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Abstract
Background: Artificial selection has resulted in animal breeds with extreme phenotypes. As an
organism is made up of many different tissues and organs, each with its own genetic programme, it
is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the
genes most distinctly expressed between tissues? Does breed or sex equally affect the
transcriptome across tissues?

Results: In order to gain insight on these issues, we conducted microarray expression profiling of
16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two
males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with
similar developmental origin clustered closer than those with different embryonic origins. Often a
sound biological interpretation was possible for overrepresented gene ontology categories within
differentially expressed genes between groups of tissues. For instance, an excess of nervous system
or muscle development genes were found among tissues of ectoderm or mesoderm origins,
respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we
were able to confidently identify genes with differential expression across tissues between breeds
(33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different
than those affected by breed or tissue. Interaction with tissue can be important for differentially
expressed genes between breeds but not so much for genes whose expression differ between
sexes.

Conclusion: Embryonic development leaves an enduring footprint on the transcriptome. The
interaction in gene × tissue for differentially expressed genes between breeds suggests that animal
breeding has targeted differentially each tissue's transcriptome.
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Background
It is now feasible to carry out large scale characterization
of transcription activity using microarrays. This technol-
ogy has opened new avenues to characterize and to dissect
the transcriptome's genetic basis. It is a complementary
approach to the classical ascertainment of the genetic
architecture of complex traits, such as quantitative trait
loci studies. There is now overwhelming evidence that the
levels of mRNA are affected by a number of environmen-
tal, physiological and genetic factors, much the same as
for any other quantitative, complex trait [1,2]. The extent
and influence of each factor is, however, controversial and
unknown to a large extent. Some authors reported that sex
was far more important than the genetic line or age in Dro-
sophila [3], whereas individual variability have been found
to be very large in Fundulus fish [4]. The study of the
genetic basis of variability at the transcriptome level is par-
ticularly relevant because, it has been claimed, evolution
and thus phenotypic variability is due primarily to regula-
tory rather than structural mutations [4,5].

In many microarray studies so far, the goal has been to
compare two physiological statuses, e.g., disease vs.
healthy, by analyzing a single tissue in several individuals.
Some studies have also compared different breeds or
strains, again focussing on one or very few tissues in order
to gain insight as to how much phenotypic variability cor-
relates with differences at the transcriptome level; see for
instance Reiner-Benaim et al. [6]. Nevertheless, the
number of studies comparing different breeds is not very
large yet, particularly in livestock. For instance, only four
published studies have compared the global transcrip-
tome of at least two porcine breeds [7-10] and one com-
pared two divergent lines [11], whereas over a hundred
dealing with porcine microarrays are indexed in
Pubmed[12] as of November 2007. Thus, although a great
deal is known about the transcriptome changes brought
about by diseases, say cancer, much less is known about
the relevance of genetic or environmental factors. Moreo-
ver, an organism is made up of many different tissues and
organs, each with its own genetic programme. How differ-
ent are these genetic programmes? How relevant are they
in terms of total transcriptome variability? What are the
relative contributions of breed or sex when assessed across
tissues? Divergent livestock breeds offer extremely valua-
ble genetic material to study these issues.

In order to contribute to answering these questions, here
we study the variability in a large number of tissues per-
taining to a reduced number of individuals. By allocating
more experimental resources to a much larger number of
tissues than usual, we aim at better characterizing the tran-
scriptome variability across the whole organism.
Although some studies have compared the transcriptome
across different tissues [13-16], the contribution of each

effect (e.g., tissue vs. sex) has not been quantified. The var-
iability between tissues is not as well studied as that
within tissues and some tissues remain poorly character-
ized, all the more in livestock species. The transcriptome
of some tissues like liver and muscle have been analyzed
extensively, well over a thousand citations in Pubmed[12]
as of November 2007. Some other tissues have been only
rarely studied despite their known physiological impor-
tance: only four microarray studies are reported for pineal
gland, 19 for the hypophysis. Certainly, phenotypic differ-
ences in a given tissue can actually be due to changes that
occur in a different organ. For instance, the fatness differ-
ences between individuals, a trait of utmost relevance in
animal breeding, are more likely to be caused by genetic
signals that originate in the hypothalamus or in the pineal
gland rather than in the fat tissue itself.

The aim of this work was to study the global transcripome
across tissues in two highly divergent pig breeds. We
report a mixed model analysis of 16 tissues pertaining to
four pigs, two Large White (LW) and two Iberian (IB), one
male and one female per breed. These two breeds are phe-
notypically extreme for most traits of economic relevance,
e.g., growth, fatness, reproductive performance. The tis-
sues studied were olfactory bulb, hypothalamus, pineal
gland, adenohypophysis, neurohypophysis, adrenal cor-
tex, adrenal medulla, thyroid gland, diaphragm, Biceps
femoris muscle, back fat tissue, abdominal fat tissue, stom-
ach, liver, ileum and whole blood.

Results and Discussion
Transcriptome diversity across tissues and samples
Clustering is a useful starting exploratory tool to visualize
highly dimensional data, and has been widely used to
microarray data since the seminal paper of Eisen and cols.
[17]. Here we applied two clustering methdos, the classi-
cal one based on the UPGMA criterion [17], and the
neighbor-joing (NJ) clustering. In both cases, we used the
distance one minus the squared correlation (1-r2)
between the samples, after normalizing the raw data with
the RMA procedure [18], as detailed in Material and Meth-
ods. Results are drawn in Figure 1, where it can be seen
that samples were clearly grouped by tissue, next by breed
in both trees. This was neatly observed for ileum, liver,
thyroid gland, adeno and neurohypohysis and olfactory
bulb. Muscle samples were clustered by tissue (dia-
phragma vs. M. biceps femori) but less clearly within each
muscle. As for fat, the similarity was larger between tissues
than between breeds, and samples of both back and
abdominal fat origins were clustered together. The same
was observed between cortex and medulla from adrenal
gland. In this case, contamination between both tissues
cannot be ruled out because of the irregular limits of the
medulla that make not easy to separate that region neatly
from the cortex collecting rapidly enough amount of tis-
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NJ (left) and UPGMA trees (right) using the 1 - r2 distanceFigure 1
NJ (left) and UPGMA trees (right) using the 1 - r2 distance. Each sample is named using the tissue acronym (four let-
ters, Table 1), breed (LW or IB) and sex (M, male or F, female); LW males are indicated by open squares; LW females, by open 
circles; IB males, by black squares and IB females, by black circles.
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sue for analysis. Other authors have described previously
contamination of medulla in the cortex sample when
mechanical separation is performed[19]. Thus, this
resemblance was not completely unexpected. The only
outlier sample seemed to be the pineal gland of the Large
White male (PING_LWM), which clustered with the rest
of hypothalamus microarrays. Here contamination can be
discarded in all likelihood because the two regions,
hypothalamus and pineal gland, are in distinct areas of
the brain. However, the pineal gland works in harmony
with the hypothalamus. The former produces melatonin,
which directly influences the function of various brain
centers, including the hypothalamus. In stomach, less
clearly in blood, samples were grouped by sex rather than
by breed.

As expected, both UPGMA and NJ methods provided
identical clustering at the first coalescence level. However,
there were some interesting differences at higher levels. NJ
identified four groups of tissues. The first group com-
prised brain tissues, including hypophysis; the second
group, thyroid and adrenal endocrine glands; the third,
muscle and fat tissues; whereas stomach, ileum, blood
and liver were in the last group. In contrast, UPGMA clus-
tered blood, liver and muscles in separate groups, while
brain tissues were grouped together with fat, thyroid and
adrenal glands; blood and liver were in distinct groups. It
is well known that NJ have better properties than UPGMA
when reconstructing evolutionary trees because it does
not assume a constant evolutionary rate [20]. But is not
evident how to translate this advantage in relation to the
performance for classifying transcriptomes. The UPGMA
method is equivalent to clustering algorithms imple-
mented in popular microarray packages [17], whereas NJ
have not been used so far, to our knowledge, in microar-
ray studies. Here we found that, overall, NJ provided more
biologically sound results than UPGMA: the first two
groups in the NJ-tree comprised brain tissues and endo-
crine glands; muscle and fat tissues have a predominantly
structural function in the body, while the rest of tissues
(liver, stomach, ileum and blood) have an important met-
abolic role. In contrast, UPGMA results were not always so
easily interpretable, e.g., it grouped hypophysis closer to
fat tissues than to other brain organs like hypothalamus or
the olfactory bulb.

The trees depicted in Figure 1 were obtained with the orig-
inal data (after RMA transformation). A better alternative
to study relationships between tissues is to consider the
Probe × Tissue solutions obtained from model (2), as these
solutions are corrected for 'noisy' factors such as sex, breed
and global tissue effects. Thus we constructed a NJ-tree of

tissue transcriptomes using the 1-  distance (see meth-

ods). This tree is shown in Figure 2. Although the pattern

was similar to the NJ-tree in Figure 1, this tree provided a
clearer picture of relationships between tissues. For
instance, it emphasized that blood is the most distant tis-
sue, corroborated also by the fact that blood harbored the
largest number of extreme probes (Table 1). We defined a
tissue's extreme probe as a probe for which all four mRNA
levels of the tissue were either smaller or larger than the
remaining mRNA levels (Material and Methods). In con-
trast, the two adrenal tissues and both fats were the closest
pair of tissues. The brain is not a uniform organ, and this
well known fact [21-23] was corroborated by a relevant
variability within the different brain tissues sampled.
Olfactory bulb was neighbor to hypothalamus. The two
pituitaries, adenohypohysis and neurohypohysis, exhib-
ited neighbor but distinct transcriptomes. This result
agrees with the fact that both organs carry out very differ-
ent physiological functions and have separate embryonic
origins from the ectoderm layer (from an ectodermal out-
pocketing of the stomodeum and neural ectoderm,
respectively). In fact, it was more interesting to note that
neurohypophysis and hypothalamus were relatively dis-
tant. A close relationship might have been expected
because neurohypophysis consists primarily of axonic
projections of the hypothalamus. The pineal gland exhib-
ited an intermediate transcriptome between hypophyses
and hypothalamus – olfactory bulb.

Interestingly, there was a relation between embryonic ori-
gin and clustering. Most tissues with the same embryonic
origin clustered together in the NJ-tree (Figure 2). All
brain tissues are of ectodermic origin, as is hypophysis,
and these tissues were clustered together in the first group
of tissues. The second group comprised the adrenal and
thyroid glands, tissues with double embryonic origin. The
adrenal medulla derives from ectoderm (neural crest
cells), while the cortex develops from mesoderm. The thy-
roid gland develops from two distinct embryonic lineages:
follicular cells (which produce thyroxine) and parafollic-
ular C-cells (which produce calcitonin) and are of endo-
dermal and ectodermal neural crest origins, respectively
[24]. Mesoderm gives origin to fat and muscle. Liver, and
stomach and ileum epithelia are derived from endoderm.
Finally, blood, the most separate and outlier tissue, is of
mesoderm origin. Thus, it seems that embryonic develop-
ment leaves a standing footprint on the transcriptome in
each of the tissues.

Functional analysis of extreme genes across embryo origins 
and tissues
We sought to investigate more in detail the genetic basis
of the tissue arrangement by embryonic layers, and to pick
up genes that can be differentially expressed in concerted
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Table 1: Tissues sampled

Group Tissue Abbreviation Embryonic 
origin

Function, remarks Sampling details # Extreme 
Probesa

Principal KEGG pathways of extreme 
probes

Brain Olfactory bulb OLFB Ectoderm 
(neural)

Perception of odors Whole organ from both 
sides

274 Neuroactive ligand-receptor interaction 
WNT signalling pathway

Hypothalamus HYPT Ectoderm 
(neural)

Regulates metabolic processes and other 
activities of the Autonomic Nervous System

Including mammilary body 
and grey tubercle

147 Neuroactive ligand-receptor interaction Cell 
adhesion molecules (CAMS)

Pineal gland PING Ectoderm 
(neural)

Production of melatonin Whole gland 89 -

Adenohypophy
sis

AHYP Ectoderm 
(stomodeum)

Hormone secretion regulating endocrine glands Whole gland 241 Neuroactive ligand-receptor interaction

Neurohypophy
sis

NHYP Ectoderm 
(neural)

Store and liberation of hormones synthesized by 
the hypothalamus

Whole gland 130 WNT signalling pathway

Endocrine Adrenal cortex ADGC Mesoderm Synthesis of corticosteroid hormones Part of the gland after 
mechanical separation

14 -

Adrenal 
medulla

ADGM Ectoderm 
(Neural crest)

Synthesis of adrenaline and noradrenalin Part of the gland after 
mechanical separation

12 -

Thyroid gland THYG Endoderm + 
Ectoderm 
(neural crest)

Production of thyroxine (T4), triiodothyronine 
(T3), and calcitonin

Part of the gland 376 -

Structural Diaphragm 
muscle

DIAP Mesoderm Predominant oxidative metabolism Samples from left and right 
crura

166 Oxidative phosphorylation ATP synthesis 
Glycolysis Citrate cycle Piruvate metabolism

M. Biceps 
femoris

BIFE Mesoderm Glycolitic metabolism Lateral area of the muscle 354 Glycolysis Insulin signalling pathway Frutose 
and manose metabolism Starch and sucrose 
metabolism Pentose phosphate pathway

Back fat tissue FATB Mesoderm Fat Fat from lumbar region 51 -
Abdominal fat 
tissue

FATA Mesoderm Fat Fat external to the rectus 
sheath

21 -

Metabolic Stomach STOM Endoderm Digestion Epithelium from the body 156 Tight junction
Liver LIVR Endoderm Central role in metabolism Parts from quadrate and 

left lateral lobes
824 Urea cycle Bile acid biosynthesis 

Biosynthesis of steroids Complement and 
coagulation cascades Fatty acid metabolism 
Propanoate metabolism Amino acids 
metabolisms Butanoate metabolism 
Metabolism of xenobiotics by cytochrome 
P450

Ileum ILEU Endoderm Absorption of products of digestion Epithelium 570 Cell cycle Ribosome Pyrimidine metabolism 
Antigen processing and presentation

Blood BLOO Mesoderm Supply of oxygen and nutrients Blood from the femoral 
vein

3253 Hematopoietic cell lineage Regulation of 
actin cytoskeleton T-cell receptor signalling 
Focal adhesion ECM receptor interaction 
Cytokine cytokine receptor interaction Cell 
adhesion molecules (CAMS) MAPK signalling 
pathway JAK-STAT signalling pathway Tight 
junction

a The complete list is in Supplementary Table S2. See Material and Methods for definition of extreme probe.
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action within each embryonic layer. To that end, we
obtained the extreme gene probes differentiating the ecto-
derm tissues (olfactory bulb, hypothalamus, pineal gland,
adenohypophysis and neurohypophysis), mesoderm
(muscle and fat), and endoderm (liver, stomach and
ileum). An extreme probe for each embryo layer was
defined as for individual tissues, i.e., a probe whose all
expression levels for that group of tissues were either
smaller or larger than the levels for the rest of tissues
(Material and Methods). We excluded thyroid and adrenal
glands for being mixed tissues and blood, for outlier. The
complete list in additional file 1. A pie-plot with differen-

tial gene ontology (GO) frequencies obtained with onto-
express [25] is in Figure 3. A wide variety of GO were over
represented in each layer; this fact, together with a large
percentage of unknown or unannotated genes makes it
somewhat difficult to interpret the results in detail.

Neverheless, some interesting results appeared. For
instance, genes with ontologies like nervous development
and ion transport – clearly related to central nervous sys-
tem – were more frequent than expected within ectoderm
extreme genes, as were genes involved in development
(Figure 3A). In particular, some of the most overexpressed

NJ tree of tissues using the 1-  DistanceFigure 2

NJ tree of tissues using the 1-  Distance. The four groups in Table 1 are indicated by symbols: brain (open squares), 

endocrine (grey squares), structural (grey triangles) and metabolic (black circles).
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genes like INA (internexin neuronal intermediate fila-
ment protein), ASTN (astrotactin) or NAPIL2 (nucleo-
some assembly protein 1-like 2) are involved in neuron
development, whereas others like GABRG2 (GABA A
receptor) or SYT4 (synaptotagmin IV) are involved in nor-
mal neuron functioning. The case of NAP1L2 (nucleo-
some assembly protein 1-like 2) is particularly interesting.
Although, according to Pubmed, 'the function of this fam-
ily member is unknown, mouse studies suggest that it rep-
resents a class of tissue-specific factors interacting with
chromatin to regulate neuronal cell proliferation'. Our
results strongly suggest that NAP1L2 is involved in neuro-
nal system and that the function is maintained across spe-
cies.

In parallel to results for ecctoderm tissues, the most signif-
icant enriched ontology was muscle development in the
mesoderm (Figure 3B). Here, some of the most extreme

genes were Hox genes involved in limb development and
myogenesis (e.g., PRRX1, HOXD8 and MEOX2). In partic-
ular, it has been suggested that PRRX1 and HOXD8 are
also involved in the urogenital tract development, also of
mesoderm origin. The two top extreme genes for meso-
derm tissues gamma-sarcoglycans (SGCD and SGCG) are
also involved in muscle development. As for the endo-
derm (liver, ileum and stomach), an excess of genes
involved in general metabolism was observed, although
we also found a significant enrichment in nervous devel-
opment genes (Figure 3C). Two of the most overexpressed
extreme genes, HNF4A (hepatocyte nuclear factor 4,
alpha) and FOXA3 (hepatocyte nuclear factor 3 or fork-
head box A3) are known to be involved in liver develop-
ment, and it is suspected that HNF4A can play a role also
in intestine development, which is supported by our data.
Intriguingly, some of the most extreme overexpressed
genes were involved in the complement pathway (C5, BF,

Differential GO categories across embryo layersFigure 3
Differential GO categories across embryo layers. Percentage of the most frequent GO categories within extreme genes 
for each embryonic layer (A, ectoderm; B, mesoderm; C, endoderm; D, all genes in A, B and C). The number in each cate-
gory is the false discovery rate (FDR) that the category is over represented with respect to the GO frequency across all genes 
in the microarray. The FDR is shown only if < 0.20.
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SDC1, C4BPA), may be as a consequence of the defense
function of the ileum. Finally, when all extreme genes
across the three embryo layers were considered jointly
(Figure 3D), the most significant ontologies were nervous
system development, cell differentiation, cell adhesion
and multicellular organism development, which again
suggests a sound biological interpretation.

We also obtained the extreme probes for each of the indi-
vidual tissues. The main over represented biological proc-
ess per tissue is in Table 1, and a complete list of the genes
is in additional file 2. Results confirmed, overall, previous
biological knowledge. brain tissues (olfactory bulb, hypo-
physes, pineal gland and hypothalamus) exhibited a large
number of genes in signalling pathways (see also Figure
3A). The highly oxidative muscle diaphragma was
enriched in genes involved in ATP synthesis through cit-
rate cycle and oxidative phosphorylation, whereas biceps
femori (glycolytic muscle) extreme genes were often
related to the production of ATP by glycolysis and sugar
pathway. The liver extreme genes were in the urea cycle
pathway and bile acid and amino acid metabolisms;
blood genes pertained to hematopoietic processes and sig-
naling pathway systems.

Mixed model analysis

Mixed model analyses were highly successful in model-
ling transcriptome variability (Table 2). For instance, for
model (2) the fraction of unexplained variance was very

small, 1 -  -  = 0.03, and ~15% in the rest of mod-

els. This means that the set of expression levels can be very
accurately modelled as a random normal variate in the log
scale. Note that models (1 – 4) were highly parsimonious:
a few parameters, i.e., the variance components and the
fixed effects tissue, sex and breed were needed to model
the data. By far, the largest variance component was that
of the probe, which explained overall at least 85% of the
total variability (Table 2). The interaction probe × tissue

( ) accounted for 11% of phenotypic variance (model

2), whereas the total variances explained by probe × breed
or probe × sex were marginal, only about 1% (models 3
and 4). These were the global variance estimates, when all
probes were considered jointly. It does not follow that sex
or breed were not associated to changes in gene expres-
sion. The relative importance of sex or breed did increase
when we restricted the analysis to a data subset. For
instance, the percentage of total variance explained by
breed or sex increased to 25% or 48% when we used the
100 most differentially expressed genes between breeds or
between sexes, respectively (last two rows of Table 2).

Symmetrically, the relevance of probe effect decreased for
these data subsets.

Differential gene expression
At a false discovery rate FDR < 0.05, we identified 19 and
33 genes differentially expressed between sexes and
breeds, respectively. The complete lists together with ten-
tative annotations [26] are in Tables 3 and 4. Two of the
genes, orthologous to human genes in the HLA-A and
HLA-B complex, were differentially expressed simultane-
ously between breeds and between sexes. However, there
was no correlation overall between tissue, breed or sex
effects. This was evident from the pattern in Figure 4,
which displays the relation between zb and zs scores (top
figure) and between zb scores and the standard deviation
of the probe × tissue solutions (bottom figure). If there
were a relation, we would see the dots around a diagonal
rather than close to the axes. Thus, each of the factors stud-
ied here, sex and breed, influence the transcriptome
through different genetic programmes.

We performed a clustering of probes and samples using
only the differentially expressed genes from Tables 3 and
4. Results were drawn in Figure 5, where the discrimina-
tion between sexes (top) and breeds (bottom) is neat and
clearly visible. This clustering contrasts with that in Figure
1 where all probes were employed. The discrepancy occurs
because the expression pattern of most genes is primarily
affected by the tissue and not so much by sex or breed, as
discussed. However, as Figure 5 clearly shows, this does
not mean that a careful selection of probes does not allow
us to discriminate samples between according to sex or
breed.

The list of differentially expressed genes between sexes
comprised eight X or Y linked genes, based on the locali-
zation of orthologous human genes (Table 3). Note that
three X-linked genes were up-regulated in males (ZFX,
UTX and TMSB4X), a phenomenon also observed by Yang
et al. [14] although for different genes. Male up-regulated
genes were predominantly involved in spermatogenesis
(DDX3Y), cell proliferation, migration, and differentia-
tion (GSTA1, TMSB4X), as well as genes genes from the

hP
2 hPT

2

σ PT
2

Table 2: Parameter estimates

Model Dataset

1 Complete 0.87 - - -
2 Complete 0.86 0.11 - -
3 Complete 0.85 - 0.01 -
4 Complete 0.85 - - 0.01
3 100 largest zb 0.46 - 0.25 -
4 100 largest zs 0.25 - - 0.48

hP
2 hPT

2 hPB
2 hPS

2
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histocompatiblity complex (HLA-A, HLA-B). Female up-
regulated genes had functions related to positive regula-
tion of the transforming growth factor beta receptor sign-
aling pathway (HIPK2), proteins up-regulated in
gonadotropinomas (FAM5C) or affecting the circadian
rhytm (CLOCK). Up-regulation of CLOCK in females is
consistent with evidence showing that this gene is related
to the cyclic nature of the reproductive process in females,
both in mammal and in non mammal species [27-29].

We found a good concordance with the list of differen-
tially expressed genes obtained with the same microarray
in lung and mesenteric lymph node by our group in a sep-
arate experiment (Fernandes et al., unpublished results).
Thirteen genes (mesenteric lymph node) and ten genes
(lung) were also in Table 3, despite the fact that corre-
sponded to different tissues, treatments and breeds. Yang
et al. [14] compared microarrays of 169 female and 165

male mice in four tissues (whole brain, liver, skeletal mus-
cle and gonadal adipose), the largest study to date of sex
differentially expressed genes. They reported 27 genes that
were differentially expressed in all four tissues, four of
them (DDX3Y, EIF2S3Y, JARID1D and UTX) were also
found here; DDX3Y and EIF2S3Y were the most differen-
tially expressed genes found here and in [14]. It is interest-
ing to note that these authors also reported that immune
genes, e.g., histocompatiblity genes, were overexpressed
in males with respect to females, in agreement again with
our results [14,30]. Differential expression between sexes
for SSCY genes can be considered as validated.

We also validated probe (Ssc.4897.1.A1_at), annotated as
CLOCK gene [26], by real time quantitative RT-PCR
(QRT-PCR) in backfat samples of 27 pigs. QRT-PCR
results clearly confirmed the microarray data (Table 5).
The average relative expression was 1.88 ± 0.68 in females,

Table 3: Differentially expressed genes between sexes at FDR < 0.05

Gene Symbol Probe z-
score

Function, GO-process

DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, 
Y-linked

DDX3Y Ssc.7473.1.A1_at 20.96 Nucleoside-triphosphatase activity

Eukaryotic translation initiation factor 2, 
subunit 3 gamma,

EIF2S3 Ssc.16426.1.S1_at 20.19 Protein metabolism/translation regulator activity

FAM5C – family with sequence similarity 5, 
member C

FAM5C Ssc.6667.1.A1_at -18.80 Unknown

Eukaryotic translation initiation factor 1A, Y-
linked

EIF1AY Ssc.26799.1.S1_at 18.77 Translational initiation/translation regulator activity

DENN/MADD domain containing 4A DENND4A Ssc.13426.1.A1_at -18.07 Regulation of transcription, DNA-dependent
Protein tyrosine phosphatase, receptor type, 
M

PTPRM Ssc.31029.1.A1_at -16.39 Protein amino acid dephosphorylation/protein 
tyrosine phosphatase activity

Latrophilin 2 LPHN2 Ssc.21512.1.A1_at -15.40 Neuropeptide signaling pathway/signal transducer 
activity

Homeodomain interacting protein kinase 2 HIPK2 Ssc.2434.1.A1_at -14.25 Positive regulation of programmed cell death/
transcription regulator activity

Circadian locomoter output cycles kaput; 
clock homolog

CLOCK Ssc.4897.1.A1_at -14.10 Circadian rhythm/transcription regulator activity

Thymosin, beta 4, X-linked TMSB4X Ssc.27304.1.S1_at 12.26 Cytoskeleton organization and biogenesis/actin 
binding

Ubiquitously transcribed tetratricopeptide 
repeat gene, Y-linked

UTY Ssc.27236.1.S1_at 11.10 Unknown. Positive regulation of growth rate (C. 
elegans)

Jumonji, AT rich interactive domain 1C JARID1C Ssc.21814.1.S1_at 8.41 Regulation of transcription, DNA-dependent/
oxidoreductase activity

Ubiquitously transcribed tetratricopeptide 
repeat, X chromosome

UTX Ssc.15821.1.S1_at 7.45 Unknown. Positive regulation of growth rate (C. 
elegans)

Glutathione S-transferase A1 GSTA1 Ssc.16377.1.A1_at 6.67 Glutathione metabolism/transferase activity
Major histocompatibility complex, class I, A HLA-A Ssc.13780.11.S1_x_at 4.81 Antigen processing, endogenous antigen via MHC 

class I/MHC class I receptor activity
Major histocompatibility complex, class I, B HLA-B Ssc.18552.1.S1_at 4.39 Antigen processing, endogenous antigen via MHC 

class I/MHC class I receptor activity
Major histocompatibility complex, class I, B HLA-B Ssc.18554.1.S1_x_at -4.38 Antigen processing, endogenous antigen via MHC 

class I/
Zinc finger protein, X-linked ZFX Ssc.26228.1.S1_at 4.19 Regulation of transcription/transcriptional activator 

activity
Hypothetical protein FLJ20035 Q8IY21 Ssc.18924.1.A1_at -3.95 Unknown

z – scores correspond to male minus female contrasts.
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whereas we were not able to reliably detect expression in
males at 1/2000 cDNA dilution because we were below
the limit of detection. To verify whether this gene product
is actually expressed in males, we repeated the assay at 1/

20 cDNA dilution. We could detect low levels of expres-
sion in four out of the 13 males studied. Iberian male 27,
that with largest relative quantification (RQ), exhibited

Table 4: Differentially expressed genes between breeds at FDR < 0.05

Gene Symbol Probe z-
score

Function, GO-process

Prostaglandin E synthase 2 PTGS2 Ssc.25850.1.A1_at 10.20 Regulation of inflammatory response/prostaglandin-
endoperoxide synthase activity

Hypothetical protein DKFZp313A2432 Q8NHG7 Ssc.29609.2.A1_at - 9.11 Unknown
ATPase, H+ transporting, lysosomal 31 kDa, 
V1 subunit E1

ATP6V1G2 Ssc.12005.1.A1_at 8.97 Purine ribonucleotide metabolism/ion transporter 
activity

Synovial sarcoma, X breakpoint 2 interacting 
protein

SSX2IP Ssc.28283.1.A1_at 8.89 Cell adhesion

Sema domain, immunoglobulin domain (Ig), 
short basic domain, secreted, (semaphorin) 
3A

SEMA3A Ssc.29388.1.A1_at 7.74 Cell differentiation (nervous system development)

DIDO1 death inducer-obliterator 1 DATF1 Ssc.14412.1.A1_at 7.46 Apoptosis (M. musculus)/regulation of transcription, 
DNA-dependent

Hypothetical protein DKFZp313A2432 Q8NHG7 Ssc.29609.1.S1_at - 7.18 Unknown
Immunoglobulin heavy constant mu IGHM Ssc.7706.1.A1_at 7.09 Response to biotic stimulus/signal transducer activity
Major histocompatibility complex, class I, B HLA-B Ssc.18554.1.S1_x_at - 6.61 Antigen processing, endogenous antigen via MHC 

class I/MHC class I receptor activity
Armadillo repeat containing, X-linked 1 ARMCX1 Ssc.5616.1.S1_at - 6.42 Cellular component
Tousled-like kinase 2 TLK2 Ssc.30422.1.A1_at 6.36 Establishment and/or maintenance of chromatin 

architecture/transferase activity, transferring 
phosphorus-containing groups

Follistatin-like 4 FSTL4 Ssc.11743.1.S1_at - 6.15 Calcium ion binding
Hypothetical protein Q8N5E3 Ssc.1256.1.A1_at - 6.03 Unknwon
Transcription factor CP2 TFCP2 Ssc.7954.1.A1_at - 5.83 Regulation of nucleic acid metabolism/transcription 

regulator activity
Major histocompatibility complex, class I, A HLA-A Ssc.13780.11.S1_x_at - 5.60 Antigen processing, endogenous antigen via MHC 

class I/MHC class I receptor activity
Golgi phosphoprotein 4 GOLPH4 Ssc.25176.1.A1_at - 5.12 Cellular component
Enoyl Coenzyme A hydratase domain 
containing 1

ECHDC1 Ssc.1146.1.S1_at 4.86 Metabolism/catalytic activity

Glycoprotein M6B GPM6B Ssc.8133.1.A1_at 4.85 Cell differentiation (nervous system development)/
molecular function unknown

Hypothetical protein C21orf88 Ssc.22421.1.A1_at - 4.68 Unknwon
Polo-like kinase 2 PLK2 Ssc.29934.1.A1_at - 4.67 Positive regulation of signal transduction/transferase 

activity, transferring phosphorus-containing groups
Hypothetical protein Q9NV98 Ssc.5839.2.A1_at - 4.67 Unknwon
Lysozyme LYZ Ssc.670.1.S1_at - 4.58 Cellular catabolism (cell death)/hydrolase activity, 

acting on glycosyl bonds
RAB18, member RAS oncogene family RAB18 Ssc.30567.1.A1_at - 4.56 Endocytosis/pyrophosphatase activity
Zinc finger protein 12 ZNF12 Ssc.10665.1.A1_at - 4.56 Regulation of cellular process/zinc ion binding
Splicing factor, arginine/serine-rich 2, 
interacting protein

SFRS2IP Ssc.12708.1.A1_at - 4.50 mRNA processing

Immunoglobulin heavy constant mu IGHM Ssc.11070.1.S1_at - 4.46 Response to biotic stimulus/signal transducer activity
Synapsin III SYN3 Ssc.3880.1.S1_at -4.43 Regulation of neurotransmitter levels (transmission 

of nerve impulse)/purine nucleotide binding
Deleted in liver cancer 1 DLC1 Ssc.18150.1.A1_at - 4.40 Negative regulation of growth/enzyme regulator 

activity
DEAD (Asp-Glu-Ala-Asp) box polypeptide 
17

DDX17 Ssc.8674.1.A1_at 4.24 Nucleobase, nucleoside, nucleotide and nucleic acid 
metabolism/nucleoside-triphosphatase activity

Potassium channel modulatory factor 1 KCMF1 Ssc.25963.1.A1_at 4.16 Channel or pore class transporter activity
Mitochondrial carrier homolog 2 MTCH2 Ssc.6054.2.S1_at - 4.12 Transport
Cytoskeleton-associated protein 4 CKAP4 Ssc.2147.2.A1_at 4.09 Cellular component
Blood vessel epicardial substance BVES Ssc.15540.1.A1_at - 3.82 Muscle development

z – scores correspond to Large White minus Iberian contrasts.
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Relation between z-scoresFigure 4
Relation between z-scores. Plot of z-scores of breeds and sexes (top), and between the breed z-scores and the standard 
deviation within probes of Probe × Tissue solutions (bottom).
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Sample clustering using differentially expressed genesFigure 5
Sample clustering using differentially expressed genes. Genes differentially expressed between sexes (top) and breeds 
(bottom).
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nonetheless a expression level ~100 fold lower than in
females.

The list of probe sets corresponding to differentially
expressed genes at FDR < 0.05 between LW and IB breeds
is in Table 4. The thirty three probes corresponded to 27
genes and 5 hypothetical proteins; 12 were over expressed
in Large White (LW-biased) and 21 over expressed in Ibe-
rian (IB-biased). The LW-biased list comprised genes
involved in ATP biosynthetic process, nervous system
development, lipid metabolism, RNA processing, and
control of growing and cellular division. The IB-biased
genes affected the regulation of cell growth, RNA splicing
factor activity or muscle development. These results hint
that transcriptome differences between breeds seem to be
manifold. No particular single biological process was pre-
dominantly affected. It is to be noticed, nonetheless, that
there were several genes involved in nervous development

(SEMA3A, GPM6B, SYN3) or growth and cell cycle
(DATF1, LYZ, RAB18, ZNF12, DLC1, BVES). As there is
currently very little information on the transcriptome dif-
ferences between pig breeds, it is not possible to know
how general these results will be. Some recent results have
compared muscle in Duroc vs. Taoyuan breeds [8], in Lan-
drace vs. Tongcheng [10] and liver and muscle in Duroc
vs. Pietrain [7,9]. While these studies have focussed on a
particular tissue and with different techniques and micro-
arrays, all suggest that breeds differ in genes related to a
variety of functional categories. In some cases, the micro-
array included predominantly genes involved in muscle
structure and development or energy metabolism [7] so
their results may not be representative of the whole
genome.

It should be noted that the differentially expressed genes
reported here (Tables 3 and 4) were those that exhibited
largest differential expression across all tissues. This fol-
lows from the specification of models (1–4), where all
probes were analyzed simultaneously and where the tis-
sue effect was included in the models as just an additional
effect. Thus, it is important to bear in mind that other
genes could show larger differential expressions in a spe-
cific tissue than those listed in Tables 3 and 4. The experi-
mental design of this study did not allow us to
characterize with reasonable FDR the specific expression
of a gene in a single tissue. Nevertheless, we can get a
glimpse of the effect of tissue in differential expression by
subdividing the tissues in groups. We reasoned that the
probe × tissue interaction should be larger between tissues
that clustered far apart, as their genetic programmes are
more different that tissues that are very similar, e.g., back
and abdominal fats. We defined the following tissue
groups base on the NJ-tree shown in Figure 2: brain (olfac-
tory bulb, hypophises, hypothalamus and pineal gland),
endocrine (adrenal and thyroid glands), structural (fat
and muscle) and metabolic tissues (stomach, ileum, liver
and blood). To a large extent, these groups reflect also a
common embryonic origin (Table 1).

We reanalyzed each of the groups with models 3 and 4,
obtaining new zb and zs scores for each of the tissue groups.
Table 6 presents the correlation between the z-scores
obtained with all tissues analyzed simultaneously and
each of the groups. In order to focus on the most relevant
genes, the correlations shown were those obtained with
the 100 genes with largest absolute z-scores. The pattern
shown was highly illuminating. For sex, there seemed to
be little interaction, as zs-scores were highly correlated
across groups of tissues. Correlation coefficients were
always > 0.9. In contrast, correlations between zb scores
were much more variable and, importantly, much lower
overall. Thus, whereas the correlation between brain and

Table 5: QRT-PCR results for CLOCK gene, probe 
Ssc.4897.1.A1_at

Sample Sex Breed RQ (1/2000) RQ (1/20)

13 F Duroc 1.000 NA
14 F Duroc 1.555 NA
16 F Duroc 2.694 NA
22 F Iberian 1.114 NA
25 F Iberian 2.054 NA
26 F Iberian 1.581 NA
8 F Landrace 1.621 NA
10 F Landrace 1.521 NA
1 F Large White 1.272 NA
3 F Large White 1.796 NA
5 F Large White 2.696 NA
6 F Large White 1.961 NA
17 F Synthetic 1.951 NA
21 F Synthetic 3.482 NA
12 M Duroc BLD BLD
15 M Duroc BLD BLD
23 M Iberian BLD BLD
24 M Iberian BLD 0.012
27 M Iberian BLD 0.010
7 M Landrace BLD BLD
9 M Landrace BLD BLD
11 M Landrace BLD 0.001
2 M Large White BLD 0.003
4 M Large White BLD BLD
18 M Synthetic BLD BLD
19 M Synthetic BLD BLD
20 M Synthetic BLD BLD

Sex: F, female; M, male
RQ (1/2000): Relative quantification RQ, average of three replicates 
each, at 1/2000 cDNA dilution. The results are given in terms of 
sample number 13, used as calibrator, i.e., RQ = 1
RQ (1/20): Relative quantification RQ, average of three replicates 
each, at 1/20 cDNA dilution, only analyzed for males
BLD, below limit of detection
NA, not available
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metabolic tissues was 0.91 for sex z-scores, it was only
0.34 for breed z-scores. This means that most differen-
tially expressed genes between sexes were shared across
tissues whereas this was much more unlikely when com-
paring two distant breeds like Iberian and Large White. It
is interesting to note that the clusters in Figure 5 also
hinted that heterogeneity was larger within breed differen-
tially expressed genes than within sex differentially
expressed genes. Note that the color patterns of sex differ-
entially expressed genes were more uniform across sam-
ples than for breed differentially expressed genes. Besides,
clustering was much 'flatter' – i.e., more uniform – within
sexes than within breeds. This result may have important
implications. It suggests that physiological changes
responsible for breed differences have targeted differen-
tially the transcriptome across tissues. Not all tissues have
been equally affected. It remains to be studied on which
of the tissues the effect of breed differentiation has been
the largest. Our current data set does not allow us to
respond to this question accurately: the probe × tissue her-

itabilities ( ) were very similar in all tissue groups and

no clear pattern emerged from Figure 1.

Functional annotation of sex and breed differentially 
expressed genes
We carried a GO automatic annotation [25] with the 19
most differentially expressed genes between sexes and 33
between breeds. The corresponding plots are in Figure 6.
In neither case, sex or breed, was a given biological proc-
ess GO clearly over represented (except the class of
unknown/others which pools unknown and minoritary GO
classes). As a result, the discussion should be considered
as tentative or provisional. Nevertheless, we found
defense genes to be over represented for both sex and
breed specific genes. For sex, there was a significant excess
of transcription and translation related genes. Some of
these genes are sex linked (EIF1AY, UTX, ZFX), as men-

tioned above, so an over representation of this ontology is
not unexpected. The GO biological processes were more
scattered for breed than for sex (Figure 6B vs. 6A). Interest-
ingly, there were more genes involved in nervous system
development and cell differentiation than expected
among breed specific genes. This might provide some
clues as to what are the primary changes exerted by selec-
tion and breeding in the organism' transcriptome but fur-
ther work is needed to get a definitive answer.

Global Discussion and Conclusion
This study shows that a much larger fraction of transcrip-
tome variability is due to tissue differences rather than to
sex or breed. Our results agree with recent literature
[13,15] that showed that transcriptional co-expression is
indicative of gene function and that tissues with similar
function tend to cluster together. An additional relevant
observation from the NJ-clustering (Figures 1 and 2) was
that embryonic development seems to leave an enduring
footprint on the transcriptome: tissues with similar devel-
opmental origin tend to cluster closer than those with dif-
ferent embryonic origins. As clustering was carried out
with all probes simultaneously, this means that the foot-
print extends to the majority of genes. We further charac-
terized the GO biological process of the extreme genes
between tissues or groups of tissues sharing a common
embryonic origin (Figure 3, and additional files 1 and 2).
We found that, often, a sound biological interpretation
was possible. For instance, when all extreme genes across
the three embryo layers were considered jointly (Figure
3D), the most frequent and significant ontologies were
related to development. We also indentified several genes
involved in tissue development that have a distinct expres-
sion pattern in tissues with a common embryonic origin.
This distinct expression pattern is maintained beyond
embryo development.

A key element of our analysis was mixed model methods.
Although well known to statisticians and animal breeders
[31], these techniques are not so widely employed to dis-
sect microarray data. Nevertheless, its use have been advo-
cated and successfully employed in a number of studies,
e.g., [32,33]. We report that mixed modeling explained a
large part of total variability, with a very parsimonious
parameterization. A relevant advantage over standard
methods is that all data are analyzed simultaneously as
opposed to more utilized methods like ANOVA – based
techniques or bioconductor's package limma [34]; as a
consequence, reduced standard errors are expected. In a
second step, one can use the solutions from the models to
carry out clustering or differential expression studies, as
we did here.

Although the variance explained by the effect of tissue was
much larger (~11 times) than that explained by sex or

hPB
2

Table 6: Correlation between between z-scores in different 
tissue groups

All Brain Endocrine Structural Metabolic

All - 0.98 0.97 0.98 0.97
Brain 0.79 - 0.92 0.96 0.91
Endocrine 0.87 0.62 - 0.92 0.97
Structural 0.83 0.46 0.68 - 0.93
Metabolic 0.77 0.34 0.63 0.64 -

The tissues included in each group are listed in Table 1. The z-scores 
correspond to the 100 largest differentially expressed genes when all 
tissues are jointly analyzed. Upper diagonal, sex differentially 
expressed genes. Lower diagonal, breed differentially expressed 
genes.
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Proportion of functional annotation categoriesFigure 6
Proportion of functional annotation categories. Percentage of the most frequent GO categories within the most signifi-
cant differentially expressed genes between sexes (Table 3) and between breeds (Table 4). The number in each category is the 
false discovery rate (FDR) that the category is over represented with respect to the GO frequency across all genes in the 
microarray. The FDR is shown only if < 0.20.
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breed, which were comparable (Table 2), we were able to
identify genes with differential expression between breeds
and between sexes. Noticeably, different genes were
affected by each factor, i.e., the genes primarily affected by
sex were different than those affected by breed or tissue.
Are genes whose expression differ between breeds differ-
entially expressed across all tissues or is there any interac-
tion tissue × gene? Our experimental design does not
allow to resolve this issue with enough power. However,
the results (Figure 5, Table 6) hint that interaction can be
important for differentially expressed genes between
breeds but not so much between sexes. Resolving this
question is of the utmost interest, both to understand the
profound influences of artificial selection on the organ-
isms and to propose novel more efficient strategies for
animal breeding.

Although more work is needed to calibrate the actual rel-
evance of breed or genetic differences to the pig's tran-
scriptome (or in any other species), it seems difficult that
the importance of breed or sex differences exceeds that of
tissue. Thus, the argument that regulatory rather than
structural mutations are a more important source of phe-
notypic variability [5] needs then to be considered in per-
spective. It follows from our study that differences within
the same individual largely exceeds those between indi-
viduals.

Methods
Animal material
Four animals, two Large White (LW) and two Iberian (IB)
piglets were bought from two breeding companies and
transferred to the University experimental farms at wean-
ing, i.e., aged one month approximately. Pigs were housed
simultaneously, fed the same diets during the fattening
period, that lasted two months, and were weighed at
weekly intervals. At the time of slaughter, the average ages
were 87 and 89 days for LW and IB, respectively. Their
mean live weights at that time were 37.5 (LW) and 29.1 kg
(IB). The four animals were identified as LW or IB and
male (M) or female (F), i.e., LWM, LWF, IBM and IBF.

Animals were euthanized by an overdose of intravenous
sodium thiobarbital. At necropsy, samples of 16 tissues
were collected, snap frozen in liquid nitrogen and stored
at -80°C. The average time gap between euthanasia and
tissue collection was ~15 minutes, maximum time was 25
minutes. The tissues collected were olfactory bulb (OLFB),
hypothalamus (HYPO), pineal gland (PING), adenohy-
pophysis (AHYP), neurohypophysis (NHYP), adrenal cor-
tex (ADGC), adrenal medulla (ADGM), thyroid gland
(THYG), diaphragm (DIAP), M. Biceps femoris (BIFE),
back fat tissue (FATB), abdominal fat tissue (FATA), stom-
ach (STOM), liver (LIVR), ileum (ILEU) and whole blood
(BLOO). Adrenal cortex and medulla were separated by a

sharp knife. The hypothalamus included the mamillary
body and grey tubercle but excluded the chiasma opti-
cum. The nomenclature for organs and tissues was used
according to the Nomina Anatomica Veterinaria[35]. More
details are given in Table 1. Throughout this work, a sam-
ple is identified by the acronym of the tissue followed by
the animal id, e.g., FATB_LWF refers to back fat tissue
from the female Large White. All procedures were
approved by the Ethical and Animal Welfare Committee
of the Universitat Autònoma de Barcelona, in accordance
with the guidelines of the Good Experimental Practices.

RNA extraction and microarray hybridization
Total RNA was extracted from 100 mg tissue using the
RiboPure™ kit (Ambion, Austin, USA) according to the
manufacturer's protocol. RNA was quantified with the
NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, USA) and the RNA integrity
was assessed by Agilent Bioanalyser 2100 and RNA Nano
6000 Labchip kit (Agilent Technologies, Palo Alto, USA).
Due to high variation in concentrations of the total RNA
obtained in different tissues, all samples were concen-
trated and cleaned using the RNAeasy MiniElute Cleanup
kit (Qiagen, Basel, Switzerland) obtaining final concen-
trations between 500 and 1000 ng/μl.

A total of 64 microarrays (4 animals × 16 tissues) were
hybridized and scanned at the Institut de Recerca Hospital
Universitari Vall d'Hebron (Barcelona, Spain). Briefly, the
cDNA synthesis was undertaken with 5 μg of total RNA,
labelled with biotin and hybridized to individual high-
density oligonucleotide microarray chips (GeneChip®

Porcine) from Affymetrix (Santa Clara CA) containing a
total of 23,937 probe sets (23,256 transcripts), represent-
ing 20,201 Sus scrofa genes, 11,265 of these genes were
annotated by Tsai et al. (2006). The hybridization was
done according to Affymetrix standard protocols and
microarray expression data were generated with Gene-
Chip Operating Software (GCOS). As the annotation pro-
vided by the manufacturer is not too detailed, the results
in this work are based in the annotation developed by
[26]. The complete data set, both RMA and original CEL
files, are available at Gene Expression Omnibus (GEO)
under accession number GSE10898.

Quantitative RT-PCR
We used quantitative real time PCR (QRT-PCR) to vali-
date differential expression between sexes of one of the
probes (Ssc.4897.1.A1_at) annotated as CLOCK gene
[26]. Expression was analyzed in backfat tissue from 27
pigs, 14 females and 13 males, pertaining to five breeds:
Large White, Landrace, Duroc, Iberian and a composite
line. We used the ABBI PRISM 7900 Sequence Detection
System in combination of SYBR Green chemistry (Applied
Biosystems, Inc., Foster City, CA). S. scrofa Beta-2-
Page 16 of 20
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microglobulin (GenBank accession number
NM_213978.1) was used as endogenous control. Primers
were designed using the PrimerExpress 2.0 software
(Applied Biosystems, Inc., Foster City, CA) and are shown
in additional file 3. The PCR amplicons were 96 bp and
108 bp long for the Ssc.4897.1.A1_at and microglobulin
genes, respectively.

We used the 2-ΔΔCT method for relative quantification
(RQ) of gene expression [36], a comparative technique in
which a target gene is normalized to an endogenous con-
trol and relative to a calibrator sample. This method
requires the target and endogenous PCR efficiencies to be
nearly to equal. Thus, we performed a validation experi-
ment and we plotted the log input amount of cDNA (dilu-
tions of 1:20, 1:200, 1:2000, 1:20000 of a back fat tissue
cDNA sample) versus de ΔCt, obtaining an absolute slope
of 0.0273 (<0.1) thus permitting the use of the 2-ΔΔCT

method for relative quantification. The High Capacity
cDNA Transcription Kit (Applied Biosystems, Inc., Foster
City, CA) was used to synthesize cDNA from 1 μg of back-
fat tissue RNA following the manufacturer's instructions.
PCR amplifications were performed in a total volume of
20 μl containing 5 μl of cDNA sample diluted 1:2000 or
1:20. Primers were used at 300 nM each and at 600 nM
each for Ssc.4897.1.A1_at and microglobulin genes,
respectively. Each sample was analyzed by triplicate. The
thermal cycle was: 10 min at 95°C and 40 cycles of 15 sec
at 95°C and 1 min at 60°C. A dissociation curve was per-
formed in order to assess that there were not primer dimer
formation. The sample of lowest expression level was used
as calibrator

Data processing and statistical analysis
Quality control of CEL files was done with the Affy pack-
age of bioconductor [37]: RNA degradation and the raw
data distribution were ascertained. All CEL files were nor-
malized simultaneously with the RMA procedure using
libaffy [38]. This software is much more efficient in terms
of memory than the bioconductor application. After RMA
processing, data were log-transformed for further analysis.

An initial visual appraisal of the data was carried out
drawing neighbor – joining (NJ) and UPGMA trees with
Mega 4.0 [39]. The pairwise distance used was 1 - r2, where
r is the correlation coefficient across all pairs of probe lev-
els between pairs of samples. To gain further insight, we
relied on mixed model methods. These have been long
being used in Animal Breeding [31], and have been advo-
cated more recently to analyze microarray data, mainly in
the context of cDNA (two color) microarray [40]. We fit-
ted several mixed models to the data. The most basic
model,

yijkg = Tissuei + Breedj + Sexk + Probeg + eijkg, (1)

was used for initial exploratory analysis. Above ygijk refers

to the expression level of the g-th Probe (g = 1, 23937) at
i-th tissue (i = 1, 16) from animal of breed j (j = 1, 2, i.e.,
Large White and Iberian) and sex k (k = 1, 2 or male and
female). Note that a given gene may be represented by
more than one probe. However, different probes of the
same gene can behave differently due to at least two rea-
sons: alternative splicing and poor annotation. Thus, here
we used the probe rather than the annotated gene in the
model. Preliminary studies (results not shown) shown
that including the probe rather than the gene explained a
larger part of the variance. Nevertheless, we refer to differ-
entially expressed gene to mean the gene (if known) cor-
responding to the probe that shows a significant
differential hybridization. All Tissue, Breed and Sex were
treated as fixed effects, whereas Probe was random with

variance . Next, we evaluated the relevance of interac-

tion probe × tissue, probe × breed and probe × sex by com-
paring the following models against model (1):

yijkg = Tissuei + Breedj + Sexk + Probeg + Probeg × Tissuei +eijkg,
(2)

yijkg = Tissuei + Breedj + Sexk + Probeg + Probeg × Breedj +eijkg,
(3)

and

yijkg = Tissuei + Breedj + Sexk + Probeg + Probeg × Sexk + eijkg .
(4)

All interactions above were treated as random. The ratio of

variances ,

 and

 measure the global rele-

vance of differential gene expression across tissues, breeds
and sexes, respectively. Analyses were carried out with
Qxpak [41] and VCE [42]on a Linux PC.

We also explored the biometric relationship between tis-
sues. The average distance between tissues was obtained

from 1- , where  between tissues i and j is the

squared correlation across probes between the Probeg × Tis-

suei and Probeg × Tissuej solutions obtained from model

(2). Again, NJ-trees were drawn with Mega 4 to visualize
the results. An additional measure of distance between tis-
sues can be provided by the number of extreme probes
that separated a given tissue (or a group of tissues) from
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the rest. An extreme probe for the i-th tissue was defined
as a probe for which all four mRNA levels of the i-th tissue
were either smaller or larger than the remaining 60 obser-
vations pertaining to the remaining 15 tissues. The same
procedure applies when Simulations showed that the
probability of having such an arrangement was very small
(P ~10-4) for random normal variates.

Further, we examined the effects of breed and sex on gene
expression. To do that, we computed the z-score, defined
as the standardized difference of gene expression predic-

tions between breeds ( ) or between sexes ( ), i.e., for

gene g  with subscript 1 referring to male

and 2 to female, and  with subscript 1

referring to Large White and 2 to Iberian, where PBgj is the

prediction of the interaction between probe g and breed j

(Probeg × Breedj) obtained from model (3), and σΔ is the

standard deviation of the numerator. Similar notation

applies to . Once the probes were ranked by their breed

or sex absolute scores, we selected those with a false dis-
covery rate (FDR) of less than 5% following the standard
procedure [43]. P-values of the z-scores were obtained
assuming a normal distribution with SD = 1. We per-
formed a hierarchical cluster analyses of the microarrays
using the significant (FDR < 0.05) probes for either breed
or sex with Cluster 3.0 [17]. The metrics employed was
uncentered correlation with the complete linkage option.
Results were visualized with Java TreeView 1.1 [44].

Note that all data available were utilized simultaneously
in the mixed model analyses just presented,i.e., 23,937
probes × 16 tissues × 4 animals ~1.5 million records. This
implies that any solution in models (1 – 4) was estimated
taking into account all information available. Thus, all
estimates should have high accuracy, provided that the
models adjust to the data. We discuss this issue in the
results and discussion section below.

Functional analyses
We obtained the gene ontology (GO) process using the
onto-express platform [25]. This platform allows to com-
pare automatically the frequency in GO classes in all
genes with known annotation in the whole microarray vs.
GO class frequencies in a target lits, e.g., the most differ-
entially expressed genes between sexes or breeds or
extreme genes in embryonic layers. False discovery rates
are reported.

Abbreviations
FDR: False Discovery Rate; GO: Gene Ontology; IB: Ibe-
rian pig breed; LW: Large White pig breed; NJ: Neighbor –
Joining; RMA: Robust Multiarray Average; QRT-PCR: Real
Time Quantitative Reverse Transcription Polymerase
Chain reaction; UPGMA: Unweighted Pair-Group Method
with Arithmetic Mean.
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