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Abstract
Background: The Programmed Ribosomal Frameshift Database (PRFdb) provides an interface to
help researchers identify potential programmed -1 ribosomal frameshift (-1 PRF) signals in
eukaryotic genes or sequences of interest.

Results: To identify putative -1 PRF signals, sequences are first imported from whole genomes or
datasets, e.g. the yeast genome project and mammalian gene collection. They are then filtered
through multiple algorithms to identify potential -1 PRF signals as defined by a heptameric slippery
site followed by an mRNA pseudoknot. The significance of each candidate -1 PRF signal is evaluated
by comparing the predicted thermodynamic stability (ΔG°) of the native mRNA sequence against
a distribution of ΔG° values of a pool of randomized sequences derived from the original. The data
have been compiled in a user-friendly, easily searchable relational database.

Conclusion: The PRFdB enables members of the research community to determine whether
genes that they are investigating contain potential -1 PRF signals, and can be used as a metasource
of information for cross referencing with other databases. It is available on the web at http://
dinmanlab.umd.edu/prfdb.

Background
Canonical decoding of the genetic code requires translat-
ing ribosomes to convert triplets of bases (codons) into
amino acid sequences. Although this is algorithm is
employed for translation of the vast majority of mRNA
sequences, in some special cases cis-acting mRNA ele-
ments direct ribosomes into alternative reading frames,
dynamically "recoding" their sequence information
(reviewed in [1]). Programmed -1 Ribosomal Frameshift-
ing (-1 PRF) was first discovered in RNA viruses where it

enables viral genomes to encode multiple peptides from a
single mRNA [2]. An individual -1 PRF signal consists of a
heptameric 'slippery site' usually followed by an mRNA
pseudoknot secondary structure separated by a suitable
spacer region (reviewed in [3-5]). Unlike their viral coun-
terparts, eukaryotic genome-encoded -1 PRF signals are
predicted to direct elongating ribosomes into premature
termination codons (reviewed in [6]). Such events have
been shown to initiate rapid mRNA degradation in yeast
through the Nonsense Mediated Decay (NMD) pathway
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[7]. As such, -1 PRF is hypothesized to add a novel modal-
ity for regulation of gene expression at the post-transcrip-
tional level.

There are currently three databases serving the transla-
tional recoding community. RECODE (please see Availa-
bility and requirements for more information) is a
browsable collection of all the published translational
recoding signals [8,9]. RECODE's strength is as central
repository of all empirically proven translational recoding
signals. FSDB (please see Availability and requirements
for more information) contains a compilation of a hand-
ful of known and predicted viral, prokaryotic and eukary-
otic -1 and +1 PRF signals, and also allows users to input
their own sequences to search for frameshift signals using
a program called FSFinder [10]. Although incomplete, this
site provides tools not available through RECODE, in par-
ticular it integration of PseudoViewer, a powerful graphics
tool that simplifies visualization of H-type pseudoknots
[11]. MLOGD (please see Availability and requirements
for more information) is a suite of software that allows
detection of new protein-coding sequences by identifying
overlapping open reading frames [12]. While all three of
these sites have their strengths, a common weakness it
that they do not provide well catalogued, searchable data-
bases of all potential recoding signals of any one kind. To
fill this gap, we have created PRFdb as a database of pre-
dicted -1 PRF signals in eukaryotic genomes. The methods
used to search for predicted -1 PRF signals have been pre-
viously described, and importantly, we have empirically
demonstrated that a significant number of -1 PRF signals
so identified actually promote significant levels of
frameshifting [13]. The strength of the PRFdb is that it
provides a tool for researchers outside of the translational
recoding field to use to quickly search for and identify
potential -1 PRF signals in genes in which they are inter-
ested.

Construction and content
In the PRFdb, the predicted -1 PRF signals are represented
by: 1) the genes in which they reside; 2) the identity and
location of their slippery sites; 3) graphical representa-
tions of their predicted secondary structures; 4) computa-
tionally identified minimum free energies (MFE); and 5)
the thermodynamic significance of these mRNA structures
as compared to randomized variants. Currently com-
pleted genomes in the PRFdb are Saccharomyces cerevisiae
(88,683 sequences windows from 4,238 of 6,352 genes);
Homo sapiens (24,104 sequence windows from 6826 of
17,891 genes); Mus musculus (19,313 windows from
6,053 of 15,620 genes); Rattus norvegicus (5924 sequence
windows comprising 1982 of 5341 genes); Bos Taurus
(10,690 windows from comprising 3349 of 9187 genes);
Danio rerio (7640 sequence windows comprising 2618 of
6197 genes); and Xenopus tropicalis (9776 sequence win-

dows comprising 2712 of 5126 genes). As of this writing,
sequences from Xenopus laevis are being evaluated and
entered into the database. The Arabidopsis thaliana genome
is queued next in the pipeline.

Researchers can access data in the PRFdb through four
means: (i) Search (Figure 1) provides a way to query a
gene of interest using the specific gene name or descrip-
tion from the yeast genome project or mammalian gene
collection. The search interface also provides a means to
use BLAST to search for genes in the PRFdb similar to a
query sequence. ii) Distribution (Figure 2) enables brows-
ing for sequences containing statistically significant puta-
tive -1 PRF signals through a graphical representation of
computed minimum free energies with respect to rand-
omized z scores for all sequence windows. It is also possi-
ble to limit this distribution to sequences that are
preceded by a specific slippery site. iii) Filter prints
sequences from a given genome that meet specific criteria
including: species, pseudoknotted sequence, sequences
with a specific number of base pairs and/or MFE. iv)
Download provides a format suitable for parsing all
sequences of a given genome/sequence dataset.

The search, distribution, and filter interfaces lead to a
detailed description of individual putative PRF signals
(Figure 3). This provides a summary of all data gathered
for a given sequence including: background information
on the gene and location of the -1 PRF signal, information
regarding the program used to perform the MFE predic-
tion, multiple methods to view the secondary structure,
and a comparison of the distribution of randomized
sequences to the MFE of the folded sequence.

If a sequence of interest is not currently in the PRFdb, it
can be imported via its NCBI accession number.
Sequences added in this manner will be filtered within
hours of import. Sequences imported into the PRFdb are
also folded using sequential windows across the entire
sequence in order to create a graphical minimum free
energy 'landscape.' This enables users to submit longer or
shorter sequence strings for computational folding, a par-
ticularly useful feature e.g. for eliminating extraneous
sequence that may not be involved in actual RNA folding.
For example, the computational analysis of the 100 nucle-
otide sequence downstream of the slippery site of the
mouse Ma3 -1 PRF signal provided by the PRFdb predicts
tandem stem loop structures. However, when only 55 nt
of downstream sequence are provided, PRFdB predicts the
empirically documented pseudoknot structure [14].

Sequences to be analyzed by the PRFdb are imported into
the database, filtered using RNAMotif [15], folded with
secondary structure prediction algorithms, randomized
using one or more randomization methods, and refolded.
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Results when searching for the yeast EST2 geneFigure 1
Results when searching for the yeast EST2 gene. The top of this page provides information pertaining to a specific gene 
(S. cerevisiae EST2), its genome database (SGD) entry, a link to perform BLAST searches for similar genes, MFE minima graph, 
and a link to download its sequence. Following this information is a list showing the locations of the translational start site, 
potential slippery sites and the number of secondary structure solutions that have been computed for them, and the 0-frame 
termination codon. At the bottom is a display of the gene where the ATG start site is displayed in green, slippery sites are 
shown in blue, and -1 frame termination codons are shown in orange. The specific entry for each potential frameshift signal 
may be viewed by clicking on the slippery site's position or its link in the sequence. In addition, locations of human single nucle-
otide polymorphisms catalogued in the NCBI Single Nucleotide Polymorphism Databaseare rendered in maroon, and clicking 
on these will open links to the database http://www.ncbi.nlm.nih.gov/projects/SNP/.

http://www.ncbi.nlm.nih.gov/projects/SNP/
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The distribution of Saccharomyces cerevisiae sequencesFigure 2
The distribution of Saccharomyces cerevisiae sequences. Computed minimum free energy is on the x-axis, z score is on 
the y-axis. Black lines denote the mean values and gray lines define sequence windows that are one and two standard devia-
tions less than mean. Clicking on any region links to the closest -1 PRF signals with respect to MFE and z score.
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To avoid complications of untranslated intronic
sequences, the PRFdb contains only mature mRNA
sequences (cDNA sequences primarily).

Sequences are imported into the PRFdb from a web inter-
face using Genbank accession numbers, yeast genome
accessions, or raw sequences. Each new sequence is first
passed through a simple text filter that searches for slip-
pery sites following the International Union of Pure and
Applied Chemistry (IUPAC) pattern 'N NNW WWH' (or X
XXY YYZ), where N (X) denotes any three identical bases,
W (Y) denotes AAA or UUU, H (Z) ≠ G, and spaces indi-
cate the incoming (zero) reading frame. Since the distance
between the end of the slippery site and the downstream
stimulatory sequence is important, a spacer of 1 to 8 nt
was incorporated into the algorithm. Downstream
sequences (100, 75 and 50 nt) are passed to RNAMotif
with a descriptor looking for the potential to form an
mRNA pseudoknot. Sequence windows passing this min-

imal test are passed to multiple pseudoknot predicting
mRNA secondary structure prediction algorithms, includ-
ing Pknots [16], Nupack [17], and HotKnots [18]. Mfold [19]
and the Iterative Loop Matching algorithm are not used
because Mfold does not predict pseudoknots and ILM does
not provide the minimum free energy values for predicted
secondary structures. After folding, every sequence is ran-
domized using one or more algorithms including: Fisher-
Yates shuffling to maintain dinucleotide frequencies,
codon frequencies, or nucleotide frequencies. The result-
ing random sequence windows are then refolded without
searching for pseudoknots. This process is repeated a fixed
number of times (100 by default) to create a distribution
of sequence specific randomized MFEs. These resulting
distribution of randomized MFEs is then compared the
MFE of the original sequence window. These values are
used to compute a z score, thus providing a measurement
of the significance of the native sequence.

The detailed interfaceFigure 3
The detailed interface. This demonstrates that pknots was used to compute an MFE of -23.7 kcal/mol for the 100 bases fol-
lowing the AAAAAU slippery site at position 1653 of the EST2 gene. When randomized 100 times using Fisher-Yates shuffling, 
a mean MFE of -17.4 kcal/mol was computed for a normal distribution of correlation coefficient 0.9627. The MFE distribution 
of the randomized sequences is on the right; with the idealized normal distribution in red. The black vertical line marks the 
mean MFE of the randomized sequences, and the green vertical line marks the MFE of the native sequence. This secondary 
structure is significantly more stable than random (z score = -2.10). The predicted mRNA secondary structure of this 
sequence is shown below using both bracket notation, and using a Feynman diagram.
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Utility
As with most bioinformatics projects, the generation of
the PRFdB engenders more questions than answers. Most
importantly, why is this database of useful to anyone out-
side of the frameshifting community? The response is that
-1 PRF represents fundamental mechanism for the regula-
tion of gene expression at post-transcriptional gene with
far-reaching and broad impact. Thus, the PRFdB repre-
sents a resource that is useful and available to any
researcher interested in how their gene or pathway of
interest might be regulated at this level. Here, we have
sought to simplify such inquiries by constructing a user-
friendly web-based interface. The other major question
concerns what the user might do following identification
of a potential -1 PRF signal in a gene of interest. The clas-
sical "bench-based" approach that we are currently fol-
lowing is to clone the element into reporters and
quantitatively determine whether it actually promotes -1
PRF (we typically use a cutoff level of ≥ 0.5% of a
readthrough control), and whether it can function as an
mRNA destabilizing element. Computational followup
strategies include cross database referencing (e.g. assess-
ing how -1 PRF in an mRNA or set of mRNAs might affect
the transcriptome as monitored by microarray analysis),
and phylogenetic analyses. In sum, the PRFdB provides
yet another set of information for deep, one gene at a time
mining, as well as for the broader approaches typified by
the rapidly developing field of systematic biology.

Discussion and conclusion
With regard to future development, the PRFdb is currently
processing the Xenopus laevis genome. The Arabidopsis thal-
iana and Caenorabditis elegans genomes are currently in the
queue, and additional genomes will be processed in the
near future. In addition, the BLAST interface to the PRFdb
has been used to discover Genbank sequences similar to
the most statistically significant sequences in the data-
base, thus providing a means to expand the PRFdb in a
depth first manner. As more similar sequences are com-
pleted, comparative genomics studies using sequence
and/or mRNA structure alignments will be incorporated
to enable identification of conserved -1 PRF signals across
species and/or genes. As time progresses, additional com-
putational and empirical information will allow for
improved scoring, helping to increase the statistical rele-
vance of the predicted secondary mRNA structures. These
improvements will continue to make the PRFdb more
useful and accessible to the research community, provid-
ing a resource allowing individual users to identify -1 PRF
signals in genes of interest, and as a metasource of infor-
mation for cross referencing with other databases, e.g.
genomes and DNA microarray databases.

Availability and requirements
The PRFdb is freely available on the web at http://dinman
lab.umd.edu/prfdb and can be accessed though any
standard web browser. Access and data downloading
require no special requirements.

RECODE: http://recode.genetics.utah.edu/

FSDB: http://wilab.inha.ac.kr/fsdb/

MLOGD: http://guinevere.otago.ac.nz/aef/MLOGD/
index.html
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