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Abstract
Background: Lymphotoxin signaling via the lymphotoxin-β receptor (LTβR) has been implicated
in biological processes ranging from development of secondary lymphoid organs, maintenance of
spleen architecture, host defense against pathogens, autoimmunity, and lipid homeostasis. The
major transcription factor that is activated by LTβR crosslinking is NF-κB. Two signaling pathways
have been described, the classical inhibitor of NF-κB α (IκBα)-regulated and the alternative p100-
regulated pathway that result in the activation of p50-RelA and p52-RelB NF-κB heterodimers,
respectively.

Results: Using microarray analysis, we investigated the transcriptional response downstream of
the LTβR in mouse embryonic fibroblasts (MEFs) and its regulation by the RelA and RelB subunits
of NF-κB. We describe novel LTβR-responsive genes that were regulated by RelA and/or RelB.
The majority of LTβR-regulated genes required the presence of both RelA and RelB, revealing
significant crosstalk between the two NF-κB activation pathways. Gene Ontology (GO) analysis
confirmed that LTβR-NF-κB target genes are predominantly involved in the regulation of immune
responses. However, other biological processes, such as apoptosis/cell death, cell cycle,
angiogenesis, and taxis were also regulated by LTβR signaling. Moreover, LTβR activation inhibited
expression of a key adipogenic transcription factor, peroxisome proliferator activated receptor-γ
(pparg), suggesting that LTβR signaling may interfere with adipogenic differentiation.

Conclusion: Microarray analysis of LTβR-stimulated fibroblasts provided comprehensive insight
into the transcriptional response of LTβR signaling and its regulation by the NF-κB family members
RelA and RelB.
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Background
NF-κB transcription factors are essential for innate and
adaptive immunity, cell survival, cellular stress responses,
development and maintenance of lymphoid organ struc-
tures, and other biological functions [1-3]. The vertebrate
NF-κB family includes five structurally related members,
the Rel proteins RelA (p65), RelB, cRel, and the NF-κB
proteins p50 and p52. Among the Rel/NF-κB family, only
RelA, RelB, and cRel contain C-terminal transcriptional
activation domains enabling them to directly regulate
transcription. The other two members, p50 and p52, are
synthesized as p105 and p100 precursors, respectively.
The Rel and NF-κB proteins can form different homo- and
heterodimers (for example p50-RelA or p52-RelB) that
bind to DNA target sites, so-called κB sites. In resting cells,
Rel/NF-κB proteins associate with inhibitory κB mole-
cules (IκBs) and are retained in the cytoplasm as inactive
forms [4].

Two major NF-κB signaling pathways can be distin-
guished, the classical or canonical and the alternative or
non-canonical pathway. In response to stimulation of
transmembrane receptors like tumor necrosis factor recep-
tor (TNFR)-1 or Toll-like receptor (TLR)-4, signaling cas-
cades are initiated that lead to the liberation of Rel/NF-κB
complexes from their IκB molecules. As a result, they
translocate to the nucleus and regulate transcription of
numerous target genes. This classical pathway involves
phosphorylation of IκBα by the NEMO (NF-κB essential
modulator)/IKKγ- and IKKβ-containing IκB kinase (IKK)
complex followed by its ubiquitin-dependent proteaso-
mal degradation. Regulation of gene transcription is pre-
dominantly mediated through p50-RelA and p50-cRel
heterodimers and target genes are mainly involved in
innate immunity, cell survival, and inflammation. A few
inducers of NF-κB, like LTβR, are able to trigger an addi-
tional, so-called alternative or non-canonical pathway
through the activation of NF-κB-inducing kinase (NIK)
and IKKα. The alternative pathway governs gene regula-
tion mainly through p52-RelB heterodimers that are gen-
erated from the inactive cytoplasmic p100-RelB complex
via signal-dependent processing of the p100 inhibitor to
p52. This pathway controls genes that are predominantly
involved in adaptive immunity and lymphoid organ
development [5-11]. Recent findings by Hoffmann and
colleagues extend this scenario. They could show that not
only RelB- but also RelA-containing complexes can be
released from the p100 inhibitor after LTβR stimulation
[12-14].

This report focuses on the transcriptional response down-
stream of the LTβR and its regulation by RelA and RelB.
The role of LTβR signaling in development and organiza-
tion of secondary lymphoid structures is well documented
(reviewed in [8,15-17]). We are interested in similarities

and differences in RelA and RelB function in lymphoid
organ development. However, a major problem is that
RelA-deficient (relA-/-) mice are embryonic lethal due to
tumor necrosis factor (TNF)-induced hepatocyte apopto-
sis [18]. Moreover, RelB-deficient (relB-/-) mice display
impaired secondary lymphoid organ development and
suffer from an autoinflammatory syndrome that also
affects organization and function of lymphoid tissues
[19,20]. Thus, stromal compartments that display LTβR
signaling and thereby have an organizational role in the
development of lymphoid organs cannot be used for in
vivo gene expression studies from the above animals.
Therefore, we applied MEFs established from wild-type
(wt), relA-/-, and relB-/- mice as an in vitro model system.
Also, there is increasing evidence that LTβR functions
beyond lymphoid organs, as it is involved in liver regen-
eration, hepatitis [21], and hepatic lipid metabolism [22].
We therefore hypothesized that LTβR signaling, via RelA
and/or RelB, may participate in physiological processes
other than lymphorganogenesis. MEFs with different gen-
otypes (wt, relA-/-, and relB-/-) allowed us to dissect specific
RelA and RelB activities in the regulation of gene tran-
scription after LTβR stimulation. In wt MEFs, LTβR signals
were predominantly transduced by RelA- and/or RelB-
containing dimers. Upon LTβR signaling in relA-/- cells,
gene regulatory events were mediated by RelB and vice
versa in relB-/- cells, changes in gene expression were medi-
ated by RelA. Using this system, we describe novel LTβR-
responsive genes that were regulated solely by RelA or
RelB or by both RelA and RelB.

Results and discussion
LTβR stimulation of MEFs
For LTβR stimulation, MEFs of each genotype were either
left untreated or were treated with agonistic anti-LTβR
monoclonal antibody (mAb) for 2.5 or 10 h. For each
treatment group, cells from four experiments were
pooled. Nuclear protein extracts were used in electro-
phoretic mobility shift assays (EMSAs) to verify proper
LTβR signaling (Figure 1). In wt cells, LTβR signaling
resulted in modest induction of κB-binding complexes at
the early time point (2.5 h) but strong induction after 10
h of stimulation. Dissection of these complexes with
supershifting antibodies revealed that the faster migrating
complex contained RelB and the slower migrating com-
plex contained RelA. As expected, in wt cells both RelA
and RelB complexes were activated in response to LTβR
signaling, whereas in relA-/- cells only RelB- and in relB-/-

cells only RelA-containing κB-binding complexes were
induced (Figure 1). Recently, slow and relatively weak
DNA-binding of NF-κB complexes in response to LTβR
ligation was reported [12]. The plateau was reached
between 10 and 15 h of LTβR stimulation corresponding
to a 2- to 3-fold induction of NF-κB DNA binding. Our
results are in agreement with these observations: for each
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genotype the strongest induction of κB-binding com-
plexes was observed at 10 h. For gene expression profiling
we therefore used total RNA isolated from untreated (0 h)
and 10 h agonistic anti-LTβR mAb treated wt, relA-/-, and
relB-/- MEFs, assuming that stronger DNA-binding activity
reflects stronger gene expression changes controlled by
NF-κB transcription factor complexes.

Global gene expression in response to LTβR stimulation in 
MEFs
To identify RelA- and RelB-regulated genes after LTβR
stimulation, we carried out microarray analysis using total
RNA from the experiment described above hybridized to
CodeLink UniSet Mouse 20K I bioarrays. For statistical
analysis, different genotypes were analyzed separately and
significantly differentially expressed genes between time
points 0 h and 10 h were identified (p < 0.05). The fold
change (FC) threshold was determined from the minimal
detectable fold change (MDFC) calculated by the Code-
Link Expression Analysis v4.1 software (wt: 1.48; relA-/-:
1.54; relB-/-: 1.36). In response to LTβR stimulation, a total
of 528 genes were regulated in wt cells. In line with the
moderate NF-κB activation seen in the EMSAs the

observed gene regulation was also modest: gene expres-
sion changes were in the range of +5-fold (induction) and
-5-fold (repression). We assigned the 528 LTβR-respon-
sive genes to 4 categories: genes that were significantly reg-
ulated (i) only in wt cells (category I, n = 366), (ii) in wt
and relA-/- cells (category II, n = 30), (iii) in wt and relB-/-

cells (category III, n = 102), and (iv) genes that were sig-
nificantly regulated in all 3 genotypes (category IV, n = 30)
(Figure 2A; for the list of LTβR-responsive genes in wt cells
see Additional file 1).

The genes in these four categories could be segregated into
further subcategories, which helped us to assign regula-
tory mechanisms underlying the expression patterns of
individual genes (see schematic depiction of gene expres-
sion behavior in Figure 2B and lists of genes belonging to
different subcategories in Additional files 2, 3, 4, 5).

Category (cat) I genes were significantly regulated only in
wt cells in response to LTβR stimulation. This group of
genes required both RelA and RelB for their LTβR-depend-
ent activation (cat I/1, n = 161) or repression (cat I/2, n =
205). Therefore, expression of these genes did not signifi-

Confirmation of LTβR stimulation: induction of RelA- and RelB- containing DNA-binding complexesFigure 1
Confirmation of LTβR stimulation: induction of RelA- and RelB-containing DNA-binding complexes. Wild-type, 
relA-/-, and relB-/- MEFs were treated with agonistic anti-LTβR mAb for the indicated times and subsequently nuclear extracts 
were prepared and analyzed by EMSA for NF-κB DNA-binding activity using an Igκ oligo. Specific Igκ DNA-binding complexes 
are indicated by arrow (RelA-containing dimers) and arrowhead (RelB-containing dimers). Non-specific DNA binding com-
plexes (ns, lower lane) serve as loading control. Supershift analysis was performed using pre-immune serum (pre-imm. serum), 
anti-RelA antibody (α-RelA Ab), and anti-RelB antibody (α-RelB Ab). Supershifted complexes are indicated by asterisk.
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LTβR-responsive genes can be allocated into distinct categoriesFigure 2
LTβR-responsive genes can be allocated into distinct categories. (A) Venn-diagram of significantly (p < 0.05) regulated 
genes. (B) Schematic depiction of gene expression patterns. The four main categories in (A) can be segregated into further sub-
categories, depending on whether their genes were upregulated or downregulated. The arrows in the plots show the direction 
of gene expression changes from non-induced (0 h) to the 10 h induced state in response to LTβR stimulation. The first arrow 
describes gene expression behavior in wild-type, the second in relA-/-, and the third in relB-/- cells. Horizontal arrows indicate 
lack of change or statistically insignificant change in gene expression. Arrows pointing upwards or downwards indicate signifi-
cant positive or negative regulation, respectively.
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cantly change in either of the mutant cell lines in response
to agonistic anti-LTβR mAb treatment (Figure 2B, Addi-
tional file 2).

Category II genes were significantly regulated in wt and
relA-/- cells upon LTβR ligation. Genes upregulated (cat II/
1, n = 13) or downregulated (cat II/2, n = 17) in both wt
and relA-/- cells, but not significantly regulated in relB-/-

cells, were considered to be RelB target genes in response
to LTβR signaling. Other theoretical patterns could also be
appointed to category II, but we did not find any example
in our analysis for these subcategories (cat II/3, n = 0 and
cat II/4, n = 0) (Figure 2B, Additional file 3).

Genes belonging to category III were significantly regu-
lated in wt and relB-/- cells in response to LTβR stimula-
tion. Genes upregulated (cat III/1, n = 54) or
downregulated (cat III/2, n = 43) in both wt and relB-/-

cells, but not significantly regulated in relA-/- cells, were
considered to be RelA target genes in response to LTβR sig-
naling. Negligible numbers of genes in category III could
also be allocated to cat III/3 and III/4 (n = 3 and n = 2,
respectively) (Figure 2B, Additional file 4). However,
these genes were not further analyzed. The significantly
larger number of RelA- (cat III) compared to RelB-regu-
lated genes (cat II; Figure 2A) is likely to be a consequence
of the stronger LTβR-induced DNA binding of RelA com-
pared to RelB complexes (Figure 1).

Category IV genes were significantly regulated in each of
the genotypes in response to LTβR ligation. Although
eight theoretically possible gene expression behaviors
exist, we only found genes that belonged to two easily
explainable scenarios: genes were either upregulated (cat
IV/1, n = 20), or downregulated (cat IV/2, n = 10) in each
genotype upon LTβR signaling (Figure 2B, Additional file
5). Most likely, both RelA and RelB contributed redun-
dantly to their regulation or alternatively, a third factor/
pathway controlled these genes in response to LTβR stim-
ulation. JNK (c-Jun N-terminal kinase) is a possible candi-
date for such a third pathway, as there are indications that
LTβR stimulation leads to activation of JNK. However, the
experimental setup in those studies was different from
ours as LTβR-overexpressing HEK293 cells [23] or treat-
ment of MEFs with the LTβR agonist LIGHT (lympho-
toxin-related inducible ligand that competes for
glycoprotein D binding to herpesvirus entry mediator on
T cells) [24] were studied.

FC values observed in the three cell lines at 10 h compared
to 0 h are displayed in a heatmap that also reflects the four
categories and their subcategories (Figure 3, for a zooma-
ble/enlarged version of FC heatmaps supplied with gene
symbols and GenBank Accession Numbers see Additional
file 6).

Interestingly, in the two subcategories with the largest
number of genes both RelA and RelB together were
required for LTβR-induced gene regulation (161 cat I/1
genes for their activation and 205 cat I/2 genes for their
repression). In case one of the transcription factors was

Fold change heatmapsFigure 3
Fold change heatmaps. Heatmaps displaying the fold 
change values observed in the three different cell lines at 10 
h compared to 0 h. The color code indicates the fold change 
values between -2.5-fold downregulation (green) and +2.5-
fold upregulation (red). Fold change of -2.5 and below are 
depicted in the brightest green and fold change of +2.5 and 
above are shown in the brightest red. Black indicates no 
change in gene expression. Each horizontal line on the heat-
map corresponds to one gene. Genes are arranged by their 
subcategory (see bars on the left) and main categories are 
divided by a horizontal white line.
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missing the other one was not able to ensure regulation
alone, suggesting significant crosstalk between the two
NF-κB activation pathways. In response to LTβR stimula-
tion, sequential engagement of the classical and alterna-
tive pathway was suggested, resulting in initial DNA
binding by RelA followed by RelB complexes [7,9]. These
findings may suggest a scenario where RelA binds first to
the DNA in the promoter of category I genes, loosens up
chromatin, thereby enabling subsequent DNA binding
and gene regulatory action by RelB [25]. Alternatively,
since relB is an NF-κB target gene [26] RelA may ensure
sufficiently high expression of RelB and in the absence of
RelA the reduced RelB levels cannot mediate proper regu-
lation of certain LTβR target genes. This possibility is sup-
ported by the observation that in the absence of RelA both
RelB protein levels and binding of RelB to κB sites were
reduced (Figure 1 and data not shown) [13].

Meta analysis of LTβR-dependent transcriptomes
LTβR signaling is best known in the context of secondary
lymphoid organ development and a recent expression
profiling study described LTβR-dependent transcriptomes
in lymph nodes and follicular dendritic cells (FDCs) [27].
However, increasing evidence suggests that LTβR also
plays a role in non-lymphoid organs such as epithelial tis-
sues during embryonic development [28] and adult liver
[21,22].

To interpret our results in the light of other studies inves-
tigating LTβR signaling, we compared our LTβR-respon-
sive genes with two recently published LTβR-dependent
transcriptomes. Huber et al. identified transcripts in
murine mesenteric lymph nodes affected in vivo by the
administration of a soluble LTβR-Ig decoy receptor which
blocks LTβR signaling [27]. A gene cluster of 80 unique
transcripts that showed decreased expression after LTβR
blockade was further analyzed. Twelve genes in this clus-
ter were also associated with germinal centers (GCs)/FDC.
A few common genes were found between our analysis
and the LTβR-dependent transcriptomes described by
Huber et al. Dclk1 and enpp2 (doublecortin-like kinase 1;
GenBank Accession Number: NM_019978 and ectonucle-
otide pyrophosphatase/phosphodiesterase 2 or autotaxin;
GenBank Accession Number: NM_015744) expression
was moderately decreased 3 d after LTβR blockade (FC:
0.70× and 0.66×, respectively) [27]. In our hands, both
genes were upregulated in response to LTβR stimulation
in a RelA-dependent manner (cat III/1, for enpp2 see also
Table 12). Enpp2 was also found to be associated with GC/
FDC in mesenteric lymph nodes [27]. Moreover, Enpp2
(also called autotaxin) has been recently described as a
new molecule in lymphocyte homing through high
endothelial venules (HEVs) [29]. Collectively, these find-
ings suggest that LTβR, in addition to its well-described
effect on the HEV differentiation program [30], further

contributes via RelA-dependent upregulation of enpp2 to
lymphocyte homing through HEVs. Unfortunately, we
could not detect further genes with a similar regulation
pattern in our and Huber and colleagues' studies. This lack
of overlap could be the consequence of several reasons: (i)
different modes of function and kinetics of antagonistic
LTβR-Ig vs agonistic anti-LTβR mAb application, (ii) incu-
bation time (3 d treatment with LTβR-Ig vs 10 h treatment
with agonistic anti-LTβR mAb), or (iii) in vivo collection of
different cell types influenced by the treatment vs in vitro
cell culture system using MEFs.

Lo et al. described a hepatic gene expression profile of wt
vs lck-LIGHT transgenic mice (overexpressing the LTβR
ligand LIGHT on the surface of T lymphocytes) [22]. A
group of significantly regulated genes (n = 19) involved in
lipid and cholesterol metabolism was identified. The gene
that displayed the highest level of regulation (23-fold
repression in transgenic vs wt mice) encodes for hepatic
lipase, a key enzyme in lipid metabolism. We did not
observe repression of hepatic lipase in our experiments,
most probably due to its restricted expression on the sur-
face of hepatocytes. However, we found another gene
belonging to the lipid/cholesterol metabolism-related
group described by Lo and colleagues. Ralgds (ral guanine
nucleotide dissociation stimulator, GenBank Accession
Number: NM_009058) expression was increased in the
liver of transgenic mice and also upregulated in our LTβR
stimulation experiments, belonging to the RelA-respon-
sive genes (cat III/1, Table 12).

Gene Ontology (GO) enrichment analysis
Our goal was not only to define the LTβR-dependent tran-
scriptome in MEFs, but also to assign regulatory mecha-
nisms to LTβR signaling, i.e. to examine which part of the
LTβR transcriptome is regulated by RelA, RelB, or both.
We started out with GO enrichment analysis of signifi-
cantly regulated genes to identify biological processes,
molecular functions, and cellular components putatively
regulated in the categories described above. Compared to
molecular functions and cellular components, GO analy-
sis of biological processes yielded the most conclusive
results.

First, GO analysis was performed on the total LTβR tran-
scriptome in wt cells to see how LTβR signaling influences
biological processes in these fibroblasts, regardless
whether these genes were also regulated in relA-/- or relB-/-

cells (Category: Total wild-type, Table 1). For interpreta-
tion of our data we chose GO terms with p < 0.01. As
lower limit, we did not consider GO terms with less than
3 annotated genes in the list of differentially regulated
genes since they are too specific. As upper limit we did not
use GO terms represented by more than 600 genes on the
microarray since they are too general. Among the consid-
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Table 1: Gene Ontology analysis of total LTβR transcriptome in wild-type cells

GO number GO term Type of biological process p value n sel. n tot.

GO:0007049 Cell cycle CCY 1.80E-05 39 559

GO:0006915 Apoptosis A/CD 1.00E-04 34 499

GO:0008219 Cell death A/CD 0.00011 35 523

GO:0016265 Death A/CD 0.00011 35 523

GO:0012501 Programmed cell death A/CD 0.00012 34 503

GO:0006259 DNA metabolic process CCY 0.00016 32 469

GO:0022402 Cell cycle process CCY 0.00034 30 447

GO:0042981 Regulation of apoptosis A/CD 0.00063 23 319

GO:0043067 Regulation of programmed cell death A/CD 0.00068 23 321

GO:0009607 Response to biotic stimulus IR 0.0035 11 124

GO:0006260 DNA replication CCY 0.0037 10 107

GO:0043066 Negative regulation of apoptosis A/CD 0.0045 11 128

GO:0000074 Regulation of progression through cell cycle CCY 0.0047 19 287

GO:0043069 Negative regulation of programmed cell death A/CD 0.0048 11 129

GO:0051726 Regulation of cell cycle CCY 0.0051 19 289

GO:0002376 Immune system process IR 0.0053 30 534

GO:0030968 Unfolded protein response 0.0054 3 11

GO:0007610 Behavior 0.0054 17 249

GO:0009953 Dorsal/ventral pattern formation 0.0057 5 37

GO:0016567 Protein ubiquitination 0.0064 5 35

GO:0006730 One-carbon compound metabolic process 0.0067 7 65

GO:0048514 Blood vessel morphogenesis BR 0.0078 12 157

GO:0040029 Regulation of gene expression, epigenetic 0.0082 5 37

GO:0007631 Feeding behavior 0.0084 4 24

GO:0001525 Angiogenesis BR 0.0087 10 121
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ered GO terms we found that apoptosis/cell death (A/
CD)- and cell cycle (CCY)-related processes were overrep-
resented. We also found that genes annotated with
"response to biotic stimulus", "immune system process"
(immune related (IR) features) as well as "blood vessel
morphogenesis" and "angiogenesis" (blood vessel devel-
opment related (BR) features) were enriched. Collectively,
these data indicate that LTβR signaling largely influences
cell survival/cell proliferation features. Moreover, it has an
impact on immune responses and blood vessel develop-
ment/angiogenesis related processes. Since these GO
terms were found in LTβR-stimulated "non-immune"
fibroblasts it is likely that LTβR signaling regulates similar

biological processes in stromal cells of secondary lym-
phoid tissues governing lymphorganogenesis and main-
taining lymphoid tissue architecture.

Next, we carried out GO analysis for the four main catego-
ries and for all subcategories with at least 20 genes. Inter-
pretation of the data was performed applying the same
criteria as above. GO analysis of category I genes revealed
those biological processes that were overrepresented only
in LTβR-stimulated wt cells, i.e. in the presence of both
RelA and RelB (Table 2). Amongst these processes, CCY-
related terms dominated. Subsequently, we analyzed cat I/
1 (containing genes that were upregulated exclusively in

GO:0006171 cAMP biosynthetic process 0.0089 3 13

GO:0051094 Positive regulation of developmental process 0.0092 6 53

Analysis of functional enrichment was performed employing Fisher's exact test. The number of genes annotated with a specific GO term was 
determined for the list of differentially expressed genes (n sel.) and compared to all GO annotated genes on the array (n tot.). The resulting p values 
(p < 0.01) were used to rank GO terms according to their significance. Terms with more than 600 genes on the array or less than 3 genes on the 
list of investigated genes were regarded as too general or too specific, respectively, and excluded from the analysis. A/CD, apoptosis/cell death; 
CCY, cell cycle; IR, immune related; BR, blood vessel development related.

Table 1: Gene Ontology analysis of total LTβR transcriptome in wild-type cells (Continued)

Table 2: Gene Ontology analysis of category I

GO number GO term Type of biological process p value n sel. n tot.

GO:0006259 DNA metabolic process CCY 1.40E-05 27 469

GO:0007049 Cell cycle CCY 1.80E-05 30 559

GO:0022402 Cell cycle process CCY 0.00033 23 447

GO:0040029 Regulation of gene expression, epigenetic 0.0016 5 37

GO:0006260 DNA replication CCY 0.0036 8 107

GO:0022403 Cell cycle phase CCY 0.0041 12 211

GO:0006730 One-carbon compound metabolic process 0.0041 6 65

GO:0051301 Cell division CCY 0.0045 11 187

GO:0031497 Chromatin assembly 0.0047 5 47

GO:0016458 Gene silencing 0.0068 3 17

GO:0009953 Dorsal/ventral pattern formation 0.0079 4 34

GO:0043543 Protein amino acid acylation 0.008 3 18

GO:0000278 Mitotic cell cycle CCY 0.0081 10 175

GO:0016567 Protein ubiquitination 0.0087 4 35

GO analysis was performed the same way as for category "total wild-type" described in Table 1 legend. CCY, cell cycle.
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wt cells) and found enrichment of IR- and cell/biological
adhesion (important events in immune cell migration)-
related terms on the list of biological processes (Table 3).
This finding indicates that in the absence of RelA or RelB
a considerable portion of LTβR-stimulated immune
response-related events cannot be carried out; fibroblasts
need both molecules to execute these processes. In cat I/2
(containing genes that are downregulated exclusively in
wt cells) we found enrichment of CCY-related terms on
the list of overrepresented biological processes (Table 4).
This finding indicates that in wt cells an important action
of RelA and RelB is to downregulate numerous genes that
are implicated in cell cycle regulation in response to LTβR
signaling.

Since cat II/1 and II/2 had only few genes (n = 13 and n =
17, respectively), investigation of GO terms for these
groups of genes was not meaningful. GO analysis of the
main category II (containing genes that were regulated –
either up or down – in wt and relA-/- cells, n = 30) revealed
only one enriched GO term, the cell cycle (Table 5). Thus,
in response to LTβR signaling a characteristic feature of
RelB was to influence cell cycle-related events.

Category III contains genes that were regulated – either up
or down – in wt and relB-/- cells in response to LTβR stim-
ulation. Among enriched biological processes, the new
and in previous categories not yet observed theme taxis
and response to external/chemical stimulus (T) domi-
nated, but A/CD-related events also appeared (Table 6).
As expected, the theme IR was also represented among the
enriched biological processes. This shows that RelA is not
only a signal transducer for immune responses and apop-
tosis/cell death, but also has an impact on the transcrip-
tion of taxis- and stimulus-responsive genes following
LTβR ligation. Among the enriched biological processes of
cat III/1 we observed again overrepresentation of T and IR
processes (Table 7), revealing that in response to LTβR sig-
naling RelA strongly influenced these events via upregula-
tion of several genes. In cat III/2 we found genes that were
repressed by RelA. In this subcategory RelA on one hand
regulated several BR events. On the other hand, it turned

out to be a negative regulator of genes involved in ion
homeostasis (ION) downstream of the LTβR (Table 8).

Category IV contains genes that were regulated – either up
or down – in each of the cell types in response to LTβR
stimulation (Table 9). IR processes were overrepresented,
but the terms related to hematopoietic or lymphoid organ
development (LY) and taxis (T) were also present on the
list of enriched biological processes. Unfortunately, we
could not analyze cat IV/2, as it comprises too few genes
(n = 10). Cat IV/1 contains 20 genes that were upregu-
lated, irrespective of the genotype (Table 10). These genes
primarily belong to IR and T. Possibly, RelA and RelB
redundantly regulate these events or alternatively a RelA-
and RelB-independent third factor/pathway (e.g. JNK)
controls these biological processes following LTβR liga-
tion. Table 11 shows a summary of our GO analysis.

Verification of microarray results by qRT-PCR
The changes in mRNA levels of several known as well as
novel LTβR-responsive genes on the microarray were con-
firmed by quantitative real-time reverse-transcription-
PCR (qRT-PCR), using RNA from three independent LTβR
stimulation experiments (Table 12). In agreement with
previous reports, we also found induction of nfkb2 [5,6],
ccl2/mcp1 [6], and ikba expression [31] in LTβR-stimulated
wt fibroblasts. In addition, our data indicate that both
RelA and RelB redundantly contributed to the proper reg-
ulation of these genes in response to LTβR stimulation.
However, we did not observe LTβR-dependent upregula-
tion of lymphorganogenic chemokines as described by
others. Ccl21, ccl19, cxcl13, and cxcl12 were shown to be
LTβR-induced genes in spleen 8 h after peritoneal injec-
tion of an agonistic anti-LTβR mAb [5]. Possibly, cell con-
text-specific signaling accounts for the difference observed
between splenocytes and established 3T3 fibroblasts used
in our experiments. Basak et al. observed modest upregu-
lation of cxcl13 and ccl21 in established wt 3T3 fibroblasts
after 24 h treatment with agonistic anti-LTβR mAb [13].
To reduce indirect gene regulatory effects due to rather
long stimulation we activated LTβR signaling only for 10

Table 3: Gene Ontology analysis of category I/1

GO number GO term Type of biological process p value n sel. n tot.

GO:0045087 Innate immune response IR 0.0027 4 58

GO:0002526 Acute inflammatory response IR 0.0037 4 63

GO:0007155 Cell adhesion IR 0.0054 11 447

GO:0022610 Biological adhesion IR 0.0054 11 447

GO analysis was performed the same way as for category "total wild-type" described in Table 1 legend. IR, immune related.
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Table 4: Gene Ontology analysis of category I/2

GO number GO term Type of biological process p value n sel. n tot.

GO:0007049 Cell cycle CCY 3.10E-07 24 559

GO:0006259 DNA metabolic process CCY 9.50E-07 21 469

GO:0022402 Cell cycle process CCY 7.00E-06 19 447

GO:0022403 Cell cycle phase CCY 2.40E-05 12 211

GO:0051301 Cell division CCY 3.90E-05 11 187

GO:0000278 Mitotic cell cycle CCY 0.00011 10 175

GO:0006730 One-carbon compound metabolic process 0.00022 6 65

GO:0006468 Protein amino acid phosphorylation 0.00025 17 487

GO:0006260 DNA replication CCY 0.00055 7 107

GO:0000279 M phase CCY 0.00057 9 176

GO:0016310 Phosphorylation 0.00076 17 536

GO:0009953 Dorsal/ventral pattern formation 0.001 4 34

GO:0040029 Regulation of gene expression, epigenetic 0.0014 4 37

GO:0007067 Mitosis CCY 0.0015 7 126

GO:0000087 M phase of mitotic cell cycle CCY 0.0015 7 127

GO:0043543 Protein amino acid acylation 0.0016 3 18

GO:0007224 Smoothened signaling pathway 0.0038 3 24

GO:0006913 Nucleocytoplasmic transport 0.004 5 79

GO:0051169 Nuclear transport 0.004 5 79

GO:0007178 Transmembrane receptor protein serine/threonine kinase signaling 
pathway

0.0083 4 60

GO:0022613 Ribonucleoprotein complex biogenesis and assembly 0.0093 6 135

GO:0035295 Tube development 0.0096 6 136

GO analysis was performed the same way as for category "total wild-type" described in Table 1 legend. CCY, cell cycle.

Table 5: Gene Ontology analysis of category II

GO number GO term Type of biological process p value n sel. n tot.

GO:0007049 Cell cycle CCY 0.0059 5 559

GO analysis was performed the same way as for category "total wild-type" described in Table 1 legend. CCY, cell cycle.
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h, where modulation of these chemokines was not
observed.

Importantly, we verified novel LTβR-responsive genes and
appointed regulatory molecules to them. For a complete
list of verified genes see Table 12. Here, some of those ver-
ified genes are discussed in more detail.

GO analysis revealed that LTβR stimulation resulted in the
regulation of IR processes (Table 11). Except category
"Total wild-type", where we could not assign regulatory
molecules, in all categories where IR processes were
enriched, RelA alone or together with RelB acted as a pos-
itive factor. Cx3cl1 (chemokine C-X3-C motif ligand 1/

fractalkine) is one of the IR genes in cat I/1. Several studies
document that NF-κB upregulates cx3cl1, e.g. in rat aortic
endothelial cells upon interleukin-1β (IL-1β), TNF, and
lipopolysaccharide treatment [32] or in human coronary
artery smooth muscle cells [33]. The latter work shows
that atherogenic lipids induce adhesion of artery smooth
muscle cells to macrophages via the upregulation of cx3cl1
in a TNF/NF-κB-dependent manner. In our experiments
this gene was upregulated in response to LTβR stimulation
dependent on RelA and RelB. This data suggests that LTβR,
via employing RelA and RelB together, may act as a
proatherogenic factor.

Table 6: Gene Ontology analysis of category III

GO number GO term Type of biological process p value n sel. n tot.

GO:0006939 Smooth muscle contraction 0.00018 3 16

GO:0048675 Axon extension 0.00027 3 18

GO:0006935 Chemotaxis T 0.00058 5 95

GO:0042330 Taxis T 0.00058 5 95

GO:0009605 Response to external stimulus T 0.0011 9 364

GO:0006936 Muscle contraction 0.0011 4 64

GO:0007610 Behavior T 0.002 7 249

GO:0048858 Cell projection morphogenesis 0.003 6 200

GO:0032990 Cell part morphogenesis 0.003 6 200

GO:0030030 Cell projection organization and biogenesis 0.003 6 200

GO:0007626 Locomotory behavior T 0.0072 5 169

GO:0042981 Regulation of apoptosis A/CD 0.0077 7 319

GO:0043067 Regulation of programmed cell death A/CD 0.0079 7 321

GO:0042221 Response to chemical stimulus T 0.0082 7 323

GO:0006915 Apoptosis A/CD 0.009 9 499

GO:0012501 Programmed cell death A/CD 0.0094 9 503

GO:0048522 Positive regulation of cellular process 0.0096 10 596

GO:0006955 Immune response IR 0.0097 7 334

GO analysis was performed the same way as for category "total wild-type" described in Table 1 legend. T, taxis, response to external/chemical 
stimulus; A/CD, apoptosis/cell death; IR, immune related.
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IR- and T-related processes were also enriched in cat III
and cat III/1 according to the GO analysis. Cd74/ii (invar-
iant polypeptide of major histocompatibility complex,
class II antigen-associated) and cxcl10/ip10 (chemokine C-
X-C motif ligand 10/interferon-inducible protein-10) are
two genes in cat III/1 and assigned to IR and T. CD74/Ii is
involved in antigen processing and presentation and
CXCL10 is chemotactic for monocytes and T cells. Moreo-
ver, expression of CXCL10, along with two other CXCR3-
binding chemokines CXCL9 and CXCL11, can be induced
in carcinoma cells by LTβR agonists. These chemokines
function as potent chemoattractants for activated T, NK,
and dendritic cells, which may contribute to antitumor
immune responses [34]. In our experiments, expression of
cd74/ii and cxcl10/ip10 was upregulated by LTβR signaling
in wt and relB-/- cells. Thus, LTβR signaling via RelA may
(i) attract T lymphocytes and promote antigen presenta-
tion by dendritic cells in the context of MHC class II and
(ii) facilitate antitumor responses against cancer cells.

As indicated by GO analysis, IR- and T-related biological
processes were significantly regulated in cat IV and cat IV/
1. Amongst others, genes encoding proteins that partici-
pate in innate immune responses, like ccl7/mcp3, are also
represented in these groups. Ccl7/mcp3 encodes the proin-
flammatory chemokine C-C motif ligand 7/monocyte
chemotactic protein-3. Expression of ccl7/mcp3 was upreg-
ulated by LTβR signaling in each of the genotypes, indicat-

ing redundant positive regulation by RelA and RelB or
upregulation via another RelA- and RelB-independent
pathway.

Collectively, positive regulation of the expression of
proinflammatory chemokines like cx3cl1, cxcl10, ccl7 (but
also others, see Table 12) by LTβR suggests that LTβR sig-
naling, besides regulating development and organization
of secondary lymphoid structures, also participates in
innate/inflammatory immune responses and for that pri-
marily RelA action seems to be necessary.

Moreover, we found that LTβR signaling functions
beyond the regulation of immune responses and organi-
zation of lymphoid structures. PPARγ (peroxisome prolif-
erator activated receptor γ) is a key-regulatory
transcription factor in the process of adipocyte differenti-
ation and activation of PPARγ promotes the storage of fat
[35]. The work of Fu and colleagues suggests that LTβR
affects lipid homeostasis by downregulating hepatic
lipase expression [22]. Hepatic lipase is expressed on the
surface of hepatocytes in the liver. It promotes receptor-
mediated uptake of plasma lipoproteins that harbor trig-
lycerides and cholesterol and specifically catalyzes hydrol-
ysis of triglycerides, actions that are suppressed when
LTβR signaling is switched on. Expression of pparg was
negatively affected by LTβR signaling in wt and relA-/- but
not in relB-/- cells (belonging to cat II/2 genes), indicating

Table 7: Gene Ontology analysis of category III/1

GO number GO term Type of biological process p value n sel. n tot.

GO:0006955 Immune response IR 2.00E-04 7 334

GO:0009605 Response to external stimulus T 0.00034 7 364

GO:0006935 Chemotaxis T 0.00041 4 95

GO:0042330 Taxis T 0.00041 4 95

GO:0002376 Immune system process IR 0.00065 8 534

GO:0007610 Behavior T 0.0022 5 249

GO:0007626 Locomotory behavior T 0.0035 4 169

GO:0006954 Inflammatory response IR 0.0036 4 171

GO:0006952 Defense response IR 0.0052 5 305

GO:0002252 Immune effector process IR 0.0064 3 102

GO:0042221 Response to chemical stimulus T 0.0066 5 323

GO analysis was performed the same way as for category "total wild-type" described in Table 1 legend. IR, immune related; T, taxis, response to 
external/chemical stimulus.
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that this gene was downregulated by RelB in response to
LTβR stimulation. Our finding is a further indication that
LTβR signaling represses lipogenesis and it may do so via
RelB. It has been shown that ligand-induced transactiva-
tion by PPARγ is suppressed by IL-1 and TNF and that this
suppression is mediated through NF-κB (p50-RelA) [36].
However, unlike suppression of PPARγ by p50-RelA,
where this heterodimer blocks PPARγ binding to DNA by
forming a complex with PPARγ and its co-activator PGC-
2, LTβR-mediated suppression of pparg occurred via tran-
scriptional repression executed by RelB. Further experi-
ments are required to find out whether RelB directly or
indirectly mediates repression of pparg transcription in
response to LTβR signaling. The repressive effect of LTβR
signaling on adipogenesis has been confirmed in MEFs

that were induced for adipogenic differentiation. LTβR
stimulation resulted in attenuated lipid droplet accumula-
tion as well as in reduced pparg and adipogenic marker
gene (fabp4/ap2) expression under conditions that pro-
mote differentiation into adipocytes (unpublished
results).

Conclusion
This study is the first systematic dissection of the RelA-
and RelB-driven transcriptome response downstream of
the LTβR. We confirmed previously described LTβR-regu-
lated genes. More importantly, we identified novel LTβR-
responsive genes and assigned underlying regulatory
mechanisms executed by RelA and/or RelB to them (Table
13). We found that the majority of LTβR-regulated genes

Table 8: Gene Ontology analysis of category III/2

GO number GO term Type of biological process p value n sel. n tot.

GO:0006939 Smooth muscle contraction 1.40E-05 3 16

GO:0006936 Muscle contraction 3.90E-05 4 64

GO:0001525 Angiogenesis BR 0.00046 4 121

GO:0048514 Blood vessel morphogenesis BR 0.0012 4 157

GO:0048646 Anatomical structure formation BR 0.0012 4 159

GO:0030005 Cellular di-, tri-valent inorganic cation homeostasis ION 0.0016 3 77

GO:0055066 Di-, tri-valent inorganic cation homeostasis ION 0.0017 3 78

GO:0008015 Circulation BR 0.0017 3 79

GO:0030003 Cellular cation homeostasis ION 0.0021 3 84

GO:0001568 Blood vessel development BR 0.0021 4 182

GO:0055080 Cation homeostasis ION 0.0021 3 85

GO:0006873 Cellular ion homeostasis ION 0.0022 3 86

GO:0055082 Cellular chemical homeostasis ION 0.0022 3 86

GO:0001944 Vasculature development BR 0.0023 4 185

GO:0050801 Ion homeostasis ION 0.003 3 96

GO:0065008 Regulation of biological quality 0.004 5 354

GO:0065008 Chemical homeostasis ION 0.0062 3 124

GO:0007507 Heart development BR 0.0088 3 141

GO analysis was performed the same way as for category "total wild-type" described in Table 1 legend. BR, blood vessel development related; ION, 
ion homeostasis.
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Table 9: Gene Ontology analysis of category IV

GO number GO term Type of biological process p value n sel. n tot.

GO:0002376 Immune system process IR 4.40E-05 7 534

GO:0006955 Immune response IR 0.00038 5 334

GO:0045595 Regulation of cell differentiation 0.0013 3 113

GO:0006952 Defense response IR 0.0026 4 305

GO:0042221 Response to chemical stimulus T 0.0032 4 323

GO:0006954 Inflammatory response IR 0.0043 3 171

GO:0048534 Hemopoietic or lymphoid organ development LY 0.0064 3 197

GO:0050793 Regulation of developmental process 0.0067 3 201

GO:0002520 Immune system development IR 0.0078 3 212

GO analysis was performed the same way as for category "total wild-type" described in Table 1 legend. IR, immune related; T, taxis, response to 
external/chemical stimulus; LY, hematopoietic or lymphoid organ developmental processes.

Table 10: Gene Ontology analysis of category IV/1

GO number GO term Type of biological process p value n sel. n tot.

GO:0002376 Immune system process IR 1.40E-05 6 534

GO:0006955 Immune response IR 2.4E-05 5 334

GO:0006952 Defense response IR 0.00032 4 305

GO:0006954 Inflammatory response IR 0.00091 3 171

GO:0009611 Response to wounding IR 0.0024 3 240

GO:0015031 Protein transport 0.0024 4 523

GO:0045184 Establishment of protein localization 0.0029 4 546

GO:0008104 Protein localization 0.0037 4 586

GO:0042221 Response to chemical stimulus T 0.0056 3 323

GO:0006886 Intracellular protein transport 0.0057 3 326

GO:0009605 Response to external stimulus T 0.0078 3 364

GO analysis was performed the same way as for category "total wild-type" described in Table 1 legend. IR, immune related; T, taxis, response to 
external/chemical stimulus.
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required the presence of both RelA and RelB, suggesting
significant crosstalk between the two NF-κB activation
pathways. Gene Ontology analysis confirmed that LTβR-
NF-κB target genes were predominantly involved in the
regulation of immune responses. However, other biologi-
cal processes such as apoptosis/cell death, cell cycle, ang-
iogenesis, and taxis were also regulated by LTβR signaling.
Furthermore, we show that LTβR stimulation downregu-
lated expression of the gene encoding PPARγ, suggesting
that LTβR signaling may repress adipogenic differentia-
tion by attenuating the levels of this key adipogenic tran-
scription factor. Our findings are significant since they

indicate a role for LTβR signaling beyond immune
responses and lymphoid organ development and assign
underlying gene expression regulatory mechanisms to the
LTβR transcriptome.

Methods
Cell culture
Mouse embryonic 3T3 fibroblasts (wild-type, relA-/-, and
relB-/-; kind gift from A. Hoffmann) were cultured at 37°C
in Dulbecco's modified Eagle's medium (GIBCO/Invitro-
gen, Karlsruhe, Germany) supplemented with 10% heat-
inactivated bovine calf serum (Perbio Science, Bonn, Ger-

Table 11: Summary of Gene Ontology analysis results

Category/Subcategory Enriched biological processes Regulatory molecules downstream of LTβR, and their effects on the 
gene expression

Total wild-type A/CD
CCY

IR
BR

Molecules not assignable – up and downregulation

Cat I CCY RelA and RelB together – up and downregulation

Cat I/1 IR RelA and RelB together – upregulation

Cat I/2 CCY RelA and RelB together – downregulation

Cat II CCY RelB – up and downregulation

Cat II/1 Not investigated RelB – upregulation

Cat II/2 Not investigated RelB – downregulation

Cat III T
A/CD

IR

RelA – up and downregulation

Cat III/1 T
IR

RelA – upregulation

Cat III/2 ION
BR

RelA – downregulation

Cat IV IR
T
LY

RelA and RelB via redundant effects – up and downregulation
OR

Third pathway – up and downregulation

Cat IV/1 IR
T

RelA and RelB via redundant effects – upregulation
OR

Third pathway – upregulation

Cat IV/2 Not investigated RelA and RelB via redundant effects – downregulation
OR

Third pathway – downregulation

Summary of GO analysis: categories/subcategories with their respective enriched biological processes and the assigned regulatory mechanisms are 
listed. A/CD, apoptosis/cell death; CCY, cell cycle; IR, immune related; BR, blood vessel development related; T, taxis, response to external/
chemical stimulus; ION, ion homeostasis; LY, hematopoietic or lymphoid organ developmental processes. Since cat II/1, II/2 and cat IV/2 had only 
few genes (n = 13, 17 and 10, respectively) they were not investigated for GO terms.
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Table 12: Verification of microarray results by qRT-PCR

Gene Symbol and GenBank Accession 
Number

CodeLink bioarrays FC and p value (in 
brackets) for wt/relA-/-/relB-/- cells and 
corresponding subcategory

qRT-PCR FC ± SD for wt/relA-/-/relB-/- cells 
and corresponding subcategory

Cx3cl1
NM_009142

1.77 (0.00370)/0.90 (>0.05)/0.96 (>0.05), I/1 1.66 ± 0.22/0.89 ± 0.10/1.08 ± 0.29, I/1

Pparg
NM_011146

0.65 (0.00690)/0.55 (0.01800)/1.32 (>0.05), II/2 0.50 ± 0.02/0.48 ± 0.04/0.81 ± 0.11, II/2

Ralgds *
NM_009058

2.24 (0.00750)/1.48 (>0.05)/1.58 (0.00140), III/
1

2.03 ± 0.42/1.13 ± 0.10/1.17 ± 0.16, I/1 – not 
verified in relB-/- cells

Enpp2 *
NM_015744

2.28 (0.00150)/1.36 (>0.05)/5.10 (0.00070), III/
1

1.85 ± 0.30/1.35 ± 0.27/3.29 ± 0.91, III/1

Birc3
NM_007464

2.77 (0.00090)/1.34 (>0.05)/2.94 (0.00140), III/
1

2.86 ± 0.73/1.27 ± 0.11/2.99 ± 0.47, III/1

Cxcl10/IP10
NM_021274

1.91 (0.00450)/0.58 (>0.05)/2.14 (0.03000), III/
1

2.58 ± 0.21/1.28 ± 0.39/2.67 ± 0.20, III/1

Irf1
NM_008390

1.96 (0.00270)/2.05 (>0.05)/2.90 (0.00075), III/
1

2.67 ± 0.32/1.77 ± 0.77/2.15 ± 0.19, III/1

Cd74
NM_010545

3.11 (0.00300)/0.82 (>0.05)/3.46 (0.00070), III/
1

5.01 ± 0.99/1.06 ± 0.18/4.77 ± 0.56, III/1

Fosl1
NM_010235

0.49 (0.00290)/0.86 (>0.05)/0.42 (0.00070), III/
2

0.46 ± 0.09/0.90 ± 0.09/0.47 ± 0.10, III/2

Nfkb2
NM_019408

2.18 (0.0029)/1.57 (0.0016)/1.81 (0.0007), IV/1 2.04 ± 0.37/2.43 ± 0.50/2.74 ± 0.54, IV/1

Ccl2/MCP1
NM_011333

2.10 (0.00120)/2.84 (0.0011)/2.99 (0.00099), 
IV/1

2.29 ± 0.42/3.18 ± 0.13/6.31 ± 1.63, IV/1

Nfkbia/IκBα
NM_010907

2.00 (0.00064)/2.19 (0.00270)/3.42 (0.00140), 
IV/1

1.77 ± 0.16/2.44 ± 0.34/3.92 ± 0.42, IV/1

Ccl7/MCP3
NM_013654

2.22 (0.00041)/1.99 (0.04700)/4.35 (0.00140), 
IV/1

2.77 ± 0.13/3.15 ± 0.15/5.29 ± 1.68, IV/1

Cxcl1/KC
NM_008176

2.40 (0.00580)/1.77 (0.01600)/1.80 (0.00160), 
IV/1

2.40 ± 0.46/1.31 ± 0.61/3.41 ± 0.88, III/1 – not 
verified in relA-/- cells

Id2
NM_010496

0.42 (0.00440)/0.60 (0.04000)/0.39 (0.00075), 
IV/2

0.47 ± 0.11/0.75 ± 0.05/0.57 ± 0.14, IV/2

qRT-PCR using RNA from 3 independent LTβR stimulation experiments confirmed changes in mRNA levels of several known as well as novel 
LTβR-responsive genes on the microarray. Gene names (Gene Symbol) and GenBank Accesion Numbers are shown in the first column. FC values 
with corresponding p values in brackets, observed in the 3 cell lines (wt; relA-/-; relB-/-) at 10 h with CodeLink bioarrays and corresponding 
subcategories (in bold) are displayed in the second column. FC values with corresponding standard deviations (SD), observed in the 3 cell lines (wt; 
relA-/-; relB-/-) at 10 h with qRT-PCR using RNA from 3 independent LTβR stimulation experiments and corresponding subcategories (in bold) are 
displayed in the third column. Genes that are discussed in chapter "Meta analysis of LTβR-dependent transcriptomes" are indicated by an asterisk 
and genes that are discussed in chapter "Verification of microarray results by qRT-PCR" are listed in bold.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_009142
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_011146
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_009058
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_015744
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_007464
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_021274
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_008390
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_010545
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_010235
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_019408
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_011333
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_010907
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_013654
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_008176
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many), penicillin (100 U/ml), streptomycin (100 μg/ml),
and Glutamax I (2 mM) (GIBCO/Invitrogen) and treated
with agonistic anti-LTβR mAb (1 μg/ml, clone AC.H6;
kind gift from J. Browning and P. Rennert).

EMSA
Preparation of nuclear extracts and EMSAs were essen-
tially performed as previously described [37]. Nuclear and
cytoplasmic fractions were prepared according to stand-
ard procedures [38].

Table 13: LTβR responsive qRT-PCR verified genes in literature

Gene Symbol and GenBank Accession 
Number

LTβR responsiveness
„reference“ if known/„this study“ if new

In response to LTβR stimulation, transcription 
is regulated by RelA or RelB, + or - or 0 
manner „reference“ if known/„this study“ if new

Cx3cl1
NM_009142

This study + regulation by RelA and RelB together, this study

Pparg
NM_011146

This study 0 RelA, this study
- RelB, this study

Ralgds *
NM_009058

Lo et al., 2007 [22] Mode of regulation uncertain: RelA either alone, or 
together with RelB enhances Ralgds expression.

Enpp2 *
NM_015744

Huber et al., 2005 [27] + RelA, this study
0 RelB, this study

Birc3
NM_007464

This study + RelA, this study
0 RelB, this study

Cxcl10/IP10
NM_021274

Lukashev et al., 2006 [34] + RelA, this study
0 RelB, this study

Irf1
NM_008390

Kutsch et al., 2008 [41] + RelA, this study
0 RelB, this study

Cd74
NM_010545

This study + RelA, this study
0 RelB, this study

Fosl1
NM_010235

This study - RelA, this study
0 RelB, this study

Nfkb2
NM_019408.1

Dejardin et al., 2002 [5]
Derudder et al., 2003 [6]

+ RelA, Dejardin et al., 2002 [5]
+ RelB, this study

Ccl2/MCP1
NM_011333

Derudder et al., 2003 [6] + RelA, this study
+ RelB, this study

Nfkbia/IκBα
NM_010907

Bonizzi et al., 2004 [31] + RelA, this study
+ RelB, this study

Ccl7/MCP3
NM_013654

This study + RelA, this study
+ RelB, this study

Cxcl1/KC
NM_008176

This study + RelA, this study
Positive regulation by RelB is uncertain.

Id2
NM_010496

This study - RelA, this study
- RelB, this study

Genes that are discussed in chapter "Meta analysis of LTβR-dependent transcriptomes" are indicated by an asterisk and genes that are discussed in 
chapter "Verification of microarray results by qRT-PCR" are listed in bold.
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RNA isolation
Total cellular RNA was isolated using the RNeasy Mini Kit
(Qiagen, Hilden, Germany) according to the manufac-
turer's instructions. Possible contamination by genomic
DNA was removed by DNaseI treatment using the RNase-
Free DNase Set (Qiagen). Quality of RNA samples was
checked by spectrophotometry and agarose gel electro-
phoresis. RNAs (2 μg total RNA per sample) were used for
cRNA preparation for microarrays only when the ratio
A260:A280 was 1.8–2.1 and the RNA was intact.

Microarrays
Microarray analysis was performed using CodeLink Uni-
Set Mouse 20K I bioarrays (GE Healthcare, Munich, Ger-
many), a one-color system where for each of the
investigated 19,801 transcripts there is one 30–mer oligo
probe spotted per slide. For gene expression profiling,
untreated (0 h) and 10 h agonistic anti-LTβR mAb treated
wt, relA-/-, and relB-/- MEFs were used. For every treatment
group, cells from 4 experiments were pooled, total RNA
isolated, cRNA prepared and hybridized onto the bioar-
rays in technical triplicates. cRNA target preparation, bio-
array hybridization and detection were carried out
according to the manufacturer's protocol provided with
the CodeLink Expression Assay Reagent Kit. For scanning
microarrays, a GenePix 4000B Array Scanner and GenePix
Pro 4.0 software (Axon Instruments Inc./Molecular
Devices, Munich, Germany) were employed according to
settings suggested by the protocol provided with the
CodeLink Expression Assay Reagent Kit. Microarray data
have been deposited in NCBIs GEO http://
www.ncbi.nlm.nih.gov/geo/ and are accessible through
GEO series accession number GSE11963.

Microarray data preprocessing
Microarray raw data of stimulated and unstimulated MEFs
were analyzed using the Codelink™ Expression Analysis
v4.1 software (GE Healthcare) and MDFC values were
extracted. All subsequent analyses were performed using R
and Bioconductor. For the analysis only genes with probe
type 'DISCOVERY' were considered (19,801 genes) and
all genes flagged MSR (Manufactory Slide Report) in any
sample were excluded (leaving 19,580 genes). To remove
negative expression values (local background > spot
intensity) raw intensities with values < 0.01 were set to
0.01. The raw intensities of each array were scaled to the
array median. After logarithmizing the expression values
quantile normalization was applied across all arrays.

Differentially expressed genes
Array data for the different genotypes were analyzed sepa-
rately. A gene was included in the analysis if it was flagged
'G' (good) or 'S' (contains saturated pixels) on at least two
arrays in any of the two groups (stimulated or unstimu-
lated). Furthermore, genes selected were required to have

a FC higher than or equal to the FC threshold determined
from the maximum MDFC in these groups. To identify
genes significantly differentially expressed after stimula-
tion, a Student's t-test was performed for the previously
filtered genes. The resulting p values were corrected for
multiple testing using the method of Benjamini and
Hochberg [39]. Allowing a false discovery rate of 5%, a
total of 528 genes were identified that were significantly
regulated in wt cells (regardless whether they were regu-
lated somewhere else). From these, 366 genes were regu-
lated exclusively in wt, 30 genes in wt and relA-/-, 102 in wt
and relB-/- cells and 30 genes in all 3 genotypes.

Functional analysis with GO
Analysis of functional enrichment was performed
employing Fisher's exact test. The resulting p values (p <
0.01) were used to rank GO terms according to their sig-
nificance. Terms with more than 600 genes on the array or
less than 3 genes on the list of investigated genes were
regarded as too general or too specific, respectively, and
excluded from the analysis. Expert knowledge was used to
assign broader themes to specific GO categories.

qRT-PCR
For qRT-PCR, first strand cDNA was obtained from 2 μg of
total RNA for each treatment group using oligo-dT prim-
ers and M-MLV Reverse Transcriptase kit (Promega, Man-
nheim, Germany) according to manufacturer's protocols.
qRT-PCRs were performed in an iCycler Thermal Cycler
real-time PCR machine (Bio-Rad Laboratories, Hercules,
CA) using SYBR Green I as detector dye and reagents from
the Quantace SensiMix DNA Kit (Quantace Ltd., Watford,
UK). Primers for qRT-PCRs with Tm of 60°C were
designed using Primer3 software (v. 0.4.0; http://
frodo.wi.mit.edu) [40]. For individual samples, each gene
was tested in triplicates and the mean of the 3 cycle thresh-
old values was used to calculate relative expression levels.
For normalization, β-actin was used as an endogenous ref-
erence gene to correct for variation in RNA content and
variation in the efficiency of the reverse transcription reac-
tion. Statistical analysis of qRT-PCR results from 3 inde-
pendent LTβR stimulation experiments was performed
employing a Welch test. Forward (F) and reverse primers
(R) in 5' to 3' orientation were: Nfkb2_F: GCTAATGT-
GAATGCCCGGAC, Nfkb2_R: CTTTGGGTATCCCTCT-
CAGGC, Ccl2_F: CCCACTCACCTGCTGCTACT, Ccl2_R:
TCTGGACCCATTCCTTCTTG, IκBα_F: TGCACTT-
GGCAATCATCCAC, IκBα_R: TTCCTCGAAAGTCTCG-
GAGCT, Ralgds_F: CATCCACCGCCTAAAGAAGA,
Ralgds_R: GGGCTCTCCTAGGGTTCATC, Cx3cl1_F:
GGCTAAGCCTCAGAGCATTG, Cx3cl1_R: CATTTTC-
CTCTGGGGTTGA, Pparg_F: TCATGACCAGGGAGTTC-
CTC, Pparg_R: GGCGGTCTCCACTGAGAATA, Enpp2_F:
TGGCTTACGTGACATTGAGG, Enpp2_R: GTCGGTGAG-
GAAGGATGAAA, Birc3_F: TGACGTGTGTGACACCAATG,
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Birc3_R: TGAGGTTGCTGCAGTGTTTC, Cxcl10_F: AAGT-
GCTGCCGTCATTTTCT, Cxcl10_R: GTGGCAATGATCT-
CAACACG, Irf1_F: ACCCTGGCTAGAGATGCAGA,
Irf1_R: TTTGTATCGGCCTGTGTGAA, Cd74_F: ATGAC-
CCAGGACCATGTGAT, Cd74_R: CCAGGGAGTTCTT-
GCTCATC, Fosl1_F: CAAAATCCCAGAAGGAGACAAG,
Fosl1_R: AAAAGGAGTCAGAGAGGGTGTG, Ccl7_F: AAT-
GCATCCACATGCTGCTA, Ccl7_R: ATAGCCTCCTCGAC-
CCACTT, Cxcl1_F: GCTGGGATTCACCTCAAGAA,
Cxcl1_R: TGGGGACACCTTTTAGCATC, Id2_F: CCCCA-
GAACAAGAAGGTGAC, Id2_R: ATTCAGATGCCT-
GCAAGGAC, β-actin_F: TGGCGCTTTTGACTCAGGA, β-
actin_R: GGGAGGGTGAGGGACTTCC
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