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Abstract
Background: Neuroblastoma is a very heterogeneous pediatric tumor of the sympathetic nervous system
showing clinically significant patterns of genetic alterations. Favorable tumors usually have near-triploid
karyotypes with few structural rearrangements. Aggressive stage 4 tumors often have near-diploid or near-
tetraploid karyotypes and structural rearrangements. Whole genome approaches for analysis of genome-wide
copy number have been used to analyze chromosomal abnormalities in tumor samples. We have used array-based
copy number analysis using oligonucleotide single nucleotide polymorphisms (SNP) arrays to analyze the
chromosomal structure of a large number of neuroblastoma tumors of different clinical and biological subsets.

Results: Ninety-two neuroblastoma tumors were analyzed with 50 K and/or 250 K SNP arrays from Affymetrix,
using CNAG3.0 software. Thirty percent of the tumors harbored 1p deletion, 22% deletion of 11q, 26% had
MYCN amplification and 45% 17q gain. Most of the tumors with 1p deletion were found among those with MYCN
amplification. Loss of 11q was most commonly seen in tumors without MYCN amplification. In the case of MYCN
amplification, two types were identified. One type displayed simple continuous amplicons; the other type
harbored more complex rearrangements. MYCN was the only common gene in all cases with amplification.
Complex amplification on chromosome 12 was detected in two tumors and three different overlapping regions
of amplification were identified. Two regions with homozygous deletions, four cases with CDKN2A deletions in
9p and one case with deletion on 3p (the gene RBMS3) were also detected in the tumors.

Conclusion: SNP arrays provide useful tools for high-resolution characterization of significant chromosomal
rearrangements in neuroblastoma tumors. The mapping arrays from Affymetrix provide both copy number and
allele-specific information at a resolution of 10–12 kb. Chromosome 9p, especially the gene CDKN2A, is subject
to homozygous (four cases) and heterozygous deletions (five cases) in neuroblastoma tumors.
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Background
Neuroblastoma (NB) is the most common pediatric solid
tumor. It arises from primitive sympathetic nervous cells
and is characterized by clinical heterogeneity, including
spontaneously regressing tumors, as well as aggressive
malignant tumors. Common chromosomal abnormali-
ties include partial deletion of the short arm of chromo-
some 1 (1p deletion) in 30–35% of NB tumors,
additional genetic material from the long arm of chromo-
some 17 (17q gain) in more than 50%, amplification of
the proto-oncogene MYCN (25–30%) and deletion of
chromosome 11q and 14q [1-7]. Whole-genome array-
based approaches to analyse genomic rearrangements and
chromosomal abnormalities have been employed for a
variety of tumors, including NB tumors. Initially, array
comparative genomic hybridization (aCGH) was used.
Different studies of NB have been conducted using bacte-
rial artificial chromosome (BAC) arrays and custom-made
cDNA arrays [8-15]. Based on these previous investiga-
tions, NB has been categorized into three major subtypes;
types 1, 2A and 2B. Subtype 1 comprises favorable NB
with near triploidy and a predominance of numerical
gains and losses, mostly representing non-metastatic NB
stages 1, 2 and 4S. Subtypes 2A and 2B are found in unfa-
vorable widespread NB, stages 3 and 4, with 11q loss and
17q gain without MYCN amplification (subtype 2A) or
with MYCN amplification often together with 1p dele-
tions and 17q gain (subtype 2B) [16]. More recently com-
mercially available high-density oligonucleotide based
SNP arrays have been employed in whole-genome copy
number analyses of human tumors. They have provided
accurate and rapid identification of genome abnormali-
ties at high resolution. A few groups have used commer-
cial oligonucleotide arrays to analyze NB tumors [11,17].
We present a comprehensive genome-wide analysis of
DNA copy number in 92 NB tumors using 50 K and/or
250 K gene chip arrays from Affymetrix.

Results
Ninety-two NB tumors and four NB cell lines was ana-
lyzed with SNP arrays from Affymetrix. For a representa-
tive tumor, see Figure 1. Figure 1A–C shows chromosomal
rearrangements analyzed with the CNAG3.0 software.

Regions with common hemizygous deletions
Chromosome 1p deletion
Loss of parts of the short arm of chromosome 1 (1p) was
found in 28/92 (30%) of the tumors; 52/92 (57%) pre-
sented with intact chromosome 1. The other 12 tumors
harbored other rearrangements, such as 1q gain. Seven-
teen of the 28 tumors with deletions also had MYCN
amplification, whereas 11 did not (p < 2E-06). The
tumors with MYCN amplification generally had larger 1p
deletions than tumors without MYCN amplification (the
median size of deletion for MYCN-amplified tumors was
84 Mb and for non-amplified 46 Mb). The five smallest

deletions including the terminal of the short arm were
found in tumors without amplification of the MYCN gene
(p < 0.005), see Figure 2A. The consensus loss in the
tumors with MYCN amplification was from position 17.2
to 37.0 Mb and, in tumors without MYCN amplification,
from the terminal of 1p to 10.4 Mb.

Loss of chromosome 11q
Loss of the whole of chromosome 11 was detected in 15%
(14/92) of the NB tumors. Partial loss of 11q was found
in 20/92 (22%), see Figure 2B. Loss of 11q was most com-
monly seen in tumors without MYCN amplification; of
the 20 tumors with 11q loss, 18 were not MYCN ampli-
fied. The consensus loss in the two tumors with MYCN
amplification was 24.4 Mb (from 110.1 Mb to 134.5 Mb/
qter), while it was 50 Mb (from 84.5 Mb to 134.5/qter) in
tumors without MYCN amplification.

Regions with homozygous and heterozygous deletions
Deletions in chromosome 3p
In 9R9, a stage 3 tumor, one homozygous deletion on the
short arm of chromosome 3, 29.6–30.0 Mb, was detected
(Figure 3). This region contains exons 4–11 of the RBMS3
gene; in a patient with unfavorable outcome. In addition,
14 of 92 tumors (15%) with heterozygous deletions were
detected; 12 stage 4 tumors, one stage 2 dead of disease
(DOD) and the tumor mention above, see Additional file
1. Two regions with overlap of deletions were identified
among these 14 tumors. The shortest region of overlap,
SRO 1, located at 0–5.5 Mb, was identified in 13 of the
tumors and SRO 2, from 46.9 to 51.0 Mb, in 12 of the
tumors. Moreover, three cell lines had deletions of regions
covering the RBMS3 gene. SK-N-AS and NB69 had large
deletions, whereas Kelly harbored four small deletions,
one of which resided in RBMS3. Kelly also had a
homozygous deletion at region 116.7–118.5, covering the
gene LSAMP.

Deletions in chromosome 9p
Homozygous deletions were also detected in chromo-
some region 9p in four NB tumors. The shortest region of
overlapping deletions, at 21.9 Mb, resided in the gene
CDKN2A. Four tumors with heterozygous deletions and
one with a copy neutral loss of heterozygosity (CN-LOH)
were also detected, see Figure 4A and 4C. The tumors with
deletions were either high-stage NB or from patients with
unfavorable outcome, see Additional file 1. The cell lines
SK-N-AS, NB69 and Kelly also had heterozygous deletions
in this region. In all cases, the homozygous or hetero-
zygous losses in the CDKN2A/B region could be verified
by multiplex ligation-dependent probe amplification
(MLPA), see Figure 4B.

Presence of copy-neutral LOH
In the total set of genome profiles from the 92 tumors,
only three cases of CN-LOH could be detected; (i) the ear-
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lier mentioned case 18E4 concerning chromosome 9p
(Figure 4; see above); (ii) a case of partial 5q loss in 9R9
and (iii) CN-LOH of the entire chromosome 11 in 6R9.

Regions with amplification or gain
Amplification on chromosome 2p
Twenty-four of the 92 tumors (26%) exhibited 2p ampli-
fication without gain and 15 tumors (16%) had gains of
parts of 2p without amplification, with 8/92 (9%) having
both amplification and gain. Two types of MYCN-ampli-
fied tumor were identified. One type displayed simple
amplicons, where a continuous region in and around
MYCN was amplified. The other type harbored more com-

plex rearrangements, where several discontinuous ampli-
fication regions were included in the amplified fragment
(see Figure 5A and 5B). Apart from MYCN, no other genes
were found to be amplified in all cases with amplification
(Figure 5D).

Amplification on chromosome 12
Complex amplification on chromosome 12 was detected
in two tumors, one of which also had MYCN amplifica-
tion. Three different regions on chromosome 12 were
amplified in both cases. Region I contained the genes
GLI1, OS9 and CDK4, among others, while MDM2 and

Representative views of the technologies usedFigure 1
Representative views of the technologies used. (A) Chromosome view from the CNAG3.0 software showing a repre-
sentative NB tumor. (B) 1p deletion, MYCN amplification and 17q gain are indicated by arrows. (C) Heterozygous deletion in 
chromosome 9p, in the CDKN2A and CDKN2B region.

A

B

C

1                     2                    3                    4                  5                6               7           8             9           10          11          12         13       14       15      16    17    18   19         21        X
20       22

17q-gain
MYCN-amplification

1p-deletion

Heterozygous deletion in 
CDKN2A/B gene region
(page number not for citation purposes)



BMC Genomics 2008, 9:353 http://www.biomedcentral.com/1471-2164/9/353

Page 4 of 13
(page number not for citation purposes)

Deletions of chromosome 1p and 11qFigure 2
Deletions of chromosome 1p and 11q. Bars illustrate the deleted region; red bars for tumors with MYCN amplification 
and blue for tumors without. The positions of the breakpoints are indicated in megabases. (A) Deletions of chromosome 1p. 
(B) Deletions of chromosome 11q.
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YEATS4 were two of the genes located in region II; see Fig-
ure 6 for more details.

Gain of chromosome 17q
Gain of chromosome 17q was observed in 41 of 92 cases
(45%). The region of gain always included the terminal of
the q-arm, the smallest being 24.3 Mb (54.5–78.8/qter),
see Figure 7.

Eighteen of the 92 NB tumors (20%) showed only numer-
ical rearrangements and 16/92 tumors (17%) had no
structural or numerical rearrangements on any chromo-
some.

Discussion
The used technique enabled high resolution detection and
mapping of all numerical and structural genomic changes
in the tumor material. We could also pinpoint several pre-
viously undetected rearrangements and map them in
detail. These include five new cases of homozygous dele-
tion, which is only infrequently reported in primary neu-

roblastoma tumors (se discussion below). The technique
proved to be fast, robust, reproducible and reliable and it
is likely to be a valuable tool in future studies of neurob-
lastoma tumors, both in research and in the clinical set-
ting.

Regions of deletions
Thirty percent of the tumors had 1p deletion and those
were significantly more often MYCN amplified. Tumors
with MYCN amplification had generally larger 1p dele-
tions than tumors without MYCN amplification and the
five smallest deletions including the p-terminal were
found in tumors without MYCN amplification, which
confirms an earlier study [18]. So, when identifying the
SRO in 1p deletions in NB, this will be delineated by the
tumors without MYCN amplification showing the most
distal breakpoints. It is possible that different sets of 1p-
deleted genes are important for the biological behavior of
the MYCN amplified and the non-MYCN amplified cases,
respectively. The SRO of deletions in tumors without
MYCN amplification was located from 0 to 10.4 Mb. For

Deletions of chromosome 3pFigure 3
Deletions of chromosome 3p. Green bars illustrate heterozygous deletions and the red mark indicates a homozygous dele-
tion in tumor 9R9 covering the gene RBMS3. Two regions of overlap of deletions were identified in the primary tumors.
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the non-amplified tumors, an interstitial SRO located
between 17.2 Mb to 37.0 Mb (covering 19.8 Mb) was
defined. It has previously been reported that tumors with
MYCN amplification have 1p deletions extending proxi-
mal to 1p36 whereas non-amplified tumors more often
have small terminal deletions of 1p36 [19]. Many groups

have previously tried to narrow down the shortest region
of overlap of deletions on chromosome 1p [20-30]. In the
largest study [31], the smallest region of consistent dele-
tion (SRD) in all but one NB tumor was located between
5.3 Mb and 6.1 Mb which resides inside our SRO for
tumors without MYCN amplification.

Deletions of chromosome 9pFigure 4
Deletions of chromosome 9p. (A) Array-copy number analyses of chromosome 9 deletions. Green bars illustrate hetero-
zygous deletions, yellow bars homozygous deletions and light green CN-LOH. (B) Example of the MLPA analysis of the 
CDKN2A/B region. The SRO of deletions resides in the gene CDKN2A. (C) CN-LOH of 9p in tumor 18E4.
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Amplification of MYCNFigure 5
Amplification of MYCN. (A) Representative tumors with simple continuous amplicons amplified. (B) Tumors with complex 
rearrangements. (C) The sample marked with an asterisk from the A panel in more detail. The figure shows how precisely the 
amplification borders can be defined using this technique. (D) The common region of amplification in tumors and cell lines. No 
genes other than MYCN were found in all cases with amplification.
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There was a significant inverse correlation between 11q
loss and the amplification of MYCN. Only 2 of the 20
tumors with a loss of chromosome 11 had MYCN ampli-
fication. The smallest region on chromosome 11q that

was lost was detected in the two tumors that also had
MYCN amplification (Figure 2B), the smallest being 24.4
Mb, from 110.1 Mb to 134.5/qter. The SRO in the tumors
without MYCN amplification was defined as being 50 Mb,

Amplification on chromosome 12Figure 6
Amplification on chromosome 12. (A) Complex amplifications in two tumors. The common region is enhanced in the 
lower panel. (B) Genes located in the amplified regions.

Region 1 Region 2 Region 3

Region 1      56.191 – 56.689 Mb

Region 2      67.368 – 68.328 Mb

Region 3      68.706 – 69.026 Mb

A

Chr 12

B

Page 8 of 13
(page number not for citation purposes)



BMC Genomics 2008, 9:353 http://www.biomedcentral.com/1471-2164/9/353
from 84.5 Mb to 134.5/qter. The fact that 11q deletions
occurs predominantly in tumors without MYCN amplifi-
cation is in agreement with previous studies [15,32].

Homozygous deletions are rare events in primary NB
tumors. Only a few have been reported in single cases; the
deletion or homozygous gene inactivation of NF1
[26,33], the deletion of CDKN2A [34], PTEN and
DMBDT1 [35]. In addition, homozygous deletions in
chromosome regions 1p36 [36], 3p22.3 [8] and 2q33
(CASP8) [37] have been detected in NB cell lines. In our
material, we detected homozygous deletions in the
CDKN2A gene in chromosome 9p21 in four tumors. This
region is frequently deleted in a wide range of malignan-
cies [38]. CDKN2A encodes the transcripts p16INK4a and
p14ARF in alternative reading frames. p16INK4a is an inhib-
itor to the cell cycle activators CDK4 and CDK6, which
inactivate the tumor suppressor protein pRB, and p14ARF

binds and inactivates MDM2, which is responsible for the
degradation of TP53, thereby leading to the stabilization
of TP53 (for a review, see Sharpless et al. [39]). A second
region of homozygous deletion was discovered in one NB
tumor, located in chromosome region 3p24.1, harboring
the gene RBMS3. The protein encoded by this gene is a
member of a protein family which binds single-stranded
DNA/RNA. We also detected two homozygous deletions
in the NB cell line Kelly, one in chromosome 3p, covering
the gene LSAMP, and one in the gene PTPRD in chromo-
some 9p. LSAMP is a neuronal surface glycoprotein that
has been identified as a putative tumor suppressor gene in
ovarian and renal carcinomas [40,41], also reported to be
diminished in Kelly and SK-N-AS by Stallings et al. [42].
PTPRD is a candidate tumor suppressor gene that encodes
a receptor type protein tyrosine phosphatase. This con-
firms the finding by Stallings et al. who have previously

reported that this gene is heterozygously deleted in some
NB tumors and cell lines, as well as being homozygously
deleted in Kelly [42]. We identified two regions of SRO on
chromosome 3p in our material; SRO 1 from 0–5.5 Mb
and SRO 2 from 46.9–51.0. Our SRO 2 region overlaps
one of the three SROs previously defined by Hoebeeck et
al [43]. This region contains among others RASSF1A and
ZMYND10; two candidate tumor suppressor genes that
are epigenetically silenced in a proportion of NB tumors
[44,45].

Although differences in dosage between the different alle-
les is very common in NB tumors, given that several
tumors are in the triploid range, it is noteworthy that in
the present investigation, only three of the 92 analyzed
NBs showed a CN-LOH.

Regions of gain and amplification
The most common chromosomal abnormality found in
our material was the gain of chromosome 17q, found in
45% of the tumors. The SRO of gains was located from
54.5 Mb to the terminal of the long arm, including the
gene PPM1D located at 56.0 Mb. PPM1D has been
reported to be the most likely target of the 17q23 gain in
NB tumors [46]; this gene was included in the gained
region in all our tumors with 17q gain. Recently, Vandes-
ompele and coworkers proposed that 17q gains may tar-
get two segments with one large from 44.3 Mb, in cases
with a single region of gain, and one region of superim-
posed gains located more distally around 60 Mb [47].

The amplification of chromosome 12 was detected in two
NB tumors. The gene MDM2 is located in the amplified
region. The overexpression of MDM2 can result in the
excessive inactivation of TP53, thereby diminishing its

Gain of chromosome 17qFigure 7
Gain of chromosome 17q. Arrows indicate the proximal border of the gained region which always includes the terminal of 
17q. The shortest gain to be identified was located from 54.5 Mb to the terminal.
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tumor suppressor function. Another gene is YEATS4
(GAS41; glioma amplified sequence), which has high
expression in the human brain and is frequently amplified
in gliomas [48]. Genes in this region have also previously
been found to be amplified in single NB tumor samples or
cell lines [15,49,50].

TP53 is inactivated by mutations in approximately half of
all human tumors, and is believed to be abrogated in most
tumors [51], although TP53 mutations are rare in neurob-
lastoma tumors [52-55]. However, mechanisms other
than TP53 mutations could prevent TP53 activation. Pre-
vious studies have shown that silencing CDKN2A by
methylation or the deletion or amplification of MDM2
are mechanisms that are responsible for inactivating TP53
in human tumors [56-59]. PPM1D has also been reported
as a candidate proto-oncogene that may be involved in
tumorigenesis through the inactivation of TP53 [51]. In
our study, we detected homozygous and heterozygous
deletions of CDKN2A and the amplification of MDM2
and copy number gain of PPM1D, which shows that these
genes can be involved in the initiation/progression of
neuroblastoma through the inactivation of TP53.

The fact that 17% of the NB tumors presented with no
rearrangements was probably due to the tumors not hav-
ing any rearrangements that could be visualized with the
arrays. However, the possibility that some of these tumor
samples contained regions of normal stoma cells, in spite
of our efforts to obtain pure tumor material for the stud-
ies, cannot be ruled out.

Conclusion
We have used oligonuceotide SNP arrays from Affymetrix
to perform copy number analysis on chromosomal rear-
rangements in 92 primary NB tumors and four cell lines.
The arrays, in combination with the CNAG software for
analyses and visualization, make the technique very use-
ful for analyses of tumor tissue. The mapping arrays pro-
vide both copy number and allele-specific information
and have the capacity to detect duplications, amplifica-
tions, homozygous and hemizygous deletions and copy
neutral LOH (genomic regions that have a normal gene
copy number, albeit both gene copies originate from the
same parental chromosome, i.e. uniparental disomy).

The most common structural abnormality in the tumors
was the gain of 17q, which was identified in 45% of
tumors, while 30% of the tumors harbored 1p deletion.
Two regions of 1p-SRO deletions were identified, one
larger for the tumors with MYCN amplification (17.2–
37.0 Mb) and one smaller for those without (0–10.4 Mb).
Most of the tumors with 1p deletion did also show MYCN
amplification. Twenty-three percent of tumors had a loss
of 11q; a feature most commonly seen in tumors without

MYCN amplification. The smallest 11q deletions were
found in the few tumors with amplification of MYCN
(SRO of deletions from 110.1 Mb to 134.5/qter). Twenty-
six percent of the NB had MYCN amplification. Two types
of amplification were identified; one type displayed sim-
ple continuous amplicons, while the other type harbored
more complex rearrangements. MYCN was the only com-
mon gene in all cases with amplification. Complex ampli-
fication on chromosome 12 was detected in two tumors
and three different overlapping regions of amplification
were identified. Two regions with homozygous deletions
were detected indicating genes with tumor suppressor fea-
tures. Four NB tumors had deletions in the CDKN2A gene
region in 9p and one tumor had a deletion on 3p involv-
ing the RBMS3 gene.

Methods
Tumor material and DNA isolation
A panel of 92 primary NB tumors, 14 stage 1, eight stage
2, 15 stage 3, 47 stage 4 and four stage 4S, was used in this
study (together with 5 tumors of unknown stage), see
Additional file 1. Four NB cell lines (IMR-32, Kelly, SK-N-
AS and NB69) were also used. Tumor cell content of the
samples was histologically assessed in adjacent tumor tis-
sue to that used for DNA extraction. Genomic DNA was
extracted with a DNeasy blood and tissue kit (Qiagen,
Hilden, Germany) according to the protocol provided by
the supplier.

Microarray experiments
GeneChip® Human Mapping 50 K and 250 K assay
The Affymetrix 50 K Array used detects ~59,000 SNPs,
while the 250 K detects ~262,000. These arrays were used
to perform aCGH, where the samples were compared after
the run to constitutional DNA from healthy individuals in
silico. The array experiments were performed at our lab or
at AROS Applied Biotechnology AS (Aros AB, Aarhus,
Denmark) according to the protocol provided by the sup-
plier (Affymetrix, Inc., Santa Clara, CA). Briefly, total
genomic DNA (250 ng) was digested with the XbaI restric-
tion enzyme for the 50 K array and NspI for the 250 K
array and ligated to adaptors. After ligation, the template
was subjected to PCR amplification using a generic primer
that recognizes the adaptor sequence. The amplified DNA
was fragmented with DNase I, labeled with biotin and
hybridized to a GeneChip Human Mapping 50 K or 250
K array. The hybridized probes were washed using the
Affymetrix Fluidics Station 450 and marked with strepta-
vidin-phycoerythrin. The arrays were scanned using a con-
focal laser scanner, GeneChip Scanner 3000 (Affymetrix,
Inc., Santa Clara, CA). Thirty-one NB tumors were ana-
lyzed with the 50 K array and 62 with the 250 K array (one
tumor was analyzed with both the 50 K and the 250 K
array).
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Data analysis
Primary data analysis was performed using GDAS soft-
ware (Affymetrix, Inc., Santa Clara, CA), while further sta-
tistical studies were performed using CNAG (Copy
Number Analyzer for Affymetrix GeneChip Mapping
arrays) software, version 3.0 (GenomeLaboratory, Tokyo
University, http://www.genome.umin.jp) [60,61]. The
UCSC genome browser, assembly March 2006 http://
genome.ucsc.edu/, was used to visualize gene regions.
Fisher's exact test, 2-sided, was used for statistical analysis.

Multiplex ligation-dependent probe amplification (MLPA)
MLPA analysis was performed using a probe mixture with
39 different probes and 5 control fragments. Twenty-one
probes detect copy number changes in the CDKN2A/2B
region at 9p21 (Salsa MLPA Kit P024B, MRC-Holland
b.v., Amsterdam, the Netherlands). The analysis was per-
formed according to the protocol provided by the supplier
with some minor changes; the denaturation of the DNA
was prolonged to 10 min and the polymerase mix was
added while the samples were kept on ice. Briefly, 250 ng
DNA in 5 μl TE was denaturated at 98°C and subse-
quently hybridized overnight (16 hours) with a mix of
probes, each consisting of two parts that recognize adja-
cent target sequences. On day two, the hybridized probe
parts were ligated with a thermostable ligase. After dena-
turation, PCR was performed with two universal PCR
primers, amplifying all probe pairs in one reaction. The
amplification products were separated by electrophoresis
using an ABI 3730 Genetic Analyzer (Applied Biosystems,
Foster City, CA).
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