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Abstract
Background: The accurate detection of genes and the identification of functional regions is still
an open issue in the annotation of genomic sequences. This problem affects new genomes but also
those of very well studied organisms such as human and mouse where, despite the great efforts,
the inventory of genes and regulatory regions is far from complete. Comparative genomics is an
effective approach to address this problem. Unfortunately it is limited by the computational
requirements needed to perform genome-wide comparisons and by the problem of discriminating
between conserved coding and non-coding sequences. This discrimination is often based (thus
dependent) on the availability of annotated proteins.

Results: In this paper we present the results of a comprehensive comparison of human and mouse
genomes performed with a new high throughput grid-based system which allows the rapid
detection of conserved sequences and accurate assessment of their coding potential. By detecting
clusters of coding conserved sequences the system is also suitable to accurately identify potential
gene loci.

Following this analysis we created a collection of human-mouse conserved sequence tags and
carefully compared our results to reliable annotations in order to benchmark the reliability of our
classifications. Strikingly we were able to detect several potential gene loci supported by EST
sequences but not corresponding to as yet annotated genes.

Conclusion: Here we present a new system which allows comprehensive comparison of genomes
to detect conserved coding and non-coding sequences and the identification of potential gene loci.
Our system does not require the availability of any annotated sequence thus is suitable for the
analysis of new or poorly annotated genomes.
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Background
One of the main challenges of post-genomic era is the
accurate annotation of genes and the improvement of our
knowledge of mechanisms of gene expression through the
identification of cis-acting non-coding regulatory regions.
Comparative genomics has been one of the most success-
ful approaches used to address this task. Indeed it is well
known that sequences with functional activity – such as
coding sequences or regulatory regions – are subject to
selective pressures that prevent the fixation of mutations
and conserve sequences during evolution.

Conserved non-coding sequences have been shown to act
as tissue specific enhancers of gene expression [1] and in
particular of genes involved in control of development
[2]. Evolutionary conserved sequences have also been suc-
cessfully used for the identification of new genes [3].

Given the great interest in this area of research and thanks
to the availability of the almost complete genome
sequences of many organisms, several tools to identify
and collect conserved sequences have been proposed
[4,5].

The identification of a conserved sequence is only the first
step in the identification of functional elements that
requires further information, the most obvious being the
assessment of its coding potential, i.e. to assess if the con-
served sequence is likely to be part of a coding region. Dis-
criminating between coding and non coding conserved
sequences is of great importance as the discovery of novel
coding sequences may help the detection of unannotated
genes or coding exons and the identification of splice var-
iants. Conversely, the study of non-coding conserved
sequences may lead to the identification of regions that
may have regulatory activity both at DNA or mRNA level
by affecting transcription or translation thus modulating
gene expression.

The usual approach is to classify conserved sequences as
coding or noncoding by comparison with annotated pro-
tein sequences: if a conserved sequence is not supported
by (does not align to) a known protein it is labelled as
non-coding.

This approach makes classification heavily dependent on
the quality of the annotation of the genomes under anal-
ysis and it is obviously less applicable to new – poorly
annotated – genomes.

We previously developed CSTminer, a tool that does not
suffer from these limitations as it identifies conserved
sequences (Conserved Sequence Tags – CSTs) and classi-
fies them as coding or non-coding by evaluating the pres-

ence of evolutionary dynamics specific of coding
sequences [6,7].

We recently applied CSTminer to an extensive analysis of
human chromosomes 15, 21 and 22 and corresponding
mouse syntenic regions [8]. We identified more than
37,000 CSTs. 9,500 of these were labelled as coding and
were used to benchmark a novel methodology – based on
the identification of clusters of coding CSTs – to detect
genomic regions which are likely to contain genes (see [8]
for details). One striking result of the work was that,
despite the large efforts made towards the annotation of
human genome, we were able to identify 25 loci poten-
tially containing unannotated genes using a relatively sim-
ple comparative approach. Interestingly 11 of the 25
predicted genes were confirmed by updated genome
annotation at the time of publication – confirming the
reliability of our approach.

The computational problem for the comprehensive com-
parison of two genomes of the size of human and mouse
is not trivial. Indeed, although CSTminer is fairly fast, it is
limited by the alignment step which implements a blast
like algorithm which is not suitable to compare very long
sequences.

In this paper we propose a highly parallelized system to
perform a complete comparison of large genomes. This
system also allows the submission of precomputed
genomic alignments (such as blastz) to further improve
the speed of the analysis.

A preliminary study of sequences conserved between
human and mouse genomes allowed the identification of
several clusters of coding CSTs that do not correspond to
any annotated genes and the creation of a collection of
non-coding CSTs possibly endowed of some functional
activity.

Results
The first operation performed by the CSTminer algorithm
is the identification of high scoring segment pairs (HSPs)
through a Blast-like sequence comparison. A solution to
the computational problem associated with whole
genome comparisons is to split long sequences into
smaller fragments (in order to limit the number of CSTs
interrupted at the boundaries of the fragments, these can-
not be too short). We empirically established a length of
100 Kbp (with an overlap of 1 Kbp) as a good compro-
mise (data not shown). Given the size of human (~3 Gbp)
and mouse (~2.6 Gbp) genomes, an exhaustive compari-
son between all human and mouse 100 Kbp sequences
would require nearly 800 M comparisons. Considering an
average computation time of 2 sec for each comparison
the whole analysis would require many years of computa-
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tion on a single CPU. We took advantage of the high level
of parallelization offered by grid technology and devel-
oped a system suitable to perform all comparisons in a
"reasonable" time.

The number of tasks to be performed is very large and in
a distributed environment there are many reasons that
individual jobs may fail (Worker Node problems, site
configuration, problems due to middleware failures, etc).
Accurate job management is therefore essential and to this
end a fully automated procedure based on mysql DBMS
was developed to launch and monitor jobs, re-run failed
jobs and to collect results of the analysis.

Genome-wide detection of human-mouse Conserved 
Sequence Tags (CSTs)
Following CSTminer analysis we obtained a redundant
collection (see below) of nearly 1,500,000 CSTs with an
average length of 190 nt as summarized in Table 1 where
total number of CSTs, average and maximum length is
reported for each chromosome.

The minimum CST length has been limited to 60 nt as
shorter sequences would not allow a reliable computation
of the coding potential score (see below). Chromosomes
2 and 13 show some uncommonly long CSTs (17,543 and
10,176 nt respectively). These two CSTs are characterized
by a high coding potential and correspond to conserved
sequences of the long coding exons of TTN and SACS
genes.

CSTminer assesses the coding potential of CSTs by com-
puting a Coding Potential Score (CPS) based on the evo-
lutionary dynamics observed between the two sequences.
Once fixed threshold values for CPS derived from bench-
mark sets of coding and non-coding sequences a specific
label can be assigned to each CST [7]. More than 400,000
CSTs were labelled as coding, 550,000 CSTs were labelled
as non-coding, 500,000 CSTs remained undefined as the
CPS fell in a twilight zone between the coding and the
non-coding thresholds. Finally nearly 20,000 CSTs dis-
played more than 95% of identity and were labelled as
ultra-conserved (Figure 1). Given the low divergence, it is
not possible to compute a reliable CPS for these CSTs.

We observed that CSTs labelled as undefined often over-
lap both coding and non-coding regions corresponding to
CDS or to UTR or intron sequences, respectively (data not
shown). The global coding potential score assigned by
CSTminer is influenced by both subregions and does not
allow a clear classification of the sequence.

Human mouse conservation
In order to accurately evaluate whole human-mouse
genome conservation it was necessary to consider that

CSTs may overlap one another as the same region of a
genome may share similarity with more than one region
of the other genome under analysis (mainly due to seg-
mental duplications or paralogous sequences). We pro-
jected each CST onto the genome and labelled each
human and mouse nucleotide according to the CST label.
If the same nucleotide was contained in more than one
CST it was labelled according to the ranking: ultracon-
served > coding > noncoding > undefined, as depicted in
Figure 2. In this way we obtained a non-redundant set of
CSTs assigning to each conserved nucleotide an unambig-
uous annotation.

We then obtained a cleaned set of more than 720,000
nonredundant CSTs (nrCSTs) distributed across human
chromosomes (Table 1 numbers in brackets) and labelled
as summarized in Figure 1.

We evaluated nucleotide conservation of each human and
mouse chromosome as shown in Figure 3. Consistent
with previous data [9] we observed that average conserva-
tion of human and mouse genomes (evaluated as the fre-
quency of conserved nucleotides part of nrCSTs) is around
5%.

Previous observations showed that the majority of genes
on human chromosome 17 have their homologues on
mouse chromosome 11. Interestingly our data show that
these chromosomes are the most conserved, with 6.9%
and 7.2% of conserved nucleotides respectively.

Conversely, both human and mouse chromosomes Y are
poorly conserved (about 0.5%). This observation could
be explained with the degeneration process faced by Y
chromosome. Moreover they are unusually rich of repeti-
tive elements that we masked before running our analysis.

Only 0.94% of human genome is labelled as coding from
our comparison with mouse genome.

CSTs and annotated mRNAs
Each CST is characterized by absolute coordinates on both
human and mouse genomes and this allows a comparison
with mRNA annotations (extracted by UCSC database).
We then classified CSTs as exonic, intronic or intergenic
on the basis of their overlap with the available mRNAs
annotation. Figure 4 shows that 65% of ultraconserved
CSTs and 76% of coding CSTs overlap with known exons,
21% and 15% respectively map within introns while the
remaining 13% and 9% map outside of annotated genes.
Noncoding CSTs – as expected – show a different pattern
of localization: 43% and 29% map within intronic or
intergenic regions while 28% overlap with annotated
exons, likely corresponding to conserved tracts of untrans-
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Table 1: CST distribution among human (A) and mouse (B) chromosomes. 

A

Chromosome Tot AvLen MaxLen

chr1 138165 (66669) 198.01 (187.9948) 4621 (4621)
chr2 117207 (64475) 194.56 (196.3639) 17543 (17543)
chr3 92770 (51821) 192.64 (191.7276) 3378 (6460)
chr4 69640 (28421) 195.49 (190.4989) 4347 (4228)
chr5 80407 (37576) 207.3 (195.852) 7219 (7219)
chr6 85924 (37799) 203.53 (186.8935) 4177 (4177)
chr7 70839 (40048) 189.56 (188.1825) 3829 (3237)
chr8 56955 (31423) 188.25 (190.3644) 5600 (5600)
chr9 62015 (31661) 186.98 (192.5231) 4403 (4403)
chr10 61229 (34765) 193.75 (188.0005) 2997 (3918)
chr11 98006 (38038) 167.79 (191.4565) 6512 (4968)
chr12 73657 (34444) 180.06 (177.3208) 2680 (2680)
chr13 38619 (19341) 194.75 (200.7517) 10176 (10176)
chr14 53848 (25668) 191.36 (194.2269) 3854 (3854)
chr15 49142 (25707) 201.89 (191.1299) 2600 (2600)
chr16 41166 (21161) 185.79 (191.0755) 4020 (4020)
chr17 61341 (29899) 172.99 (179.4735) 3179 (3179)
chr18 27896 (17053) 198.68 (196.9212) 3719 (3719)
chr19 56808 (17624) 144.18 (163.8533) 3738 (3738)
chr20 29061 (16007) 195.18 (184.8446) 2862 (2862)
chr21 13165 (6688) 174.33 (178.0885) 3935 (3935)
chr22 18378 (9414) 180.52 (165.1375) 4710 (4710)
chrX 68893 (38838) 200.7 (196.3681) 4882 (4882)
chrY 6192 (1786) 171.74 (147.0274) 2087 (3180)

B

Chromosome Tot AvLen MaxLen

chr1 96565 193.02 3539
chr2 123127 180.58 17545
chr3 80185 198.2 4615
chr4 82789 194.01 4388
chr5 76557 184.15 3969
chr6 83801 188.59 3251
chr7 93077 176.52 6521
chr8 63198 194.55 4222
chr9 80909 187.01 4222
chr10 66720 183.21 4168
chr11 97295 176.61 3272
chr12 65166 192.03 3857
chr13 64693 198.31 3268
chr14 59365 200.92 10179
chr15 57968 180.62 5600
chr16 48185 192.52 3950
chr17 54366 185.28 3999
chr18 48736 215.77 7206
chr19 42161 188.74 5381
chrX 85471 199.71 4877
chrY 989 145,88 1193

The total CST length (Tot), the average (AvLen) and the maximum length (MaxLen) is reported. Numbers in brackets refer to the non-redundant 
CST dataset. Minimum length has been limited to 60 nt (see text for details).
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lated regions (UTRs). A similar pattern is also shown by
undefined sequences.

Coding CST-Clustering
To identify regions with an high density of coding con-
served sequences – likely gene loci – we applied an
improved version of a clustering procedure previously
described [8] (see also Material and Methods) and
detected 25,296 clusters containing 141,001 CSTs.

By comparing the genomic coordinates of the clusters of
coding CSTs with those of annotated mouse and human
mRNAs we observed that 22,360 clusters (97.6%) over-
lapped known mRNAs in at least one organism. Noticea-

bly 15,275 clusters were fully confirmed by human
sequences (each CST of the cluster was confirmed by the
overlap with an mRNA derived exon) and 15,194 clusters
were fully confirmed by mouse sequences (Table 2). These
observations underline the reliability of our simple
approach to localize gene loci on unannotated genomes
and strongly support the idea that clusters not overlap-
ping with known sequences are likely to represent unan-
notated gene loci.

Moreover, given that our approach does not require the
previous availability of annotated features, it seems rea-
sonable to think that it could prove to be a powerful tool
in the annotation of genomes lacking a well curated gene
annotation.

As 668 clusters were confirmed neither by human nor by
mouse mRNAs, we compared their chromosome coordi-
nates to those of human ESTs to find evidence of their
expression. Indeed, 551 (82%) of these clusters showed
an overlap with ESTs (432 clusters were fully supported).
Only 117 clusters (comprising 775 CSTs) did not show
any overlap with known transcribed sequences (14 of
these corresponding to pseudogenes according to the
human pseudogene database [10]).

One of the CST clusters possibly corresponding to a novel
gene locus is shown in Figure 5. Quite strikingly, coding
CSTs not only correspond to spliced ESTs but also to cod-
ing exons predicted by a variety of gene finding programs
thus further supporting the inferred gene prediction

Noncoding CSTs
Several evidences have been reported about the critical
role of non coding conserved sequences in regulation of
gene expression [1] and in particular in the regulation of
genes involved in control of development [2].

CST Coding Potential distributionFigure 1
CST Coding Potential distribution. Distribution of CSTs 
among different coding classes assigned by CSTminer. Uc: 
ultraconserved sequences (identity >95%), Cod: coding 
CSTs, NonCod: non-coding CSTs, Undef: CSTs with unde-
fined coding potential. Redundant CST dataset is shown with 
green bars, non-redundant set with red bars. See text for 
details.

Non redundant CSTs dataset generationFigure 2
Non redundant CSTs dataset generation. Each nucleotide of human and mouse genomes has been labelled as ultracon-
served, coding, non-coding or undefined if contained in a CST. Nucleotides part of overlapping CSTs were labelled according 
to the ranking ultraconserved > coding > non-coding > undefined. Stretches of at least 60 consecutive nucleotides with the 
same label were merged into a non-redundant CST (nrCST).
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We are aware that – at this stage – our data are limited to
the comparison of human and mouse and may not allow
the precise localization of short functional motifs. None-
theless the identification of core sequence elements
shared by several non-coding nrCSTs might represent a
powerful approach for the detection of conserved
sequences that might be involved in chromatin remodel-
ling or in the regulation of the expression of many genes
while unique non-coding nrCSTs might be expected to
include elements with more gene-specific functions.

We performed reciprocal blastn analyses of more than
300,000 human noncoding nrCSTs and observed that
nearly 92% of the sequences are unique (ie they do not
show any significant similarity with other sequences of
the dataset). 7% of sequences show some similarity to up
to five different nrCSTs, 1% show up to 10 occurrences
while the remaining 0.6% show sequence similarity to
more than 10 non-coding nrCSTs. These results are sum-
marized in Figure 6. The observed non-coding repeated
elements do not correspond to annotated repeats as the

Human and mouse chromosome conservationFigure 3
Human and mouse chromosome conservation. Chromosome conservation evaluated on human (A) and mouse (B) 
genomes. For each chromosome the frequency of conserved nucleotides – evaluated on nrCSTs – is reported. As described in 
legend each colour corresponds to a coding potential classification. Undef: undefined, NonCod: non-coding, Cod: coding, Uc: 
ultraconserved sequences (identity>95%).
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CSTminer analysis was performed on repeat masked
sequences.

Figure 7 shows the frequency of occurrence of sequences
corresponding to non-coding nrCSTs in the mouse and
human datasets. The plot suggests a remarkable species-
specificity of repetitive non coding conserved sequences.

To investigate the hypothesis that noncoding conserved
sequences (ncCSTs) might correspond to functional
regions we made a comparison with specialized databases
containing known regulatory elements. The enrichment
of known functional regions in our dataset of conserved
non-coding sequences would support the possibility that
the same dataset could contain new regulatory elements.

In particular we considered "Presta-promoter", which
contains a curated non-redundant set of human promoter
sequences [11], Rfam ncRNA database [12] and "Ore-
gAnno" database which contains manually curated
known regulatory elements [13]. 306 ncCSTs matched
with 238 (43%) sequences in the PrestaPromoter dataset,
347 ncCSTs with 269 (21%) "OregoAnno" sequences and
513 ncCSTs with 1069 (3%) Rfam elements. The finding
that a sizable proportion of known functional elements
are represented in our conserved non-coding set suggests
that additional, still unknown, regulatory elements are
represented in our ncCST dataset.

CST comparison with blastz chains
Pre-computed genome alignments are already available
for several genomes, including human and mouse and it
may make sense to take advantage of this data – provided
that information loss is minimal.

We compared CSTs obtained from our full genome anal-
ysis with the results obtained by comparing genome
regions corresponding to blastz [14] chain tracts only. We
adapted the grid based system we developed for the full
genome comparison to allow the submission of blastz
alignments (or any other "query – target" coordinate
pairs) to limit the analysis to these regions. Nonetheless
many blastz chains are longer than 100 Kbp (with length
up to about 80 Mbp) and cannot be efficiently analyzed
with a direct comparison. Those sequences were split in
100 Kbp slices (with 1 Kbp overlap) and – to further
reduce computational load – only slices showing at least
3 identical sequences of 10 nt on the same diagonal were
compared. This procedure – which is similar to the one
employed by the BLAT algorithm [15] – remarkably
reduced the number of CSTminer comparisons to about
1% of all the possible 100 Kbp comparisons.

Despite the striking reduction of comparisons we
observed that only 1% of total CSTs were completely
missed by blastz chains while and additional 4% escaped
detection because they did not pass the filter imposing
three decamers on the same diagonal above described.
However, our data suggest that the use of blastz chains can
provide an acceptable reduction of the complexity of anal-
ysis with a limited (about 5%) loss of information.

However, the main advantage of blastz chains in this con-
text is their availability as pre-computed features (availa-
ble for instance at UCSC genome browser website [16]).
Indeed, their computation is rather time consuming (481
CPU days for the human – mouse comparison according
to [14]).

On the other hand, the reduction procedure based on the
identification of exact matches on the same diagonal pro-

CSTs comparison to human and mouse mRNAsFigure 4
CSTs comparison to human and mouse mRNAs. 
CSTs have been compared to human and mouse annotated 
mRNAs and classified as Exonic (E) if overlapping with an 
exon in either human or mouse genomes. Remaining CSTs 
have been labelled as Intronic (I) if overlapping with an 
intron, or Intergenic (O) if not overlapping to any annotated 
gene in both human and mouse genomes. The distribution 
among different classes is reported for ultraconserved (Uc), 
coding, non-coding (NonCod) and undefined (Undef) CSTs.

Table 2: Clusters of coding CSTs have been identified as 
described in text and have been compared to annotated RefSeq 
mRNAs. 

RefSeq

Tot Clusters 25296
Hs confirmed Clusters (full confirmed) 22360 (15275)
Mm confirmed Clusters (full confirmed) 22324 (15194)
Tot confirmed Clusters 25297

ESTs

Tot Clusters unconfirmed by RefSeq 668
Hs confirmed Clusters (full confirmed) 551 (432)

Clusters not corresponding to any annotated mRNA sequence have 
been compared to ESTs to find evidence of their expression.
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vides a significant speed up of the process as the compu-
tational requirements to perform the identification of
those regions is limited (data not shown).

Discussion
As highlighted in [6] the CSTminer algorithm measures
the coding potential through the evaluation of evolution-
ary dynamics unique to coding sequences not requiring
the availability of any annotated feature. Indeed, many
analyses of conserved coding or noncoding sequences

have been made by classifying a sequence as coding (or
non-coding) following a comparison with protein data-
bases [1,17,18]. It is clear that the reliability of such
approach depends on the availability of annotated pro-
teins. If a sequence is not supported by a protein it is dif-
ficult to decide if the sequence is really noncoding or
whether the corresponding protein has simply not been
identified.

non-coding CSTs occurrence in mouse and human genomeFigure 7
non-coding CSTs occurrence in mouse and human 
genome. Each dot represents the number of occurrences of 
each non-coding CST in human (x axis) and mouse (y axis) 
genomes.

Abundance of non-coding CSTs in human genomeFigure 6
Abundance of non-coding CSTs in human genome. 
Distribution of unique and repeated non-coding CSTs in the 
human genome. Bars report the number of non-coding CSTs 
grouped on the basis of their occurrenceData are shown in 
logarithmic scale.

Cluster n.13688 has been aligned to human genome on UCSC genome browser and compared to annotated genes, gene pre-dictions and ESTsFigure 5
Cluster n.13688 has been aligned to human genome on UCSC genome browser and compared to annotated 
genes, gene predictions and ESTs. The CSTs of this cluster match well to mapped spliced ESTs and exons predicted from 
various gene-finding programs in a genomic region where no gene has been annotated.
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Moreover very few annotated proteins have been physi-
cally sequenced and the vast majority of them are concep-
tual translation products of available mRNA sequences.
This introduces a vicious circle as the hypothetical coding-
ness of a sequence is inferred by the alignment to putative
proteins.

We have developed and implemented a high performance
grid-based system to perform exhaustive full genome
comparisons with CSTminer algorithm to identify and
discriminate between conserved coding and noncoding
sequences. Besides the speed of the whole procedure even
when entire large genomes are compared, one of the main
advantages of our system is that it does not require any
annotated feature for the assessment of the putative cod-
ing potential of identified conserved tracts rendering it
useful for the comparison of poorly annotated genomes
(i.e. when no or few cDNA sequences are available). It is
thus possible to identify "interesting" sequences such as
putative genes or regulatory regions, and use these data to
drive subsequent experimental analysis or to strengthen
the reliability of independent computational data (i.e. de
novo gene finding data).

We demonstrated – using as a reference the well anno-
tated human and mouse genomes – that the observation
of clusters of coding CSTs is a good indicator of the exist-
ence of a gene locus. This information can be incorpo-
rated in a gene prediction pipeline where several gene
prediction tools are combined and their results compared
to limit the rate of false positives and to strengthen the sig-
nificance of predictions [19].

Collections of conserved non-coding sequences can also
address specific studies on sequences that might regulate,
for example, gene expression or chromatin structure.
Indeed, these data might also facilitate the identification
of novel non-coding RNAs, whose importance and preva-
lence are currently the subject of much debate [20].

Currently available sets of nonding elements are gener-
ated following the comparison of the conserved elements
with annotated mRNAs. It can thus be expected that fol-

lowing updates of databases some noncoding elements
are reclassified as coding. In Table 3 we show a compari-
son of publicly available conserved noncoding elements
with coding CSTs to detect misannotated elements. It is
interesting to notice that – as expected – while recent sets
of noncoding elements such as CONDOR [21]or Ancora
[22] do not show any correspondence to coding CSTs,
older sets (reviewed in [23]) show a sizable (239 to 345)
number of elements misannotated as noncoding that
today we know to be part of coding region of RefSeq
sequences.

As pointed out by Couronne [23] local alignment tools,
beside the identification of orthologous segments, lead to
the identification of paralogous relationships and
sequence repetitions. This information is often considered
"noise" and is thus removed. This seems reasonable if the
primary goal is to align genomes to find large scale orthol-
ogous regions; nonetheless repetitive elements can have
functional relevance in regulation of gene expression and
warrant further inspection. We have used repeat masked
sequences – thus purging known repetitive elements –
before CSTminer analysis. Nonetheless we observed many
highly repetitive conserved noncoding elements that we
believe to be interesting and may represent novel lineage
specific repetitive elements.

Our analysis system has been implemented on a grid facil-
ity [24], taking advantage of the high parallelization
achievable and allowing full genome comparisons in very
reasonable amount of time (15 days computation to com-
pare mouse and human genomes). Nonetheless many
genomes have already been aligned with very sensitive
algorithms like blastz and it is possible to take advantage
of this information, limiting CSTminer comparison to
those regions only.

It is important to notice that although blastz chains are
alignments of genomic sequences, the CSTminer align-
ment step is required to detect local similarities. Indeed
the average length of CSTs detected by CSTminer is 190
bases, while blastz tries to extend matches to find large
synteny tracts, often resulting in very long alignments.

Table 3: Comparison of publicly available noncoding datasets to coding CSTs and currently annotated RefSeq coding sequences. 

Non Coding Elements datasets Reference N° el CST Coding CST/RefSeq CDS

Ancora [22] 267641 96% 0
CONDOR [21] 4554 98% 0
Berkeley (*) [23] 939457 51% 239
Penn State (*) [23] 452517 85% 261
UCSC (*) [23] 1007256 59% 345

(N° el:) number of noncoding elements of the dataset; (CST) percentage of elements of the set corresponding to a CST; (Coding CST/RefSeq CDS) 
number of elements of the set which correspond to a coding CST and to the CDS of a human RefSeq mRNA. (*) Elements of these sets refers to 
hg10 human assembly. Therefore we preventively converted their coordinates to current assembly by using LiftOver conversion tool.
Page 9 of 12
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Use of blastz chains only leads to the complete loss of
only about 1% of total CSTs. However, chains longer than
100 Kbp must be split into shorter tracts and an exhaus-
tive comparison of all tracts must be performed. To fur-
ther improve the speed of the analysis it is possible to
limit CSTminer comparison of chain fragments to pairs
that show at least 3 identical matches of 10 nt on the same
diagonal. By applying this restriction it is possible to dras-
tically limit the number of comparisons (nearly 1% of
total comparisons) thus reducing the computation time to
slightly more than 24 hours (in the case of human and
mouse genomes) with a further loss of 4% of CSTs.

Conclusion
In this paper we describe a grid-based system devised to
perform full genome comparisons with CSTminer algo-
rithm. The main advantage of this system is that the
assessment of coding potential of conserved sequences
does not require any annotated feature rendering it useful
for the comparative analysis of poorly annotated
genomes.

The system has been benchmarked on the well-annotated
human and mouse genomes where it proved its reliability.

Methods
CSTminer
The CSTminer algorithm has been described in [6] and
slightly modified in [7] where a web interface to run CST-
miner was made available. A further automatic web sys-
tem to compare a single sequence to several genomes has
also been implemented in [25].

Briefly, given a pair of sequences, CSTminer identifies
high scoring segment pairs (HSPs) through a Blast-like
sequence comparison. The coding capacity of each CST
delimited by an HSP is then assessed by assigning a cod-
ing potential score (CPS) which corresponds to the maxi-
mum score value obtained from each of the possible
reading frames in the forward and reverse orientation.

CSTminer also allows the display of the highest-scoring
triplet window (default minimum length of 60 nt) by
scanning each detected CST. This approach facilitates the
detection of potential coding regions located in longer
CSTs which might contain both coding and non-coding
tracts (through the presence of untranslated mRNA or
intronic regions).

Following an accurate benchmark on controlled coding
and non-coding datasets, CPS thresholds for coding and
non-coding CSTs were evaluated. Therefore each CST was
labeled as coding (Cod) (if CPS ≥ coding_threshold) or
non-coding (NonCod) (if CPS ≤ non_coding threshold or
CPS < coding_threshold and highest scoring triplet win-

dow CPS < coding threshold). CSTs with CPS non fulfill-
ing these requirements were labeled as Undefined. Finally
CSTs with more than 95% of similarity were labelled as
Ultrancoserved and no CPS was computed as the low
divergence would not allow the computation of a signifi-
cant score.

GRID
We empirically determined that for large scale compari-
sons CSTminer gives optimal results with sequences of
100 Kbp with 1 Kbp overlap. Indeed this value allows a
good balance between computational speed and the
occurrence of CST fragmentation at the border of the sub-
mitted sequences.

In order to reduce the time needed to execute this large
amount of comparisons, we took advantage of grid tech-
nology using many machines in parallel. Indeed each CST
comparison requires an independent computation thus
we split all the 800 M comparisons in smaller subset and
we run them on the EGEE grid infrastructure [24].

In order to maximize the level of parallelization, the com-
parisons were grouped in set of 1000 (10 human 100 K
slices vs. 100 mouse 100 K slices). The number of compar-
isons was chosen in order to have each task running for
approximately one hour, giving a good ratio between the
time spent in order to set-up the environment and the
CPU time spent in running the comparison. This
approach also assures something similar to a check-point:
even if a job fails only less than one hour of computation
is lost.

Clustering
The clustering procedure is an improvement of the proce-
dure described in [8]. The basic idea is to identify genomic
regions with a significant concentration of coding CSTs.

Given N coding CSTs sorted on their genomic start we
computed t3i, the genomic span of three consecutive CSTs

centered in CST i for i ∈ (2, N - 1). We labeled as pre-clus-
ter three consecutive coding CSTs centered in CST i if 2 *

t3i ≤  where  is the average genomic span of t3k

for k ∈ (i - 30, i + 30). When i<30 or i>N-30,  is com-

puted respectively for k ∈ (2,60) or k ∈ (N - 61, N - 1).
Overlapping pre-clusters are then merged into clusters.

The main difference with the previous clustering proce-
dure is that clustering parameters (average density of sur-
rounding CSTs) are now dynamically computed over a 60
CSTs window in the genomic region under analysis – thus
accounting for regions with different gene density.

t3,60 t3,60

t3k
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Given that each CST has human and mouse genomic
coordinates, the clustering procedure is applied both to
human and mouse genomes. Only CSTs belonging to a
cluster in both organisms are considered. As already
pointed out clusters are computed on coding CSTs only,
but syntenic CSTs of all classes (non-coding, undefined
and ultraconserved) are included in clusters following a
post-processing step.
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