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Abstract
Background: Genomes possess different levels of non-randomness, in particular, an inhomogeneity in
their nucleotide composition. Inhomogeneity is manifest from the short-range where neighboring
nucleotides influence the choice of base at a site, to the long-range, commonly known as isochores, where
a particular base composition can span millions of nucleotides. A separate genomic issue that has yet to
be thoroughly elucidated is the role that RNA secondary structure (SS) plays in gene expression.

Results: We present novel data and approaches that show that a mid-range inhomogeneity (~30 to 1000
nt) not only exists in mammalian genomes but is also significantly associated with strong RNA SS. A whole-
genome bioinformatics investigation of local SS in a set of 11,315 non-redundant human pre-mRNA
sequences has been carried out. Four distinct components of these molecules (5'-UTRs, exons, introns
and 3'-UTRs) were considered separately, since they differ in overall nucleotide composition, sequence
motifs and periodicities. For each pre-mRNA component, the abundance of strong local SS (< -25 kcal/
mol) was a factor of two to ten greater than a random expectation model. The randomization process
preserves the short-range inhomogeneity of the corresponding natural sequences, thus, eliminating short-
range signals as possible contributors to any observed phenomena.

Conclusion: We demonstrate that the excess of strong local SS in pre-mRNAs is linked to the little
explored phenomenon of genomic mid-range inhomogeneity (MRI). MRI is an interdependence between
nucleotide choice and base composition over a distance of 20–1000 nt. Additionally, we have created a
public computational resource to support further study of genomic MRI.
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Background
RNA secondary structures
Secondary structures (SS) are crucial elements for the bio-
synthesis and/or correct action of non-coding RNAs in
mammals and other eukaryotes. Moreover, they are key
regulators in the function and turnover of mRNA mole-
cules. SS in pre-mRNAs regulate the splicing process [1-3].
In mature mRNAs, SS located in 5'-untranslated regions
(5'-UTRs) signal for translational control [4,5] and those
located in 3'-untranslated regions (3'-UTRs) regulate sub-
cellular localization and stability [6-8]. SS located inside
protein-coding sequences could play a role in transla-
tional speed and stability [9,10].

Prior studies of the strength of computer-predicted SS in
mRNA have had conflicting conclusions [11,12]. More
importantly, these studies did not investigate the abun-
dance of SS and considered only coding sequences. This
spurred us to perform a bioinformatics investigation into
the abundance of SS throughout mammalian genomes.
Our results show that the existence of many energetically-
strong SS is associated with the phenomenon of global
mid-range inhomogeneity (MRI), manifest as nucleotide
compositional relationships at a scale of 20 to 1000 bases
throughout the genome. MRI appears as a strong tendency
for the clustering of particular bases (e.g. C and G nucle-
otides, or G and A nucleotides) inside short regions of
genomic sequences. This paper provides new approaches
and tools to gain insights into this form of genomic inho-
mogeneity.

Short-range inhomogeneity
It is well established that the particular base (A, G, C, or T)
that appears in a given position of a genomic sequence
significantly depends upon the nearest bases surrounding
its position [13,14]. Consequently, the frequency (F) of a
dinucleotide XY is often not equal to the product of the
individual frequencies of nucleotides X and Y (FXY ≠ FX
*FY). The highest interdependence of base frequencies is
always observed for adjacent nucleotides. The ratio (FXY/
(FX *FY)) for adjacent bases X and Y is known as a
"genomic signature" [14]. Genomic signatures as low as
0.22 (for the CG dinucleotide in mouse) and as high as
1.75 (for the GC dinucleotide in Campylobacter jejuni)
have been recorded [15]. The interdependence of base fre-
quencies sharply drops with increasing distance. When
the distance between nucleotides X and Y is more than six
bases, their occurrence interdependency becomes negligi-
ble. Here, we refer to this type of interdependency
between nucleotides separated from each other by a few
positions as short-range inhomogeneity (SRI).

Long-range inhomogeneity
Also well recognized are long-range interdependencies in
nucleotide frequencies on a scale of up to millions of

bases, known as genomic isochores [16]. It has been shown
that isochores can be generally categorized according to
their level of G+C content. Isochores defined by G+C con-
tent correspond to many other genomic phenomena. GC-
rich isochores replicate later in S-phase, contain higher
concentrations of genes, and have genes with shorter
introns and untranslated regions. Moreover, GC-rich iso-
chores tend to have an "open" chromatin structure and
thus have higher rates of transcription [17]. Higher G+C
content isochores also experience higher recombination
rates – perhaps lending support to the notion that higher
recombination rates led to the creation of isochores
through biased gene conversion [18]. While the evolution
and maintenance of isochores is subject to debate, their
presence is indeed evidence of existing interdependencies
in nucleotide composition on the scale of tens of thou-
sands to millions of nucleotides. We will refer to this form
of non-randomness in genomic nucleotide composition
as long-range inhomogeneity.

Mid-range inhomogeneity
The compositional non-randomness between the two
extremes described above we call mid-range inhomogeneity
or MRI. MRI has yet to be thoroughly investigated. The
only well-known manifestation of mid-range inhomoge-
neity is CpG islands. Most attempts to define CpG islands
set hard requirements for region size (at least 200 or 500
bases long), G+C content (> 50% or 55%), and CpG
observed/expected ratio (> 0.6 or 0.65) [[19,20], respec-
tively]. CpG-islands are found near 60% of human genes,
including all housekeeping genes and about half of the tis-
sue-specific genes [21]. Here we demonstrate that MRI can
be observed for regions from 30–1000 bp and is signifi-
cant not only for G+C content but for other nucleotide
pairings (A+G and G+T) as well as for the individual
bases.

Results
Analysis of strong local SS within pre-mRNAs
Distinct parts of mRNAs and introns have large variations
in nucleotide composition (from 35% to 60% of GC-con-
tent, see Table 1). Due to this difference the analyses of SS
distribution were performed on four separate regions: GC-
rich 5'-UTR regions, GC-poor introns and 3'-UTR regions,
and intermediate GC-content protein-coding regions of
mRNAs. In addition, vertebrate and invertebrate species
have considerable variations in their mRNA nucleotide
composition. Within the mammalian class, however, the
variation in GC-content is negligible (Table 1). For this
reason we demonstrate only results for human sequences,
although the observed trends are applicable to all mam-
mals.

We begin by looking at SS created by the interactions of
nucleotides less than 50 bases apart (local SS). Prediction
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of local SS is more reliable than prediction of global RNA
structures, which can span hundreds of nucleotides [22].
We examined these structures in 11,315 non-redundant
human gene sequences (see Methods section) and calcu-
lated their strengths using the RNALfold program of the
Vienna RNA package [23]. Figure 1 illustrates the distribu-
tion of local SS according to folding strength in distinct
parts of mRNAs and introns. We concentrate our study on
the stronger secondary structures. Such strong local SS
could withstand competition with the many RNA-binding
proteins that cover mRNAs and, thus, are more likely to
persist in vivo. Indeed, hairpin structures with an mfe of -
30 kcal/mol situated close to the mRNA cap significantly
impede ribosome scanning, while hairpin structures with
an mfe upwards of -50 kcal/mol inhibit elongation [5].
Strong secondary structures are also required for the regu-
lation of splicing. Kishore and Stamm showed that the 18
nt-long HBII-52 snoRNA antisense element interacts with
a pre-mRNA segment with an mfe of -27.6 kcal/mol and
thereby determines the fate of alternative splicing in the
serotonin receptor gene [24]. Finally, a majority of human
miRNA genes from the microRNAdb [25] have strong
interaction energies (< -25 kcal/mol) with dozens of tar-

gets within mRNAs. Thus, "strong" local SS is defined as
having a minimum free energy (mfe) value of less than or
equal to -25 kcal/mol, so as to encompass all known func-
tional local SS.

Analysis of strong local SS in randomized sequences
To evaluate the abundance of local SS, one must compare
their prevalence in naturally occurring mRNAs with their
levels in reference sequences having no selection for SS. In
most research, reference sequences are randomly gener-
ated to have nucleotide compositions approximating
those of the naturally occurring mRNAs. In order to prop-
erly compare local SS in natural and randomized
sequences one needs to preserve short-range inhomoge-
neity (SRI), as discussed previously by Workman and
Krogh [12].

Thus, to most accurately preserve SRI in randomized
sequences we created a public resource for generating ran-
domized sequences while taking into account the SRI of a
given set of natural sequences. Our algorithm can take
into account not only relative dinucleotide frequencies,
but also frequencies of longer oligonucleotides (up to 9-
mers). We first applied our SRI-analyzer program (see
Methods section) [26] to a set of natural mRNA sequences
to obtain their oligonucleotide composition, shown in
Table 2. Our second program, SRI-generator [26], then
uses these oligonucleotide frequency tables to generate
random sequences with approximately the same oligonu-
cleotide distribution as the natural sequences but without
any similarity in their sequence alignments. Table 2 dem-
onstrates the oligonucleotide frequencies for human 5'-
UTRs and two independent SRI-generated sets of
sequences. Notably, the oligonucleotide compositions of
the SRI-generated sequences are very close to those of the
natural sequences, with only small fluctuations due to the

Table 1: Percentage of GC-composition in different regions of 
pre-mRNA for diverse animal species.

SPECIES % GC-content

5'-UTRs CDS 3'-UTRs Introns

Human 60% 52% 44% 41%
Mouse 59 52 44 43
Cow 60 54 44 43
Chicken 57 51 41 41
Zebrafish 45 50 37 35
Drosophila 45 54 36 40

Distribution of local SS with respect to folding energy in mRNA components and intronsFigure 1
Distribution of local SS with respect to folding energy in mRNA components and introns. Number of structures 
was measured within 1 kcal/mol intervals and normalized by 1,000 nucleotides of analyzed sequences.
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inherently random nature of the sequence generation
process [see Additional file 1]. Pseudocode and further
explanation of SRI-generator is provided for the reader as
an additional file [see Additional file 2].

Figure 2A–C demonstrate the distribution of strong local
SS in human 5'-UTR, 3'-UTR and intronic sequences and
in their corresponding randomized counterpart
sequences. Prediction of local SS was computed on a non-
redundant sample of 11,315 human genes (see M&M) by
the RNALfold program [23]. All SRI-randomization was
performed based on the tetramer frequency tables of the
corresponding natural sequences. Tetramers reflect almost
all short-range non-randomness since the major influence
on SRI comes from adjacent bases [27]. Remarkably, the
number of local SS in the natural sequences exceeds the
number of structures of the same strength in the random
sequences by a factor of at least 2 to 10. Because we proc-
essed eleven thousand genes, the significance of this dif-
ference is unquestionable: the chi-square goodness-of-fit
test gives a p-value less than 10-200. Having observed the
difference between introns and their SRI-generated coun-
terparts, we also examined sequences from intergenic

regions (located between protein-coding genes and hav-
ing an overall nucleotide composition similar to that of
introns) and detected the same trend (Figure 2D). Moreo-
ver, the abundance of SS in natural sequences has no rela-
tion to genomic repetitive elements. Masking all human
repeats with the RepeatMasker program [28] even mildly
enhanced the difference in strong local SS between natural
and SRI-generated sequences [see Additional file 3]. This
observation simply reflects the fact that DNA repeats do
not have an excess of strong SS, although some repeats
have a distinct oligonucleotide composition and are
enriched by C/G bases (e.g. Alu family).

Protein-coding sequences (CDS) contain a profound 3 nt
periodicity and other non-randomness associated with
translational properties [29]. All of this information
would be lost in SRI-generated sequences. To overcome
this problem we created CDS-generator, a public resource
for the randomization of protein-coding sequences [26].
CDS-generator changes only the variable nucleotides in
the third codon position, which do not change the coded
amino acids. Additionally, CDS-generator maintains the
codon and dicodon biases of a given set of natural coding

Table 2: Excerpt from oligonucleotide frequency table for 5'-UTRs of 11,315 human genes and two SRI-generated counterparts. The 
entire dataset is presented in Additional file 1.

Oligonucleotide Human 5'-UTRs Random 1 SRI-generated Random 2 SRI-generated

A 0.203 0.203 0.203
T 0.201 0.201 0.2
C 0.292 0.294 0.293
G 0.303 0.303 0.303

AA 0.0506 0.0503 0.0506
AT 0.0323 0.0323 0.0318
AC 0.0438 0.0437 0.0438
AG 0.0771 0.0767 0.077
TA 0.0258 0.0257 0.0256
TT 0.0511 0.051 0.0508
TC 0.0593 0.0591 0.0588
TG 0.0653 0.0651 0.0651
CA 0.0608 0.0609 0.0608
CT 0.0726 0.0726 0.0725
CC 0.0965 0.0973 0.0968
CG 0.0627 0.0627 0.0629
GA 0.0658 0.0661 0.0662
GT 0.0453 0.045 0.0452
GC 0.0932 0.0934 0.0936
GG 0.0977 0.098 0.0984
... ... ... ...

ACAA 0.002558 0.002507 0.002544
ACAT 0.002046 0.00205 0.002057
ACAC 0.002775 0.002731 0.0028
ACAG 0.004442 0.004362 0.00442
ACTA 0.001396 0.001362 0.001388
ACTT 0.002893 0.002899 0.002881
ACTC 0.003028 0.002958 0.003063
ACTG 0.003961 0.003912 0.003954

... ... ... ...
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Distribution of strong local SS with respect to folding energy in mRNAs and genomic sequencesFigure 2
Distribution of strong local SS with respect to folding energy in mRNAs and genomic sequences. Number of 
structures was measured within 1 kcal/mol intervals and normalized by 1,000 nucleotides of analyzed sequences. (A) 5'-UTRs 
(blue) and two independent SRI-generated sequences (gray); (B) 3'-UTRs (yellow) and two independent SRI-generated 
sequences (gray); (C) introns (green) and two independent SRI-generated sequences (gray); (D) intergenic regions from chro-
mosome 17 (red) and two independent SRI-generated sequences (gray); (E) CDS (burgundy) and two independent CDS-gener-
ated sequences (gray); (F) 3'-UTRs (yellow), random MRI-generated counterpart sequences (black), and random SRI-generated 
counterpart sequences (gray).
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sequences. Thus, randomization by CDS-generator is
much weaker than randomization by SRI-generator since
it retains > 70% sequence identity between the natural
and random sequences. On the other hand, maintaining
a considerable level of sequence identity is useful because
it preserves the major periodicity characteristics of the
source coding sequences. Figure 2E demonstrates that nat-
ural coding sequences have twice the number of strong
local SS as randomized sequences obtained by CDS-gen-
erator. The chi-square test confirms that the difference is
statistically significant (p < 10-200).

Mid-range inhomogeneity in natural genomic sequences
To understand the observed abundance of strong local SS
in mRNAs, we examined dozens of these structures in nat-
ural sequences, a typical example of which is shown in
Figure 3. This structure, from a human 3'-UTR of the
KIAA1751 gene, has an mfe of -27.2 kcal/mol and repre-
sents a hairpin stem-loop configuration. The sequence of
this SS is GC-rich (67%) and is neighbored by several
other alternating short AT-rich and GC-rich regions, as
highlighted in Figure 3A. In contrast, such frequent alter-
nation in GC-composition is practically absent in SRI-
generated sequences. Statistical examination revealed that
strong local SS with mfe values in the range -25 to -30
kcal/mol in human mRNAs have a mean GC-composition
of 70%, which is much higher than the average GC-com-
position of the mRNA, introns, or intergenic regions pre-
sented (Table 1). The observed GC-enrichment within
strong local SS can be explained by thermodynamics (G-
C base pairs are about twice as strong as A-T pairs) and by
combinatorics (random base-pairing is more frequent in
GC-rich strands than when GC-composition is around
50%). These notions have led to the hypothesis that natu-
ral sequences have a profound mid-range inhomogeneity,
that is, they are enriched by short GC-rich regions (30–
100 nt) alternating with adjacent AT-rich regions. In other
words, we theorize the non-random clustering of G/C and
A/T bases on the scale of ~50 nucleotides and the over-
abundance of such clusters in natural sequences.

To test this hypothesis we created a program named MRI-
analyzer [26]. This program scans input sequences with a
mid-range window size (the default, utilized for the
results presented, is a 50 nt window). When the GC-con-
tent of the sequence in this window reaches the upper
threshold, MRI-analyzer generates a blue top spike on the
output graph (Figure 4). Similarly, when the GC-content
of the window reaches the lower threshold, MRI-analyzer
generates a red bottom spike. The upper and lower thresh-
olds are flexible parameters defined by the user. MRI-ana-
lyzer output for natural and SRI-generated 3'-UTR and
intronic sequences is shown in Figure 4. Here, the graph
clearly shows a 35-fold enrichment of GC-rich (≥ 70%) 50
nt-long regions in natural 3'-UTR sequences over the ran-

domized SRI-generated sequences. For the 319 kb single
extra-large intron in Figure 4C–D, GC-rich regions are
enriched by a factor of 14. Similar to the results shown in
Figure 4, we observed comparable contrasts in GC-rich
and GC-poor regions for 5'-UTR, intronic, and intergenic
sequences for a wide range of scanning window sizes (30–
1000 nt) (Figure 5). Additionally, MRI was generally
observed with other base combinations and single bases
(Figure 5). An example of the MRI pattern for GA- and CT-
rich regions is shown in Figures 6A and 6B; GT- and AC-
rich regions are presented in Figures 6C and 6D. The
enrichment factor can be considered as the contrast
between real and randomized sequences. We thus use the
term "contrast" to refer to the ratio of the number of con-
tent-rich regions in a real sequence to the number in its
SRI-generated counterpart. "Optimal contrast" is defined
as the highest contrast observed over all thresholds for a
given content type (for example, GC-content) and win-
dow size. Since we do not yet know the properties of mid-
range inhomogeneity in the human genome, we probed
for the optimal contrast by repeating the above analysis
for all thresholds starting from one standard deviation
above (and below) the mean GC-content and proceeding
until the number of GC-rich (or GC-poor) regions
decreases to about ten. Figure 7 shows the distribution of
optimal contrasts for all content types and a range of win-
dow sizes for the longest first intron of the DMD (dys-
trophin) gene.

Association of MRI with the over-abundance of strong 
local SS
Finally, we created a program named MRI-generator [26]
for obtaining random sequences having the same oligo-
nucleotide composition and also the same MRI pattern in
GC-composition as a specified set of natural sequences.
This program works by producing an excessively long SRI-
generated sequence and then discarding segments with
intermediate GC-content to obtain the desired pattern of
GC-rich and CG-poor regions. Thus, the output sequence
from MRI-generator has a Genomic-MRI pattern of GC-
rich and GC-poor regions very similar to that of the natu-
ral sequence.

Comparison of natural sequences with their MRI-gener-
ated counterparts for each genomic sequence category (5'-
UTRs, 3'-UTRs, introns, intergenic regions, and CDS)
shows that they each have approximately the same
number (5–10% difference) of strong local SS, as illus-
trated in Figure 2F for 3'-UTRs. This finding supports the
conclusion that the abundance of strong SS in all parts of
the mammalian genome (mRNA, introns, intergenic
regions) is associated with the MRI of these sequences.
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DNA repetitive elements and genomic MRI
Even though human interspersed repeats do not show an
excess of strong SS as discussed above, they do influence
the patterns of MRI [see Additional file 4]. The figure in
additional file 4 illustrates the MRI patterns of the extra-
large first intron of the DMD gene (see Figure 4) after
masking its repetitive elements by RepeatMasker. Unsur-
prisingly, the number of MRI regions in the masked

sequence is a fraction of those in its non-masked counter-
part. The masked sequence contains 41% N's instead of A,
G, C, or T bases. The current version of MRI-analyzer skips
a window containing any non-A, G, C, or T character. For
a proper comparison of MRI patterns in a masked
sequence, one should compare it to the SRI-generated ran-
dom sequence based on the masked sequence. Such ran-
dom sequences contain the same number of N's at exactly

Example of a strong local SS in the 3'-UTR of the human KIAA1751 gene [GenBank:NM_001080484]Figure 3
Example of a strong local SS in the 3'-UTR of the human KIAA1751 gene [GenBank:NM_001080484]. (A) Nucle-
otide sequence of the entire 3'-UTR region in which a segment exemplifying a strong local SS (mfe = -27.2 kcal/mol) is shown 
in red and its schematic base-pairing is shown in dot-bracket notation [23] below the sequence. Other GC-rich regions are 
highlighted in blue and GC-poor regions are underlined. (B) 2-D representation of this strong SS.
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at the same positions as the natural masked sequence. The
figure in Additional file 4 demonstrates that the masked
sequence of the first DMD intron has 3 to 12 times the
number of MRI peaks compared to its random counter-
part. This particular example with the DMD intron
presents an AT-rich sequence (67% of A+T), which is typ-
ical for extra-large introns [17]. Accordingly, we set the
upper threshold for GC-composition to 60% in studying
this sequence. Under such conditions, we observe GC-rich
MRI peaks overlapping various portions of Alu-repeats.
This overlapping of MRI regions with repetitive elements
seems to depend on the threshold used and the G+C-com-
position of the region under analysis.

Discussion
We have demonstrated an association between MRI in GC
composition and the abundance of strong SS in genomic
sequences. There are at least two possible interpretations
of these results. First, one can argue that MRI causes the
abundance of strong SS. The second possibility is that
selection for strong SS was the reason for the appearance
of MRI. Both views have merit and we thus include a dis-
cussion of the supporting evidence.

Central to this discussion is the observation that MRI
exists not only in mRNA sequences but also in introns and
intergenic regions. If selection were limited to transcripts
or to mature mRNAs, there would be no way for evolution
to directly drive the creation of SS in non-transcribed

Visualization of MRI-analyzer output for GC-composition of two 300 kb samples using a 50-nt windowFigure 4
Visualization of MRI-analyzer output for GC-composition of two 300 kb samples using a 50-nt window. Upper 
and lower thresholds are specified on the y-axis as a percentage of the window size. (A) A sequential sample of human 3'-UTRs 
from chromosomes 1 and 2 (EID ids 1745_NT_004487 through 2327_NT_022184); (B) a random SRI-generated set based on 
the tetramer oligonucleotide frequency table of 11,315 human 3'-UTR sequences. (C) The 319 kb sequence of the first extra-
large intron of the DMD gene; (D) a random SRI-generated set based on the tetramer oligonucleotide frequency table of the 
first intron of the DMD gene.
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regions. This would leave MRI in GC composition as a
potential mediator of strong SS enrichment. However,
some experimental evidence suggests that much more of
the genome is transcribed than previously thought [30]. It
has also been suggested for some time that SS play a role
in the initiation of recombination. This theory predicts
positive selection for SS throughout genomes and espe-
cially within introns and intergenic regions [31-33].
Moreover, studies of coding sequences in mammals have
found that synonymous substitutions tend to increase the
strength of SS and regulate mRNA stability [34-36]. Thus,
SS could have emerged first due to selection for DNA hair-
pins to facilitate homologous recombination and for sta-
ble mRNA SS signals, yielding MRI in GC content as a by-
product. On the other hand, MRI is also observed for AG-
and GT-content as well as for the individual nucleotides
(see Figures 6 and 7), so it is also possible that selection

for MRI is a fundamental force driving genome organiza-
tion and composition.

It is of special interest to investigate possible biological
roles for MRI in the structural and functional organization
of mammalian genomes. To address this important issue,
we have studied 3.3 million point mutations occurring
over the last 10 million years in humans and over 3.9 mil-
lion SNPs in the MRI-regions and outside them. These
results will be detailed in our next publication (under
preparation). Based on the preliminary results of these
investigations, we can state that MRI patterns are formed
by a combination of processes. Some patterns (e.g. A+T-
rich regions) are like cellular automata, based on non-
selection biases in nucleotide changes at genomic regions
with specific base compositions, while other patterns are
formed by a strong fixation bias (presumably positive

Comparison of MRI-analyses of GC-content for various window sizes and genomic contextsFigure 5
Comparison of MRI-analyses of GC-content for various window sizes and genomic contexts. (A-F) The 319 kb 
sequence of the first intron from the DMD gene, and its SRI-generated counterpart, analyzed for optimal visual contrast over a 
range of window sizes (30, 50, 100, 200, 500, 1000) (cf. Figures 4 and 7); (G) The first 300 kb of a sample of human 5'-UTRs 
and its SRI-generated counterpart using a window size of 50 nt; (H) The 300 kb subset from a sample of intergenic sequences 
from human chromosome 17 and a corresponding SRI-generated sequence using a window size of 50 nt.
Page 9 of 14
(page number not for citation purposes)



BMC Genomics 2008, 9:284 http://www.biomedcentral.com/1471-2164/9/284
selection of functional regions) that preserve particular
base enrichments in corresponding regions (e.g. G+C-,
purine-, and pyrimidine-rich). These forces drive mid-
range non-randomness, shaping the human genome and
potentially imparting additional layers of organizational
complexity.

Indeed, an important feature of the human genome is that
its vast array of genes is differentially expressed in hun-
dreds of different cell types and subtypes. Moreover, at dif-
ferent stages of development and in response to diverse
extracellular stimuli, gene expression must be finely
tuned. To perform the enormous task of creating a human
body composed of trillions of cells, the genome must con-
tain a vast number of signals for gene regulation, the

majority of which have yet to be discovered. We hypothe-
size that MRI could represent a novel class of genomic sig-
nals, based on overall composition and clustering of
nucleotides rather than particular sequence motifs. To
facilitate the testing of this hypothesis, we created a free,
public Internet resource called "Genomic MRI" that
allows one to run all programs described here without any
programming knowledge. Additionally, all of these pro-
grams are freely available for downloading and off-line
usage, primarily for computational biologists.

Methods
The programs SRI-analyzer, SRI-generator, MRI-analyzer,
MRI-generator, and CDS-generator are available via our

Visualization of MRI-analyzeroutput for AG- and GT-compositions of 319 kb sequence of the first intron of the DMD gene using a 50 nt windowFigure 6
Visualization of MRI-analyzeroutput for AG- and GT-compositions of 319 kb sequence of the first intron of the 
DMD gene using a 50 nt window. Upper and lower thresholds are specified on the y-axis as a percentage of the window 
size. (A) AG-rich and AG-poor regions of the DMD intron; (B) AG-rich and AG-poor regions of the corresponding random 
SRI-generated set based on the tetramer oligonucleotide frequency table of the DMD intron; (C) GT-rich and GT-poor regions 
of the DMD intron; (D) GT-rich and GT-poor regions of the corresponding random SRI-generated set based on the tetramer 
oligonucleotide frequency table of the DMD intron.
Page 10 of 14
(page number not for citation purposes)



BMC Genomics 2008, 9:284 http://www.biomedcentral.com/1471-2164/9/284

Page 11 of 14
(page number not for citation purposes)

Optimal contrasts for all content types over a range of window sizesFigure 7
Optimal contrasts for all content types over a range of window sizes. This figure is the "XY conditioning plot" (from 
the program Rcmdr 1.2) of the optimal contrasts (see text) for regions of high and low content for all seven possible content 
types over a range of window sizes (30, 50, 100, 200, 300, ... 1000). The sample sequence is the 319 kb first intron from the 
DMD gene. The SRI-generated counterpart is constructed from the tetramer frequency table derived from the intron.
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website. A link to the current location of the website will
be maintained at our departmental project site [26].

Sequence randomization algorithm (SRI-generator)
There are several possible approaches for randomizing
nucleotide sequences while maintaining their N-mer oli-
gonucleotide frequency composition. The simplest
approach would be to randomly choose N-mer oligonu-
cleotides based on their frequency composition and tile
them one after the other. However, this approach does
not necessarily preserve the frequencies of shorter length
oligonucleotides that one may observe in natural
sequences. For example, the random concatenation of N-
mers as tiles artificially introduces dinucleotide composi-
tion bias created from the border of two adjacent oligonu-
cleotide tiles – producing an overrepresentation of CpG
dinucleotides and the like that do not match the SRI nat-
ural sequences. Therefore we chose a different approach
which generates a randomized sequence one nucleotide at
a time moving in a 5' to 3' direction.

We generate randomized sequences in the following man-
ner. First we choose the largest oligonucleotide size (N)
that is sufficiently sampled. In practice, this means avoid-
ing sizes for which some of the oligonucleotides are never
encountered in the input sequence (i.e. occur with zero
frequency). Throughout our study we used 4-mer oligonu-
cleotides (N = 4) because they were consistently well sam-
pled across all of our input sequences, including a single
large intron in the Figure 2C. The starting oligonucleotide
is chosen at random, abiding by the frequency table for
oligonucleotides of the chosen size (N). Next, we observe
the last (N-1) bases of our sequence, and append a base to
the 3' end, following the N-mer oligonucleotide frequen-
cies. For example, if N = 4 and GTC were the last three
bases in the growing random sequence, the frequencies of
GTCA, GTCT, GTCC, and GTCG would be used in ran-
domly adding the next base. For instance, suppose these
four oligomers have relative frequencies of 0.5, 0.1, 0.2,
and 0.2, respectively. Then the random number generator
will append 'A' with a probability of 0.5, 'T' with a proba-
bility of 0.1, 'C' with a probability of 0.2, and 'G' with
probability of 0.2. This final step is then repeated until the
randomized sequence reaches the length of the input
sequence. In contrast to the tiling method, our approach
preserves the frequencies of short oligonucleotides in
addition to preserving the N-mer frequency composition.

Finally, we made our SRI-generator work properly with
sequences that have masked repetitive elements (where all
sequences of DNA repeats are replaced by N's by the
RepeatMasker program). Any non-A, T, C, or G bases are
copied from the source sequence over the output
sequence. The random sequences thus contain the same
number of N's (or other non-A, T, C, or G bases) in the

same positions as in the natural sequences provided as
input.

The pseudocode for SRI-generator is presented in Addi-
tional file 2, while the source code (written in Perl) is
freely available from our project website [26].

CDS-generator
Several sophisticated algorithms are already available for
the randomization of coding sequences [37,38]. How-
ever, here we used our own randomization approach
developed by AF in 2001 while working on a context-
dependent codon bias project in the Walter Gilbert lab
[29]. We stayed with our program because we are familiar
with the peculiarities of this type of randomization. In
addition our approach gets the dicodon distribution of
randomized sequences very close to that of the natural
CDS.

Program notes
1) We observe a gradual diminution of the difference
between real and randomized sequences when using pro-
gressively larger oligonucleotides with the randomized
sequence generation programs (SRI-generator and MRI-
generator). The difference is not considerable, but it is
noticeable. Therefore, we recommend the use of longer
oligonucleotides in the construction of randomized
sequences – to maximize the retention of short-range
inhomogeneity – as long as the rarest oligonucleotide in
the corresponding frequency table occurs at least ten
times. We use tetramer frequency tables throughout the
manuscript for the sake of consistency and since they can
safely be used for analyses of individual loci having as lit-
tle as 100 kb.

WARNING: In MRI-generator it is easy to shift the nucle-
otide content level of generated sequences by using
thresholds that do not balance the number of content-rich
and content-poor regions. One must experiment with the
thresholds and use SRI-analyzer to confirm that the con-
tent of the MRI-generated sequence approximates that of
the source sequence.

2) The graphical output provided with the online version
of MRI-analyzer serves only as a quick visual aid. The true
output is represented by large tab-delimited files contain-
ing a record for each window in the analysis. Each record
contains flags indicating a content-rich or content-poor
window and, for those records where one of the thresh-
olds has been crossed, the corresponding sequence.

3) All programs are written in Perl and may be freely
downloaded from the website. They are licensed under
version 3 of the GNU General Public License (GPL).
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4) The RNALfold program from version 1.6.1 of the
Vienna RNA package was utilized locally on our comput-
ers with default parameters.

Source for gene sample set
Our sample of 11,315 non-redundant human genes (with
< 50% sequence identities between each other) was
obtained from the human Exon-Intron Database, release
35p1 [39]. Samples of intergenic regions were obtained
from Genbank human genome files build 36 based on the
records from the Feature Tables. We used only plus
strands for calculations because there are only fluctuation
differences between plus and minus strands in the non-
coding regions of mammalian genomes. Also, plus and
minus strands have the same G+C and A+T compositions.
All these samples are available from our departmental
project site [26].
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