limited chemostat cultures for
different dilution rates [33]. The values calculated were
comparable with those reported for A. niger and P. chrys-
ogenum [21].

Model predictions
Essential genes
Single gene deletions were simulated and the capability of
the corresponding mutants to grow on several carbon
sources was determined (minimal media, no supple-
ments). Table 3 shows the number of metabolic functions
that were predicted to be essential for growth of A. nidu-
lans on each of the four different substrates studied (glu-
cose, xylose, glycerol, and ethanol), along with a list of the
essential genes. The results from these studies were used to
further refine the metabolic model. In fact, these investi-
gations provided evidence for the existence of some met-
abolic steps for which no assignments were made based
on homology searches. Therefore, these "missing func-
tions" were considered to be part of the metabolic net-
work for the sake of having an operative metabolic model.

Biomass yields
The model was simulated to predict the maximum theo-
retical growth yields of A. nidulans on different carbon
sources. Fig. 1 shows a comparison of these values with
the maximum theoretical growth yields predicted for A.
niger [21] and experimentally observed yields for A.
oryzae in carbon-limited chemostat cultures [34]. All
computations were performed considering the experi-
mental substrate uptake rates in order to account for the
relative effect of substrate consumption for maintenance
purposes.

Integration of large-scale expression analysis data
The reconstructed metabolic network was used in combi-
nation with data from large-scale transcriptional studies
conducted with A. nidulans, in order to detect overall met-
abolic responses to specific genetic and environmental

perturbations, using an algorithm developed by Patil and
Nielsen [27]. This algorithm integrates gene expression
data with topological information from metabolic mod-
els and enables the identification of small and coordi-
nated changes in expression levels due to genetic or
environmental perturbations. By using this algorithm, it is
possible to identify highly regulated or reporter metabo-
lites (i.e. metabolites around which the most significant
changes in transcription occur) and highly correlated sub-
networks (i.e. sets of connected genes with significant and
coordinated transcriptional response to a perturbation),
which enable to uncover metabolic responses to perturba-
tions from transcriptional profiles.

The expression data sets used in this study represented the
transcription levels of approximately one third of all pre-
dicted ORFs in A. nidulans (i.e. 3,278 ORFs) and con-
cerned a reference strain grown on media containing
different carbon sources (either glucose or ethanol), as
well as a mutant strain that was impaired in the carbon
repression system due to deletion of the carbon catabolite
repressor gene creA [28]. Transcription analysis was there-
fore carried out for triplicates of four different cultivation
conditions, namely the reference strain grown on glucose,
the reference strain grown on ethanol, the creA mutant
strain grown on glucose, and the creA mutant strain
grown on ethanol. Differentially expressed genes were
identified by using a two-way ANOVA, resulting in the cal-
culation of two p-values for each ORF: a p-value concern-
ing the effect of the growth medium, which was
independent of the genotype of the strain, and a p-value
concerning the effect of the genotype, which was inde-
pendent of the medium used. Of the 3,278 ORFs included
in the expression data sets, 571 ORFs were represented in
the metabolic model developed in this study and thus the
corresponding transcription profiles were considered for
the analysis of reporter metabolites and metabolic subnet-
works. The top 30 reporter metabolites, ranked according
to p-values concerning the effect of the medium and gen-
otype, are listed in Table 4. It was observed that, out of the
top 30 reporter metabolites identified for each category
(i.e. differential expression according to medium or geno-
type), only 8 metabolites were common to both catego-
ries, i.e. genes connected to these metabolites were
regulated as both a result of the carbon source and the
mutation. Moreover, 4 out of these 8 metabolites were
involved in amino acid biosynthesis (namely N-Acetyl-L-
glutamate 5-phosphate (mitochondrial), L-Tyrosine, N-
(L-Arginino)succinate, N-Acetyl-L-glutamate 5-semialde-
hyde (mitochondrial)), and the highest ranked reporter
metabolites in each category were involved in the biosyn-
theses of the amino-acids arginine and threonine.

Methanol, ethanol, and acetaldehyde were also found as
very highly ranked reporter metabolites in the list con-
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Table 3: Essential ORFs in A. nidulans for growth on any of the four carbon sources investigated.

Part of the metabolism1 No. of essential functions assigned 
to ORFs (total no.)

Essential ORFs2

BIOCHEMICAL REACTIONS

C-compound metabolism
Tricarboxylic Acid Cycle 1 (1) AN2999.2
One-carbon metabolism 2 (2) AN1524.2, AN2998.2
Folate biosynthesis 2 (8) AN8188.2, AN6032.2
Coenzyme A and pantothenate biosynthesis 4 (10) AN1778.2, AN2526.2, AN0205.2, AN9446.2
Glycerol metabolism 1 (1) AN1396.2
C6 metabolism 2 (3) AN5975.2, AN2867.2
Chitin biosynthesis 3 (4) AN5794.2, AN4234.2, AN9094.2
Glycogen biosynthesis 1 (1) AN8010.2

Amino acid metabolism
Arginine metabolism 6 (6) AN7722.2, AN8770.2, AN1150.2, AN4409.2, AN1883.2, 

AN2914.2
Cysteine metabolism 1 (1) AN2229.2
Glutamate and glutamine metabolism 1 (1) AN4159.2
Glycine, serine and threonine metabolism 3 (3) AN8859.2, AN4793.2, AN2882.2
Histidine metabolism 6 (6) AN3748.2, AN2293.2, AN6536.2, AN0717.2, AN7044.2, 

AN7430.2
Branched chain amino acid metabolism 7 (4)3 AN4323.2/AN7878.2/AN5957.2, AN4956.2/AN4430.2, 

AN6346.2, AN0840.2
Lysine metabolism 4 (4) AN8519.2, AN5610.2, AN5601.2, AN2873.2
Methionine metabolism 4 (4) AN1263.2, AN4443.2, AN8277.2, AN1222.2
Aromatic amino acids metabolism 16 (17)3 AN0708.2/AN8886.2/AN4350.2, AN5731.2, AN6866.2, 

AN6338.2, AN5959.2, AN3695.2, AN3634.2, AN0648.2, 
AN6231.2/AN5444.2, AN4577.2, AN5200.2, AN1689.2, 
AN0648.2

Proline metabolism 1 (1) AN7387.2

Nucleotide metabolism
Purine metabolism 11 (11) AN1395.2, AN6637.2, AN6541.2, AN5922.2, AN8121.2, 

AN3626.2, AN4739.2, AN4464.2, AN0893.2, AN5716.2, 
AN5566.2

Pyrimidine metabolism 9 (9) AN0961.2, AN5909.2, AN5884.2, AN6157.2, AN4258.2, 
AN8213.2, AN3581.2, AN7028.2, AN0490.2

Salvage pathways 1 (1) AN8216.2

Lipid metabolism
Fatty acids metabolism 3 (1)3 AN5904.2/AN9408.2/AN9407.2
Phospholipids metabolism 12 (10)3 AN5599.2, AN6139.2, AN5166.2, AN5661.2, AN2154.2, 

AN1376.2, AN2261.2, AN6610.2, AN6580.2, AN6712.2/
AN6211.2/AN7604.2

Sterol metabolism 12 (12) AN4923.2, AN3869.2, AN2311.2, AN4414.2, AN0579.2, 
AN8012.2, AN3376.2, AN7751.2, AN5585.2, AN7146.2, 
AN0451.2, AN4042.2

Glycerolipid metabolism 1 (1) AN6159.2
Glycolipids metabolism 0 (2) -

Sulfur metabolism 1 (1) AN1752.2

TRANSPORT PROCESSES 0 (11) -

TOTAL 115 (136)

Number and list of essential ORFs in A. nidulans for growth on any of the four carbon sources investigated, namely glucose, xylose, glycerol, and ethanol. The total 
number of metabolic reactions that are essential for growth, with or without an ORF associated is shown in parenthesis.
1 Some ORFs encode enzymes that participate in different parts of the metabolism, but these are represented only once in the table.
2 This list corresponds to all essential genes for growth on glucose, which also revealed to be essential for growth on any of the other carbon sources. However, 
additional genes were predicted to be essential on xylose (AN6037.2), glycerol (AN6037.2), and ethanol (AN6037.2, AN2916.2/AN2332.2/AN8793.2, AN8707.2, 
AN6653.2).
3 In these cases, the number of essential ORFs may be greater than the number of essential biochemical conversions due to the presence of enzyme complexes.
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cerning the effect of the medium, which is an indication
of the differential regulation of a whole set of dehydroge-
nases, and is also suggested by the emergence of NAD+

and NADH as reporter metabolites. Moreover, L-xylulose
and D-sorbitol, which are involved in the metabolism of
polyols, were ranked second and third, respectively, in the
list of reporter metabolites concerning the effect of the
genotype. Furthermore, it was observed that metabolites
participating in the formation of secondary metabolites
(e.g. sterigmatocystin) were among the 30 most highly
regulated metabolites.

In order to obtain a more general overview of the effect of
changing environmental/genetic conditions on the
metabolism, the results obtained were subjected to further
analysis. For the purpose, we made use of the links
between the metabolic models available for A. nidulans
and S. cerevisiae, which enabled to transfer specific tools
for the analysis of -omics data in yeast to A. nidulans.

Table 4: Top 30 reporter metabolites.

Reporter metabolites

Effect of growth medium Effect of genotype

N-Acetyl-L-glutamate (mitochondrial) 4-Phospho-L-aspartate
Methanol L-Xylulose
Ethanol D-Sorbitol
Ethanol (mitochondrial) N-Acetyl-D-glucosamine 1-phosphate
Acetaldehyde (mitochondrial) Oxaloglutarate (mitochondrial)
Acetaldehyde Acetate (mitochondrial)
Carnitine Glutathione
O-Acetylcarnitine NH3 (extracellular)
N-Acetyl-L-glutamate 5-phosphate (mitochondrial) 3-(4-Hydroxyphenyl)pyruvate
D-Lactate L-Tyrosine
Acetyl-CoA (mitochondrial) D-Xylulose
Formaldehyde N-(L-Arginino)succinate
3-(4-Hydroxyphenyl)pyruvate O-Phospho-L-homoserine
L-Tyrosine D-Mannitol
L-Xylulose L-Glutamate
D-Sorbitol N-Acetyl-L-glutamate 5-phosphate (mitochondrial)
CoA (mitochondrial) Acetate
N-(L-Arginino)succinate Starch (extracellular)
Acetate (mitochondrial) Glycogen (extracellular)
2-Hydroxybutane-1,2,4-tricarboxylate (mitochondrial) N-Acetyl-L-glutamate 5-semialdehyde (mitochondrial)
N-Acetyl-L-glutamate 5-semialdehyde (mitochondrial) Glycerol 3-phosphate
Tartrate NH3
Oxaloglycolate gamma-Amino-gamma-cyanobutanoate
NAD+ (mitochondrial) Sterigmatocystin
NADH (mitochondrial) Dihydrosterigmatocystin
4-Aminobutyraldehyde (mitochondrial) Versiconal hemiacetal acetate
4-Aminobutanoate (mitochondrial) Water (mitochondrial)
(S)-Lactaldehyde (mitochondrial) Xylitol
L-Kynurenine D-Arabitol
L-Ornithine (mitochondrial) N6-(1,2-Dicarboxyethyl)-AMP

Reporter metabolites identified based on the reconstructed metabolic network and expression data [28]. Two lists are shown, which correspond 
to highly regulated metabolites (ranked according to p-values) upon a change in the growth medium and in the genotype. Common metabolites to 
both lists are shown in italic.

Maximum theoretical and experimental growth yields for AspergillusFigure 1
Maximum theoretical and experimental growth 
yields for Aspergillus. Maximum theoretical growth yields 
predicted for A. nidulans (this study) and A. niger [21], and 
experimentally observed yields for A. oryzae [34].
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Thus, all the enzymes associated to the top 30 reporter
metabolites (listed in Table 4) were identified through the
metabolic reconstruction developed for A. nidulans.
Based on the EC numbers of these enzymes, the corre-
sponding ORFs in S. cerevisiae were retrieved via a
genome-scale metabolic model previously developed for
yeast [22]. The "GO" terms associated to the yeast ORFs
were then used to further study the metabolic effects of
changing the carbon source and the genotype, using the
"GO term finder" available at the Saccharomyces Genome
Database [35] (see Table 5). The analysis of GO terms
showed that, even though changes in the carbon source
and genotype were reflected in common parts of the
metabolism (e.g. carboxylic acid and organic acid metab-
olism), there were also clear differences between the
effects exerted by the two categories. The change of carbon
source seemed to affect mainly the energy metabolism of
the cells, whereas a mutation that disturbs the carbon
repression mechanism seemed to have a significant
impact on the amino acid metabolism.

Discussion
Metabolic reconstruction
According to the Aspergillus nidulans Database [5], only
194 of the metabolic ORFs included in the metabolic
model developed for A. nidulans had been assigned a
function in the metabolism before this study, and hence

there was a large potential for functional annotation of
metabolic genes. This potential was demonstrated by the
functional assignment of 472 orphan ORFs. Yet, a number
of issues arose in the course of the annotation of the met-
abolic genes in A. nidulans.

One of these issues was related to limitations inherent to
a pathway-driven gene finding approach. In particular, the
use of metabolic networks from selected organisms as ref-
erences does not allow the identification of metabolic
functions that are not present in these templates. In this
way, additional or alternative reactions or pathways to
these templates that may make part of the metabolic net-
work of A. nidulans will not be predicted to exist, and sub-
sequently the corresponding genes will not be identified
using this methodology. In order to minimize this, the
metabolic networks used as reactions databases in this
work concerned organisms closely related to A. nidulans,
and thus the major part of the metabolic reactions present
in this fungus were likely to be covered.

Another issue is that our identification of candidate ORFs
encoding a given function relied on comparative analysis,
based on sequence similarity between the proteins in A.
nidulans and other organisms. However, there probably
exist enzymes in A. nidulans that are encoded by genes
with low similarity to those encoding the same function

Table 5: Analysis of reporter metabolites and neighboring enzymes, using the "GO term finder".

Effect of growth medium p-values for different media Effect of genotype p-values for different strains

GO term Probability GO term Probability

Carboxylic acid metabolism 1.73E-15 Carboxylic acid metabolism 5.24E-16
Organic acid metabolism 1.73E-15 Organic acid metabolism 5.24E-16
Generation of precursor metabolites and energy 1.89E-13 Amino acid biosynthesis 1.13E-13
Energy derivation by oxidation of organic compounds 1.11E-12 Amine biosynthesis 2.80E-13
Cellular metabolism 1.55E-09 Amine metabolism 6.05E-13
Amino acid biosynthesis 1.86E-09 Amino acid metabolism 1.84E-12
Metabolism 2.46E-09 Amino acid and derivative metabolism 4.67E-12
Fermentation 3.25E-09 Cellular metabolism 5.27E-09
Amine biosynthesis 3.59E-09 Metabolism 8.56E-09
Main pathways of carbohydrate metabolism 5.19E-09 Acetate metabolism 1.99E-08
Nonprotein amino acid biosynthesis 6.82E-09 Aspartate family amino acid metabolism 2.06E-08
Tricarboxylic acid cycle intermediate metabolism 7.64E-09 Nitrogen compound biosynthesis 8.25E-08
Acetate metabolism 1.26E-08 Arginine biosynthesis 8.25E-08
Nonprotein amino acid metabolism 3.42E-08 Cellular biosynthesis 9.29E-08
Coenzyme metabolism 1.32E-07 Biosynthesis 2.65E-07
Amino acid metabolism 1.47E-07 Nitrogen compound metabolism 3.19E-07
Malate metabolism 1.81E-07 Urea cycle intermediate metabolism 4.12E-07
Amino acid and derivative metabolism 2.70E-07 Arginine metabolism 4.12E-07
Aldehyde metabolism 5.36E-07 Glutamine family amino acid metabolism 6.78E-07
Amine metabolism 5.84E-07 Nonprotein amino acid biosynthesis 2.01E-06

Analysis of reporter metabolites and neighboring enzymes, using the "GO term finder" available at the Saccharomyces Genome Database [35] and 
the corresponding ORFs in yeast, retrieved via the reconstructed metabolism of S. cerevisiae [22].
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in other organisms. Hence, queries based on BLAST
searches will not result in identification of such genes.
This problem was partially overcome by using, as queries,
proteins of phylogenetically related organisms, for which
many genes are likely to be conserved.

As alternatives to analytical tools relying on sequence sim-
ilarity, there are tools based on genome context. However,
gene clustering on the chromosome and analysis of
shared regulatory sites as well as motif profiling are
mainly relevant for comparative genomics in prokaryotes
[16].

The selection of ORFs among the candidates encoding
each function involved the specification of certain criteria
and the development of a classification system. Hereby
the reliability of the assignment of specific metabolic
functions to candidate ORFs could be evaluated objec-
tively and systematically, and furthermore it was possible
to classify each annotation into categories according to
the criteria defined. These criteria were essentially based
on the E-values of BLAST searches and on the consistency
between the function of interest and the function of the
BLAST hits. All ORFs that were classified into at least one
of the categories defined (A/A*, F, Y/Y* and O/O*, see
Material and Methods – Evaluation of functional assign-
ments) were considered in the metabolic model, whereas
the ORFs that did not fall into any of the categories were
not incorporated in the model. The categories A*, Y*, and
O* were included to take into account also those ORFs for
which the results from the comparative analysis were not
conclusive, but did not contradict the function in ques-
tion (e.g. aldose reductase versus xylose reductase; mito-
chondrial isocitrate dehydrogenase versus cytosolic
isocitrate dehydrogenase). In this way, we aimed at iden-
tifying all ORFs that were associated to a given function
(which might also represent isoenzymes or subunits of
enzyme complexes), even though, by not being so strin-
gent, we may have run into the problem of also finding
false positives. Furthermore, assignment of ORFs to these
categories may be valuable in future annotation studies.

The choice of the cut-off E-value in the BLAST searches is
obviously determining the quality of our annotation. A
number of factors influence the E-values in BLAST
searches, such as the length of the queries and the size of
the databases. Hence, the candidate ORFs were ranked
according to the score to length ratio, as it hereby was pos-
sible to compensate for the fact that smaller proteins lead
to higher E-values (smaller scores) in BLAST searches,
because the probability of finding them by chance in the
database is higher. Moreover, in order to have an idea on
the order of magnitude of reasonable E-values for the dif-
ferent BLAST searches, previously annotated ORFs were

used as positive controls. However, universal criteria may
not apply, since the proteins' sequences may have diverse
properties in the different parts of the metabolism (size,
content, etc). Therefore, a sensitivity analysis was per-
formed, in which different cut-off values in the E-values
were considered in the BLAST searches. The stringency of
this criterion determined the number of metabolic func-
tions assigned to ORFs, as well as the number of ORFs
considered for each function (see Additional file 3). A cut-
off of 1E-50 in the E-values was found to be reasonable
and hence this value was chosen for all BLAST searches in
the selection of candidate ORFs and development of the
metabolic model.

On the other hand, the differences in the order of magni-
tude of the E-values in the different BLASTP searches car-
ried out can explain the fact that some ORFs were not
classified into the category O (i.e., have an homolog, dif-
ferent from the query sequence, in the NCBI protein data-
base [26]). It would be expected that all candidate ORFs
would fall into this category, since these were found using
as queries, protein sequences retrieved from this database.
However, by setting the same cut-off in the E-values for all
BLASTP searches, we may have been too stringent in some
cases, namely when searching homologs for the candidate
ORFs in the protein database at NCBI, which is a very large
database and hence the probability of finding the query
sequence by chance is high, resulting in high E-values.

As mentioned above, all BLAST hits for a given function
whose E-values were below the cut-off and that were clas-
sified into at least one of the categories described were
considered to encode that function. However, in some
cases, the discrimination between ORFs encoding isoen-
zymes and subunits of enzyme complexes was difficult,
particularly for those cases in which there was no informa-
tion available for A. nidulans or this could not be directly
extrapolated from other organisms. For example, even
though in S. cerevisiae there are two genes (YDR341C and
YHR091C) encoding the enzyme arginyl tRNA synthetase
(EC 6.1.1.19), only a single ORF (AN6368.2) was identi-
fied in A. nidulans, through BLASTP searches. Similarly, a
single ORF was found in A. nidulans (AN5610.2) for L-
aminoadipate-semialdehyde dehydrogenase (EC
1.2.1.31), which is a complex enzyme in yeast containing
two subunits (a large and a small subunit), encoded by
two different genes (YBR115C and YGL154C, respec-
tively).

This study therefore shows clearly that the outcome of
comparative genomics is highly dependent on the criteria
chosen, and also highlights the importance of the applica-
tion of a systematic evaluation to the obtained annota-
tions.
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Analysis of expression data using the metabolic network 
topology
Transcriptomics has become a cornerstone of functional
genomics over the last decade and the analysis and inter-
pretation of microarray data has proven to be a new chal-
lenge. Even for well-studied model organisms, the
analysis and interpretation of transcriptome data is often
hampered by the numerous genes that have no function
assigned. This becomes even more evident when tran-
scriptomics moves on to genomes whose annotation
barely relies on automated gene prediction. In these cases,
basically any additional information can be very helpful
for the analysis and interpretation of data. As shown pre-
viously by our group, the metabolic network recon-
structed in this work can be valuable for upgrading the
information content in transcriptome data [29], i.e. to
provide a link between gene expression profiles and inte-
grated metabolic functions. The importance of the recon-
structed metabolic network in the analysis of
transcriptome data of A. nidulans was again illustrated in
this work with a study concerning transcriptional
responses to changes in the growth medium composition
(glucose and ethanol) of a wild type strain and a mutant
strain with deletion of the regulatory protein CreA [28].
The initial transcription data set used comprised 3,278
ORFs, of which 571 ORFs had an assigned function in the
metabolic network. Although the selected expression data
subset (consisting of 571 ORFs) did not cover the whole
metabolic network reconstructed for A. nidulans, the
reporter metabolites identified after applying the method
from Patil and Nielsen [27], still provided valuable infor-
mation on the underlying metabolic changes, which
reflects the robustness of the method.

For both categories (differential expression according to
growth medium or genotype), the highest ranked reporter
metabolites were involved in the biosynthesis of amino
acids (arginine and threonine, respectively) (Table 4),
which was not expected, since it was anticipated that the
different environmental/genetic conditions would mainly
affect the carbon metabolism. In particular for the tran-
scriptional responses due to changes in the carbon source,
the involvement of the amino acid metabolism was fur-
ther reflected in many of the other reporter metabolites
(Table 4).

On the other hand, this approach may play an important
role in functional genomics, by giving insight into the per-
turbations that lead to specific transcriptional responses
(for example, in the analysis of strains that are mutated in
genes with unknown function). In fact, from the list of
reporter metabolites presented in Table 4, it is possible to
deduce that major changes occurred in the metabolism of
carbon compounds in A. nidulans, in particular in the
metabolism of ethanol (from reporter metabolites, such

as ethanol, acetaldehyde, acetate, acetyl-CoA, etc.). How-
ever, tracing back the underlying perturbations from the
topology of the network and observed transcriptional
responses is still a challenging task, even for well-studied
organisms.

Furthermore, the reconstructed metabolic network for A.
nidulans allows the utilization of tools that have been
developed by the yeast community for the analysis of -
omics data. This represents an advantage, because one can
rely on the linkage of the expression data to a specific reac-
tion rather than to a specific gene. After identification of
the reporter metabolites and the reactions in which they
participate, the reconstructed metabolic network of S. cer-
evisiae can be used to identify ORFs in yeast that are
involved in the same reactions and use these for further
analysis. As an example, the "GO term finder" available at
Saccharomyces Genome Database was used to identify
specific parts of the metabolism related to the reporter
metabolites. The results (reporter metabolites) obtained
based on the differential expression according to the
medium revealed many GO categories that could be
directly linked to the change of the carbon source from
glucose to ethanol, and therefore again showed that by
using this approach one can obtain a birds-eye view on
the major metabolic changes. The results based on the
changes in the genotype of the strains, i.e. deletion of the
carbon repression mediator CreA, showed that the highest
ranked reporter metabolite, as well as other lower ranking
ones, was involved in the amino acid biosynthesis, which
was also confirmed by the GO term analysis. This linkage
between glucose repression and amino acid biosynthesis
was further substantiated by the finding that a defined set
of genes that is regulated via CreA also has binding sites
for CpcA (homologue of GNC4 from S. cerevisiae) that is
a major regulator of the amino acid metabolism [28]. This
shows that apparently the CreA protein is not only
involved in the mediation of carbon repression, but plays
an even more global role in the metabolism of the cell.
The emergence of polyols in the list of reporter metabo-
lites confirms previously reported results [36,37], and the
expression data therefore allow tracking down the origin
of these changes in the metabolism.

Conclusion
In this work, we illustrated the use of a pathway-driven
approach to improve the functional annotation of the
genome of A. nidulans. Moreover, we showed how the
metabolic reconstruction establishes functional links
between genes, enabling the upgrade of the information
content of transcriptome data.

Methods
The approach employed in this work for the annotation of
the metabolic genes within the genome of A. nidulans was
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based on the method previously described by Osterman
and Overbeek [16]. The different steps carried out are
depicted in Fig. 2 and 3, and described in the following.

Metabolic reconstruction
The central metabolism of A. nidulans, as well as selected
pathways from its secondary metabolism, was recon-
structed using as templates detailed metabolic reconstruc-
tions of other organisms. For the reconstruction of the
metabolism of carbon compounds in A. nidulans, a
detailed metabolic reconstruction for A. niger [21] was
used as reaction database, whereas the metabolisms of
amino acids, nucleotides, and lipids were predicted based
on reactions identified in S. cerevisiae [22], for which a
more comprehensive reconstructed metabolic network
was available. As the energy metabolism of S. cerevisiae is
simpler than for many other eukaryotic cells, the energy

metabolism of A. nidulans was reconstructed using as ref-
erences the corresponding pathways from both yeast [22]
and mouse [23]. The biosynthetic routes of secondary
metabolites, namely penicillin and aflatoxins, were based
on detailed studies of these pathways in P. chrysogenum
[24] and in different species of Aspergillus [25], respec-
tively. Evidence for the presence of these pathways in A.
nidulans was in part supported by available genomic data,
such as previously annotated ORFs [5], sequenced and
cloned genes (with or without an ORF associated) [38],
Expressed Sequence Tags (ESTs) [39] and Tentative Con-
sensus sequences (TCs) [40]. The metabolic pathways in
A. nidulans were also predicted based on biochemical evi-
dence given by reports on isolation and characterization
of enzymes in this fungus [41,42]. Furthermore, the inclu-
sion of some reactions in the metabolic reconstruction of
A. nidulans was supported solely by physiological evi-

Diagram depicting the pathway-driven approach to functional annotation of ORFs adopted in this workFigure 2
Diagram depicting the pathway-driven approach to functional annotation of ORFs adopted in this work.
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dence (e.g. the ability to grow on a certain sugar as the sole
carbon and energy sources require a transporter and a
complete pathway for metabolism of this sugar).

The directionality and reversibility of the reactions
included in the metabolic network of A. nidulans were
based on those in the metabolic networks of other organ-
isms that served as templates for the reconstruction.

Identification of candidate ORFs
Once the metabolic network of A. nidulans was recon-
structed and the missing functional roles identified, the
genome of A. nidulans was surveyed for the genes encod-
ing the corresponding enzymes, by employing compara-
tive genomics tools based on sequence similarity. This
approach was also applied for the identification of ORFs
encoding metabolic functions that had been previously
assigned to genes in A. nidulans, aiming at identifying iso-
genes. The sequences of a set of proteins with the desig-
nated enzymatic activity in other organisms (queries)
were compared with the set of all predicted proteins in A.
nidulans [5]. The protein sequences used as queries were

obtained from the (non-redundant) NCBI protein data-
base [26] (searched by the corresponding enzyme com-
mission numbers whenever possible), and represented
well-characterized enzymes in other organisms, preferen-
tially in organisms taxonomically related to A. nidulans
(e.g. fungi or eukaryota). BLASTP (blosum62) was used
for comparative analysis and assigning metabolic func-
tions to ORFs in the genome of A. nidulans. The selection
of the best candidate ORFs for a given function relied on
the cut-off in the expectation values (E-values) consid-
ered, as well as on the score-to-sequence length ratio. Pro-
tein sequences or translated nucleotide sequences were
used in the comparisons, rather than nucleotide
sequences, due to the presence of introns, which charac-
terizes eukaryota, and thus filamentous fungi. For the
cases in which no hits were generated in this way, the
translated nucleotide sequences of genes encoding the
specific enzymes (obtained from the (non-redundant)
NCBI nucleotides database [26]) were used as queries,
and BLASTX was employed for generating putative assign-
ments.

Evaluation of functional assignments
Once candidate ORFs were identified for the metabolic
functions, the reliability of the functional assignments
was assessed and the ORFs were classified into different
categories, according to several criteria, as shown in Fig. 3
and Table 6, and described in the following.

Functional annotation (A)
Previous annotations of the candidate ORFs (if available
in the Aspergillus nidulans Database [5] or in The
Aspergillus nidulans Linkage Map [38]) were compared
with the function in question. The candidate ORFs were
classified into the categories A, A*, A-X or A-NA, depend-
ing on the availability and consistency of the results of the
comparison (see Fig. 3 and Table 6).

Protein families (F)
The protein domains originally predicted for the candi-
date ORFs [5] were compared with those of the enzymes
catalyzing the functions of interest [6], and the candidate
ORFs were classified accordingly into the categories F, F-X
or F-NA (see Fig. 3 and Table 6).

Comparative genomics with yeast (Y)
The proteins in S. cerevisiae [35] were used as queries in
BLASTP searches against all predicted proteins in A. nidu-
lans [5], and the correspondences between ORFs in this
yeast and A. nidulans generated in this way were used to
evaluate the reliability of the candidate ORFs. This was
accomplished by comparing the functions assigned to the
ORFs in yeast with those assigned to the candidate ORFs.
The candidate ORFs were then classified into the follow-
ing classes Y, Y*, Y-X or Y-NA (see Fig. 3 and Table 6).

Diagram representing the steps in the annotation processFigure 3
Diagram representing the steps in the annotation process.
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Comparative genomics with other organisms (O)
Potential homologs of the candidate ORFs encoding the
metabolic functions in A. nidulans were surveyed in other
organisms, through BLASTP searches of the former against
the (non-redundant) protein database at NCBI [26]. The
corresponding functions were compared and the candi-
date ORFs were classified into the categories O, O*, O-X
or O-NA (see Fig. 3 and Table 6).

Isoenzymes, multifunctional enzymes and subunits in 
enzyme complexes
The BLAST searches often yielded several hits (or candi-
date ORFs) with E-values lower than the cut-off value (or
with similar score-to-length ratios) for a given function.
These hits could potentially correspond to ORFs encoding
isoenzymes or subunits of enzyme complexes. In these sit-
uations, all candidate ORFs were considered and classified
according to the criteria described above. In some cases,
the existence of these hypothetical isoenzymes or subu-
nits in A. nidulans was supported by information con-
cerning this fungus available in the literature. Otherwise,

information was extrapolated from A. niger or S. cerevi-
siae.

Multi-enzyme complexes and isoenzymes were repre-
sented in a different way in the metabolic reconstruction.
All subunits considered to belong to a same multi-enzyme
complex were associated to a single reaction in the meta-
bolic network, whereas isoenzymes were represented as
independent reactions. For example, in the metabolic net-
work of A. nidulans, the pyruvate dehydrogenase complex
is represented by two subunits (AN5162.2/AN9403.2),
which are associated to a single reaction (EC 1.2.4.1). On
the other hand, two isoenzymes of glutamate dehydroge-
nase (AN7451.2 and AN4376.2) were associated to two
different reactions in the metabolic network, a NAD+- and
a NADP+-dependent reaction, respectively. Reactions cat-
alysed by multi-enzyme complexes were included, if at
least one of the subunits was identified.

Another issue that was addressed was related to the assign-
ment of different functions to the same ORF. These ORFs

Table 6: Classification of candidate ORFs into categories, according to several criteria.

Functional annotation (A)

Comparison of the previous functional annotations for the candidate ORFs [5] with the function of interest
A function assigned to the candidate ORF consistent with function of interest
A* function assigned to the candidate ORF not contradicting function of interest (e.g. aldose reductase versus xylose reductase; 

mitochondrial isocitrate dehydrogenase versus cytosolic isocitrate dehydrogenase)
A-NA no function assigned to the candidate ORF (e.g. hypothetical protein)
A-X function assigned to the candidate ORF not consistent with function of interest

Protein families (F)

Comparison of the protein domains originally predicted for the candidate ORF [5] with those of the enzymes catalysing the function of interest [6]
F protein family of candidate ORF consistent with protein family of function of interest
F-NA no protein family associated to the candidate ORF
F-X protein family of candidate ORF not consistent with protein family of function of interest

Comparative genomics with yeast (Y)

BLASTP searches of all proteins in S. cerevisiae [35] against all predicted proteins in A. nidulans [5]
Y function of the protein in yeast (that has a match with the candidate ORF) consistent with missing function
Y* function of the protein in yeast (that has a match with the candidate ORF) not contradicting missing function (e.g. aldose reductase 

versus xylose reductase; mitochondrial isocitrate dehydrogenase versus cytosolic isocitrate dehydrogenase)
Y-NA no match of protein in yeast with the candidate ORF
Y-X function of the protein in yeast (that has a match with the candidate ORF) not consistent with missing function

Comparative genomics with other organisms (O)

BLASTP searches of candidate ORF in A. nidulans against (non-redundant) protein database at NCBI [26]
O functions of proteins in other organisms (that have a match with the candidate ORF) consistent with missing function
O* functions of proteins in other organisms (that have a match with the candidate ORF) not contradicting missing function (e.g. aldose 

reductase versus xylose reductase; mitochondrial isocitrate dehydrogenase versus cytosolic isocitrate dehydrogenase)
O-NA no matches of candidate ORF with proteins in other organisms
O-X functions of proteins in other organisms (that have a match with the candidate ORF) not consistent with missing function
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could possibly encode multifunctional proteins, and
hence these were surveyed for the existence of multiple
protein domains to verify the hypotheses.

Metabolic model and simulation methods
The reconstructed metabolic network of A. nidulans,
including reactions encoded by previously annotated
genes as well as metabolic functions initially missing,
served as a basis to develop a stoichiometric model. The
model was subsequently used for simulating microbial
growth and for gene deletion analysis, by employing flux
balance analysis and linear programming methods
[21,43].

Application of the reconstructed metabolic network for 
the analysis of transcription data
The reconstructed metabolic network was used in combi-
nation with a computational method published by Patil
and Nielsen [27] for analysis of large-scale gene expres-
sion data referring to a study on glucose repression in A.
nidulans. This method enables the identification of so-
called reporter metabolites and metabolic subnetworks,
based on their interconnectedness within the metabolic
network through common metabolites and on informa-
tion about changes in the expression level of the genes.

This approach was applied to analyze expression data
concerning a reference strain and a creA deleted strain of
A. nidulans, grown on different carbon sources, specifi-
cally glucose and ethanol [34]. Furthermore, the top 30
reporter metabolites identified based on the changes in
gene expression between the different carbon sources
(glucose versus ethanol) or genotype of the strains (refer-
ence versus creA deletion mutant) were used in combina-
tion with information on the topology of the metabolic
network of S. cerevisiae [22] for further analysis, using
tools available at the Saccharomyces Genome Database
[35].
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