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Abstract
Background: As a polycistronic transcriptional unit of one or more adjacent genes, operons play
a key role in regulation and function in prokaryotic biology, and a better understanding of how they
are constituted and controlled is needed. Recent efforts have attempted to predict operonic status
in sequenced genomes using a variety of techniques and data sources. To date, non-homology
based operon prediction strategies have mainly used predicted promoters and terminators present
at the extremities of transcriptional unit as predictors, with reasonable success. However,
transcription factor binding sites (TFBSs), typically found upstream of the first gene in an operon,
have not yet been evaluated.

Results: Here we apply a method originally developed for the prediction of TFBSs in Escherichia
coli that minimises the need for prior knowledge and tests its ability to predict operons in E. coli
and the 'more complex', pharmaceutically important, Streptomyces coelicolor. We demonstrate that
through building genome specific TFBS position-specific-weight-matrices (PSWMs) it is possible to
predict operons in E. coli and S. coelicolor with 83% and 93% accuracy respectively, using only TFBS
as delimiters of operons. Additionally, the 'palindromicity' of TFBS footprint data of E. coli is
characterised.

Conclusion: TFBS are proposed as novel independent features for use in prokaryotic operon
prediction (whether alone or as part of a set of features) given their efficacy as operon predictors
in E. coli and S. coelicolor. We also show that TFBS footprint data in E. coli generally contains inverted
repeats with significantly (p < 0.05) greater palindromicity than random sequences. Consequently,
the palindromicity of putative TFBSs predicted can also enhance operon predictions.

Background
Genes within an operon are, in the majority of cases, tran-
scribed from a single promoter [1]. Therefore, any inte-
grated approach to the understanding of gene expression
in prokaryotic systems must consider operons as one of
the basic units, which are regulated by promoters, tran-

scription factors and associated proteins. Although over
500 bacterial genomes have been sequenced and microar-
ray-based expression studies are increasingly common,
defining and mapping operon structure is time-consum-
ing and complex, and the ability to predict them ab initio
is therefore important. Since operon structure is fre-
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quently unstable across species boundaries [2-8], most
approaches have used non-homology based data to pre-
dict operon structure. Besides predicted promoters and
terminators, intergenic distance and expression data are
also often used in non-homology based operon predic-
tion strategies with varying sensitivity [9-17]. However,
since there is generally limited data on known promoter
locations and/or unreliable prediction methods, the iden-
tification of promoters is often difficult and makes their
use problematic for operon prediction. In an attempt to
avoid the problems associated with prediction of promot-
ers it is worthwhile investigating the usefulness of other
regulatory binding sites as potential predictors of operons,
something not previously attempted.

Aside from promoters and terminators, transcription fac-
tor binding plays a key role in controlling the expression
level of a gene or group of genes. Therefore, to coordinate
the expression of genes within an operon a transcription
factor binding site (TFBS), just like promoters, should be
found predominantly upstream of the first gene in an
operon; although there are a small number of reported
cases of secondary binding sites within operons e.g. lac
operon [18] and in our previous study [19], the tradi-
tional, 'static' view of operons (a group or genes tran-
scribed together in all conditions) is applied. Prokaryotic
transcription factors are usually deemed as either activa-
tors or repressors (with some having a dual role) depend-
ing on the effect they have on the rate of transcription
initiation of the downstream gene(s). The dimeric nature
of repressor and activator binding in prokaryotes requires
that a recognition site must be a dyad, and typically an
inverted repeat [20,21]. This 'structure' of a binding
sequence coupled with their typically short length (6–15
bp) can be used to predict likely TFBSs themselves [21,22]
and therefore if this can be done with confidence, can be
used in the prediction of operonic gene pairs.

TFBSs are often described as consensus sequences or regu-
lar expressions that represent the most common sequence
in a set of closely related binding site examples. Though
simple in their construction, such consensus sequences
are unable to imitate the variability that exists within true
TFBSs in nature, where some sites may tolerate a range of
bases and retain function. When using simple regular
expressions, TFBS prediction is therefore dependent on
the amount of mismatches (if any) that are tolerated.
Defining the best consensus sequence for predicting sites
is also difficult [23]. Position Specific Weight Matrices
(PSWMs), first used for the characterisation of translation
initiation sites [24] are an alternative to consensus
sequences. The methods used to produce PSWMs differ
mainly in the type of information used to collect a set of
binding site examples. For example, the identification of
regulatory motifs which can be used to predict regulons,

commonly adopted after microarray data collection, uses
a set of co-regulated genes as a prerequisite [c.f. [25,26]].
Similarly, prior knowledge can be used where experimen-
tal characterisation of a common regulatory binding site
leads to the searching of upstream regions of the genes for
a similar motif [27]. Knowledge of protein structure has
also been applied to regulatory protein binding site iden-
tification through binding energy calculations between
nucleotide and amino acid (e.g. [28,29]). In this study
however, we wished to develop a method applicable to
Streptomyces coelicolor genomics and due to the relative
paucity of comprehensive information on Streptomyces
gene regulation an a priori method that is capable of pro-
ducing PSWMs is desirable. It will also support an operon
prediction method that integrates data from various
sources (e.g. intergenic distance [15] and/or expression
data [14]) by increasing the amount of information about
an operon whilst still being applied generically to all
sequenced prokaryotic species without a dependency on
the availability of functional or structural information.

One such method was published by the Siggia group [22]
which requires no prior knowledge, can in principle be
applied to any genome, and can generate PSWMs of
dyads. The algorithm has successfully been applied in E.
coli [22], B. subtilis [30] and additionally to S. coelicolor
[31]. Here the published method [22] was implemented
and applied in Escherichia coli and Streptomyces coelicolor.

By constructing PSWMs from over-represented words in a
given data set it is possible to test the upstream regions of
genes for putative TFBSs. Based on the 'classical' definition
of an operon [1] intra-operonic genes (excluding the first
gene of an operon) should not have a TFBS in their
upstream region. Although this is increasingly viewed as
overly simplistic as an operon definition [11,19,32,33] it
appears to hold for the large majority of operons in most
conditions. Subsequently, adjacent gene pairs that have a
TFBS in between them are not expected to be part of the
same operon. Using positive and negative examples of
genes which are considered to be operonic members, the
use of TFBSs as predictors of operons can be tested.

Prior to this, the first part of this work characterises the
palindromic tendency of footprints of known transcrip-
tion factors in E. coli, a property which is later shown to
improve operon prediction in S. coelicolor. The second part
of this work concentrates on developing a strategy of
implementing the Siggia group's algorithm [22] through
the use of different thresholds and examines the differ-
ences in results obtained. Comparisons with the previous
TFBS set predicted in S. coelicolor [31] are also made.
Finally the usefulness of TFBSs as predictors of operons in
both E. coli and S. coelicolor is discussed.
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Methods
Many methods are used to test the efficacy of TFBS at pre-
dicting operons in this work, which are summarised in
Figure 1.

PSWM construction algorithm
The algorithm published by Li and co-workers [22] is
capable of taking any set of upstream sequences (referred
to herein as UPSQs) and constructing PSWMs from signif-
icantly over-represented dimers within this set. This
method can be summarised by five steps:

1) Counts of every possible dimer (D) of the form W1 Nx
W2 where W1 and W2 are short oligonucleotides of length
3–5 nt separated by x (0–30) arbitrary bases are collected
from the UPSQs set. For each dimer a significance (-log10
P) is calculated by comparing the observed counts (n(D))
for the dimer to the expected counts (y(D)), assuming a
Poisson distribution:

where

and n(W1) and n(W2) are the total number of occurrences

of W1 and W2 in the UPSQs data set and

 is the number of independ-

ent positions in the data where a motif M of length L(M)
can be placed (M can be W1, W2 or D). The summation is
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Overview of methods employed to measure operon prediction accuracy using Transcription Factor Binding Sites (TFBS)Figure 1
Overview of methods employed to measure operon prediction accuracy using Transcription Factor Binding Sites (TFBS).
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over the regulatory regions (r) over all genes, each with a
length L(r) (as taken from [22]).

2) A similarity matrix is constructed via an all-vs-all com-
parison of significant dimer pairs scoring above a desig-
nated threshold. Similarity between pairs of dimers is
calculated by a simple scoring method, evaluating the
number of matches minus the number of mismatches.
Matches to N (an unknown base) or to any other base or
overhangs are ignored (a heuristic method of sliding the
sequences along to get the best score is applied). This
score is then normalised to between 0 and 1.

3) The similarity matrix is used to cluster the significant
dimers using CAST (Clustering Affinity Search Technique
[34]) where a similarity threshold for clustering is set.

4) For every cluster, the actual sequences in the UPSQs set
matched by any member of the cluster are extracted along
with up to 10 flanking nucleotides (dependent on the
position of the match and length of the UPSQ sequence).
A multiple alignment of these sequences using CONSEN-
SUS [35] produces an alignment matrix for that cluster.

5) Each alignment matrix is converted to a PSWM using
the background base counts for the organism of interest.
Here the background frequencies of A = 0.2953, C =
0.2059, G = 0.2023, T = 0.2965 were used for E. coli and A
= 0.1589, C = 0.3494, G = 0.3420, T = 0.1497 for S. coeli-
color.

A full description of the algorithm is given in the original
publication [22].

In this work the thresholds used in steps 2 (dimer signifi-
cance) and 3 (clustering threshold) are of the most inter-
est. It is these thresholds that can affect the integrity of the
PSWMs, which in turn could affect operon prediction
accuracy. The different thresholds of dimer significance
used were: -log10 P > 6, approximating to -log10(1/amount
of all dimers tested for), -log10 P > 3, approximating to -
log10(1/amount of all perfectly palindromic (i.e. palin-
dromic without any mismatches) dimers tested for), and
two intermediate thresholds of -log10 P > 4 and -log10 P >
5. Different clustering thresholds of 0.6, 0.7 and 0.8 were
also tested.

Prediction of TFBSs
With each PSWM there is an associated distribution of
scores obtained when applied to a given data set of
sequences. Two distributions of scores are obtained when
scoring sequences from either the UPSQs set that were
used to build the PSWM (collected in step 4 of the algo-
rithm), or sequences from the UPSQs set that were not
used to build the PSWM (sequences that will have a 'score'

but should not have a significant match to the PSWM (as
they were not used to build the PSWM) and thus provide
a means of estimating noise in the PSWM prediction).
These two Gaussian distributions, describe the 'real hits'
and the background random matches respectively.

From the mean and standard deviation of the two distri-
butions, the difference between the two distributions can
be calculated. The larger the difference, the more specific
the PSWM is deemed to be, which is formally represented
as a Z-score:

Using the mean and standard deviation of the two distri-
butions the specificity and sensitivity of searching for a
potential TFBS can be controlled via two thresholds:

threshold1 = μbackground + xσbackground

threshold2 = μreal - xσreal

where x represents any real number and affects the false-
positive and false-negative rates when using threshold1
and threshold2 respectively.

In this study for a sequence to be predicted to contain a
given TFBS the score of the sequence against the PSWM
must be greater than μreal-2σreal (giving 98% coverage) and
μbackground+Sσbackground, where S is used to represent trials
of different thresholds from 0 to 10 in 0.5 increments as
discussed further in this work. Since this term is the only
part of the threshold that changes, the TFBS prediction
threshold used will only be referred to herein as μback-

ground+Sσbackground.

UPSQs data sets used
The sequence data used to form the UPSQs and operon
prediction test sets were taken from E. coli K12 strain
MG1655 from Genbank (accession number:
NC_000913[36,37]) and S. coelicolor chromosome (not
plasmids) in EMBL (accession number: AL645882 version
2 [38,39]). In E. coli the UPSQs set was created using the
upstream intergenic sequences (maximum length 300 bp)
of the first genes of known and predicted operons in the
E. coli sequence taken from RegulonDB [40,41] as
described previously [22]. For S. coelicolor upstream inter-
genic sequences (maximum length 300 bp) of all genes in
the chromosome were used. Testing of the constructed
PSWMs was conducted using the upstream intergenic
sequences (maximum length 300 bp) of the positive and
negative examples of operon members of the relevant
organism.

Z
real background

background
=

−μ μ

σ
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Positive and negative examples of operon members
Operon definitions used throughout this work were based
on the annotated genome of E. coli K12 strain MG1655
from Genbank [36,37] and the S. coelicolor chromosome
(not plasmids) in EMBL [38,39], data sources described
above. Positive examples of operons were collected
through searching the literature for experimentally vali-
dated operons in S. coelicolor (e.g. [27]) and from the tran-
scriptional unit experimentally based annotation in
Ecocyc for E. coli [42,43]. Negative examples of operons
were collected from knowledge of basic operon structure
applicable to both organisms, illustrated in Figure 2.

Assuming that the entire polycistronic transcript is docu-
mented, non-operons of length 2 were formed by using
the initial gene of the operon and its upstream neighbour-
ing gene if that neighbour is transcribed in the same direc-
tion (e.g. gene pair d-e), and the last gene in the
documented operon and its downstream neighbouring
gene, again if it is transcribed in the same direction (e.g.
gene pair g-h). These negative examples are termed as
transcriptional boundaries. To increase the size of the
non-operonic data set a non-operon of length 3 was also
formed by collecting triplets of genes that are transcribed
in the opposite direction (e.g. genes b-c-d), termed as
directional examples, as the central gene (e.g. gene 'c' in
Figure 2) is certainly not in the same transcriptional unit
as the two flanking genes transcribed in the opposite
direction (e.g. genes b and d in Figure 2). In total 35 oper-
ons and 1282 non-operons were collected for S. coelicolor,
and 325 operons and 821 non-operons were collected for
E. coli. Both positive and negative examples for S. coelicolor
and E. coli are provided [see Additional file 1].

All examples of operonic genes (positive and negative)
were split into singular genes such that the operonic con-
nection status (in the same operon or not) of all genes

with their respective upstream gene neighbours could be
tested.

Results
Characterisation of inverted repeat binding sites
Typically for prokaryotes the binding sites of repressors,
dual regulators and in some cases activators are character-
ised as inverted repeats (where word 2 is palindromic to
word 1), which is driven by the predominantly homo-
dimeric binding of transcription factors [20]. However,
'perfect' palindromicity of a binding site where the two
words are an exact match is not always the case e.g. the lac
operator [44]. Given the tendency for binding sites to be
imperfect palindromes it is therefore appropriate to ana-
lyse how many sites would be missed if only perfectly pal-
indromic inverted repeat PSWMs were used when
predicting TFBSs as a proxy for operons. Through the use
of footprinting methods, where flanking nucleotides not
bound by a transcription factor are degraded, a 'footprint'
of the transcription factor can be obtained [45]. Although
it is difficult to determine the precise binding site, the
footprint sequences can be used as an estimate of the
potential palindromicity of the experimentally character-
ised binding regions. Currently, there is little footprint
data for S. coelicolor transcription factors and consequently
transcription factor footprint data for E. coli was down-
loaded from the RegulonDB internet site [40,41], which
contained examples of 211 repressor sites, 77 activator
sites and 341 dual regulator sites [see Additional file 2].
All footprints for each set of regulators (Activators, Dual
or Repressors) were then searched for the longest inverted
repeat containing palindromes word 1 and word 2 and the
'palindromicity' calculated. Here, palindromicity was
determined by the use of two thresholds; length and mis-
matches allowed. Figure 3 shows the percentage of known
sites (be it repressor, activator or dual regulator) that can
be characterised as an inverted repeat with each word of

Examples of positive and control sets of operons/non-operonsFigure 2
Examples of positive and control sets of operons/non-operons.
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length 3, 4, or greater than 5 nucleotides, and having
either 0, 1, or 2 internal palindromic mismatches between
word 1 and word 2 (i.e. one cannot create an inverted
repeat with words of length 4 by adding a mismatch onto
perfectly palindromic words of length 3).

From Figure 3, and additionally Table 1, it is apparent that
both repressors and dual regulators are predominantly
characterised by perfectly palindromic dyads (84% and
79% respectively), agreeing with previous findings [46].
Activators on the other hand, described in the literature as
capable of binding to direct/inverted repeats, are not
(44%). Furthermore, the largest proportion of perfectly
palindromic inverted repeats is formed from words of 3
nucleotides in length, particularly dual regulators (42%,
data not shown). As expected, allowing for 1 internal mis-
match increases the overall proportion of palindromic
dyad sites matched compared to no mismatches allowed,
but only a negligible increase is observed when consider-
ing 2 mismatches. Indeed, this typically just increased the
length of the potential sites compared to the 1 mismatch
set (data not shown).

When considering all transcription factor footprints
together, as depicted in Figure 3 and Table 1, the overall
coverage obtained using palindromes and mismatches to
characterise binding sites can be calculated. Coverage is
defined as the percentage of all footprint sites identified as
containing a palindrome. Here, 77% coverage can be
achieved by searching for perfect palindromes and
92–93% coverage when allowing for 1 mismatch. How-
ever, it is important to note that tolerating mismatches
decreases the specificity of binding site prediction. Of
course, the occurrence of a palindromic inverted repeat
within an upstream intergenic region does not necessarily
mean that a sequence is a true binding site either, but it is
expected to increase the likelihood. Indeed, in support of
this, when comparing the coverage obtained (using Z-
score) searching for perfect palindromes in true footprint
sites to that obtained from 500 random footprint simula-
tions a significant difference (p < 0.05) is observed (see
Table 1). Here, random bases were chosen to create a
sequence the same length of true, known footprint exam-
ples taken from those used to create Figure 3. No signifi-
cant difference was observed when allowing 1 or 2
mismatches for Repressors and Dual regulators.

Regulator type breakdown in TFBS footprintsFigure 3
Regulator type breakdown in TFBS footprints. Pie chart of the percentage of footprints for each regulator containing an 
inverted repeat with both words greater than 3 nucleotides (includes palindromic matches of length 4 and 5) and palindromic 
mismatches between word 1 and word 2 of 0, 1 or 2. Data labels are of the form Regulator_mismatch.
Page 6 of 15
(page number not for citation purposes)



BMC Genomics 2008, 9:79 http://www.biomedcentral.com/1471-2164/9/79
Implementation of PSWM algorithm
Implementation of the PSWM construction algorithm
using E. coli sequences resulted in 4,102 significant dimers
using a Poisson probability threshold of -log10 P > 6.
Although this is a similar threshold to previous work [22],
these authors identified only 1,775 significant dimers.
Despite rigorous checks with the implementation of this
algorithm as published, and variation of parameters and
similar experiments to reproduce the published data, this
was not achieved and the implementation here consist-
ently defined a larger number of putative sites. However,
our implementation did discover all the dimers predicted
by the earlier study [22], and this set was also used in our
evaluation protocol.

Different thresholds of dimer significance (as described in
the methods section) were then applied and sets of signif-
icant dimers were clustered using CAST [34] (step 3 of the
algorithm) producing 12 data sets in total. In addition to
these 12 sets of clustered sequences, the 849 clusters pub-
lished previously [22], referred to as "LiFlank", were put
through steps 4 and 5 of the PSWM construction algo-
rithm. The resultant PSWMs for all data sets and the orig-
inal PSWM data [22], referred to as "Li", were then used to
predict binding sites in the upstream intergenic sequences
of the positive and negative examples of operon members
in E. coli with 0.5 increments of the TFBS prediction
threshold μbackground+Sσbackground (see methods). For each
increment of S, counts of TFBS predictions for the positive
and negative tests sets were made enabling the calculation
of true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN).

Throughout this work we introduce a simple nomencla-
ture to distinguish the PSWM sets, x_y_z, which refers to
the Poisson distribution dimer significance threshold x,
the word clustering threshold y, and the final number of
clusters z.

Using predicted TFBSs as predictors of operons creates
slightly unusual statistics, since an absence of an upstream
predicted TFBS is predictive for a member gene of an
operon. Hence when a high threshold is used, no TFBSs
are predicted by the PSWMs leading to over-prediction of
operonic status – i.e. all genes in both operon member test
sets are classed as operonic. This leads to a sensitivity (cov-
erage) of 1 and a specificity of 0, and the positive predic-
tive value converges to the ratio of operonic/all genes. This
is illustrated in the receiver operator characteristic (ROC)
plots in Figures 4a and 4b. Similarly, at very low thresh-
olds, TFBSs are over-predicted and most genes are classed
as non-operonic. In this case, the sensitivity approaches 0
and the specificity approaches 1; the positive predictive
value is undefined here. Figure 4a shows that at a low
TFBS prediction threshold (where more TFBS are pre-
dicted) it is more likely that sequences without a predicted
TFBS are operonic (although only reaching a positive pre-
dictive value peak of ~0%). As the TFBS prediction thresh-
old increases, fewer TFBSs are predicted leading to less
certainty about a gene's true operonic status. Indeed, only
~28% of genes predicted to be operonic are actually oper-
onic at the highest TFBS prediction threshold. The predic-
tions and ROC plots can be compared using a single
metric, the area under the curve (A.U.C), which is a meas-
ure used to quantify the overall performance accuracy of

Table 1: Coverage of inverted repeats in E. coli footprint data

Mismatches allowed Random average coverage % Footprint coverage % Z-score Associated p-value

Activators
0 55 44 -2.4 0.008
1 82 74 -1.92 0.03
2 82 75 -2.54 0.006

Dual
0 68 79 4.84 6.61E-07
1 96 96 1.54 0.06
2 96 97 0.09 0.46

Repressors
0 66 84 6.43 0
1 90 91 0.36 0.36
2 91 91 -0.01 0.49

All regulators
0 65 77 6.51 0
1 93 92 0.30 0.38
2 93 93 -1.09 0.14

Coverage of known sites and random sites (after 500 shuffle simulations) considering different mismatch tolerances is shown with associated Z-
score and p-values for each regulator type. Coverage is defined as the percentage of sites (out of 341 dual regulators, 77 activators and 211 
repressors) that are identified as being palindromic when allowing 0, 1 or 2 mismatches. The average coverage of 500 simulations is shown for the 
random data set (matched to the same number of examples for each respective TFBS set)
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Receiver Operator Characteristic curves for PSWMs as operon predictorsFigure 4
Receiver Operator Characteristic curves for PSWMs as operon predictors. ROC curves are shown for all 14 PSWM 
sets built and applied to E. coli. Legend refers to: Significance threshold or Data set_Clustering threshold_Number of clusters 
for a) Positive predictive Value (TP/(TP+FP)) vs sensitivity (TP/(TP+FN)), and b) Specificity (TN/(TN+FP)) vs sensitivity (TP/
(TP+FN)).
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predictions. The complete list of AUC values for different
data sets is shown in Table 2. The best performing PSWM
set at discriminating operonic/non-operonic genes is the
LiFlank data set with 80% accuracy. This increase in accu-
racy compared to the original Li data set (76% accuracy)
is likely due to the wider PSWMs which incorporate flank-
ing sequence. During step 5 of the PSWM building pipe-
line CONSENSUS [34] requires a fixed pattern length to
be supplied. In this work the length is determined by the
length of the shortest sequence matched back to the clus-
ter during step 4. Comparisons between the length of the
LiFlank PSWMs and the original Li PSWMs sets revealed
that the LiFlank PSWMs were predominantly wider. The
wider PSWMs and the higher accuracy of the LiFLank data
set therefore indicate that the length of the matrix is
important for operon prediction. This is not surprising as
the wider a PSWM is, the more specific it generally
becomes.

The second best operon predictor set (3_08_1506 with
79% accuracy) is of one of the novel PSWM sets con-
structed in this study (using all steps of the algorithm).
The dimer significance of -log10 P > 3 and clustering
threshold of 0.8 was therefore used to construct PSWMs
for S. coelicolor resulting in 22,359 significant dimers pro-
ducing 3,628 clusters/PSWMs (referred to herein as
S3_08_3628). Previous work applying the same approach
on S. coelicolor [31] reported 2,497 putative TFBSs. How-
ever, using dyad word lengths of 3–5 nt (used here)
instead of just 4 nt results in additional matrices, as well
as all of the matrices found previously [31].

TFBSs for operon prediction
Figures 5a and 5b show the ROC curves for E. coli PSWM
set 3_08_1506 and S. coelicolor PSWM set S3_08_3628
respectively when applied to the relevant positive and
negative operon member example datasets. When com-
paring AUC scores of the test sets using all of the PSWMs
it can be seen that overall TFBSs perform better as predic-
tors of operons in E. coli (79%) than S. coelicolor (74%).
However, the AUC score of S. coelicolor increased to 77%
when using only palindromic (no mismatches allowed)
PSWMs (S3_08_3628_0, nomenclature of x_y_z_m refer-
ring to Poisson distribution dimer significance threshold
x, the word clustering threshold y, final number of clusters
z and the number of mismatches allowed m), calculated
by using the consensus sequence conveyed by a PSWM
[47] and applying the same palindromicity method as
previously described. Conversely, operon prediction accu-
racy in E. coli did not improve when using only palindro-
mic dimers of the original 3_08_1506 PSWM set.

The TFBS prediction threshold of μbackground+4σbackground
with a very low false positive rate of ~0.003% was found
to produce the highest operon prediction accuracy
((TP+TN)/(TP+FP+TN+FN)) in E. coli 3_08_1506_all
(83%) and S. coelicolor S3_08_3628_0 (93%). Using this
threshold it was possible to analyse how a single PSWM's
operon prediction accuracy is related to its Z-score (see
methods), the amount of TFBS predictions it makes, its
AT-richness (based on the consensus sequence), and its
non-coding region bias (ratio of non-coding hits/coding
hits when applied to the genome). The resultant plots are
shown in Figure 6 for S. coelicolor and Figure 7 for E. coli.

From Figures 6 and 7 it is apparent, particularly in S. coe-
licolor (Figure 6), that the higher a PSWM's Z-score (and
thus higher specificity), the lower the PSWM operon pre-
diction accuracy. Somewhat counter intuitively, this sug-
gests that the more successful PSWMs in terms of operon
prediction accuracy predict many TFBSs (due to a low Z-
score indicating lack of specificity in the prediction of an
actual TFBS) such that very few operonic predictions are
made. Further evidence for this can be seen in Figures 6
and 7 which show accuracy is correlated to the amount of
hits, whereby many hits equates to higher accuracy. This
demonstrates that high operon prediction accuracy is
obtained by maximising sensitivity (coverage) of the TFBS
prediction, albeit at the expense of TFBS prediction specif-
icity, and without over-predicting TFBSs either.

Figures 6 and 7 also consider nucleotide biases. In E. coli
the AT-richness of a PSWM does not appear to be related
to accuracy due to the wide distribution of scores (Figure
7). In S. coelicolor however the matrices that are more AT
rich tend to have a higher operon prediction accuracy,
seen as a right shift in Figure 6. AT tracts in the transcrip-

Table 2: Area Under the Curve scores for PSWM data sets

Data set A.U.C

3_08_1506 79%
3_07_551 77%
3_06_116 76%
4_08_1226 76%
4_07_447 78%
4_06_102 77%
5_08_778 77%
5_07_280 77%
5_06_62 75%
6_08_544 76%
6_07_202 76%
6_06_62 76%
Li_849 76%
LiFlank_849 80%

The AUC score is shown for each of the 14 PSWM sets when 
predicting operons using the positive and negative examples of 
operon members of E. coli. Data set nomenclature x_y_z refers to: x, 
Poisson distribution dimer significance threshold (-log10 P >) or Data 
set, y, Clustering threshold, and z, the number of clusters/PSWMs in 
data set (see also methods and text).
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Receiver Operator Characteristic curves of Specificity (TN/(TN+FP)) vs sensitivity (TP/(TP+FN))Figure 5
Receiver Operator Characteristic curves of Specificity (TN/(TN+FP)) vs sensitivity (TP/(TP+FN)). a) E. coli 
PSWM set 3_08_1506 and b) S. coelicolor PSWM set S3_08_3628; where legend refers to: Significance threshold or Data 
set_Clustering threshold_Number of clusters_mismatches allowed/all PSWMs (A.U.C).
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tion initiation region of genes are not uncommon [48]
but when the PSWM operon prediction is restricted to
using PSWMs of the set S3_08_3628_0 that have an AT-
richness greater than 40%, no effect on operon prediction
accuracy was found (data not shown). Finally there does
not seem to be any relatedness between a PSWM's accu-
racy and its bias towards non coding regions in both E. coli
and S. coelicolor (Figures 6 and 7 respectively).

Discussion
To date non-homology based operon prediction methods
that search upstream regions for motifs have only
included promoters and/or terminators [9-12,17]. Data is
presented here that uses a different upstream motif, tran-
scription factor binding sites, to predict operons in both S.
coelicolor and E. coli. Avoiding the need for experimentally
validated examples of promoters/terminators and there-
fore dependency on the amount of prior knowledge avail-
able [9,10,12,17] this novel approach is able to predict

PSWM statisitics for S. coelicolorFigure 6
PSWM statisitics for S. coelicolor. Z-score, number of hits, AT-richness and non-coding region bias (Rbias) of each PSWM 
in the S. coelicolor S3_08_3628_0 PSWMs set using a TFBS prediction threshold of μbackground+4σbackground.
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operons in E. coli and S. coelicolor with 83% and 93% accu-
racy respectively. This strongly suggests that predicted
TFBSs are a highly suitable feature for inclusion in inte-
grated operon prediction strategies, not only in well char-
acterised systems but also in other poorly-annotated but
sequenced prokaryotes, where good quality TFBS predic-
tions can be obtained ab initio with the protocol described
here. It should be noted here that our definition of non-
operonic genes is expanded by considering triplets with
genes transcribed in opposite directions and that the over-

all prediction accuracy falls to around 64% when only the
transcriptional boundary set are used. However, this drop
off also occurs using intergenic distance as the sole predic-
tor, reducing to 62% accuracy with the same data set (and
same threshold as that optimised for the negative set
including directional examples). Thus, our claim is not
that predicted TFBS alone are superior operon predictors,
rather that they should be used as independent features
that offer a complementary approach.

PSWM statisitics for E. coliFigure 7
PSWM statisitics for E. coli. Z-score, number of hits, AT-richness and non-coding region bias (Rbias) of each PSWM in the 
E. coli 3_08_1506_all PSWMs set using a TFBS prediction threshold of μbackground+4σbackground.
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Indeed, TFBS may offer other advantages. Thus far inter-
genic distance has proven to be the most accurate single
feature for operon prediction in E. coli and B. subtilis
[9,10,12-14,49]. Intergenic distance is implicitly linked to
our method since TFBS identification/prediction is
focused on intergenic non-coding regions only. Compar-
ing the operon prediction accuracy in S. coelicolor of the
TFBS and intergenic distance approach (using the same
log-likelihood method documented in [15]) both features
achieve similar accuracy (93–95%) when applied to the
same positive and negative (both directional and tran-
scriptional boundary) operon example data set. The
operon predictions themselves however are not perfectly
correlated between the two approaches, although there is
a strong correlation – around 0.7 depending on thresh-
olds used for TFBS and intergenic distance predictions.
Hence, the two features are complementary, and their
combination is expected to produce further improvement
in operon prediction. Finally, although both methods
perform equally well, TFBSs as predictors of operons are
advantageous since additional regulatory information
about a particular putative operon may be inferred.

This protocol derives genome-specific PSWMs (Position
Specific Weight Matrices) representing significant dimers,
which can subsequently be exploited for operon predic-
tion. The majority (77% – 93%) of experimentally vali-
dated E. coli transcription factor binding footprints can be
characterised as palindromic (either with or without mis-
matches allowed) and consequently the PSWM set was fil-
tered prior to operon prediction. Restricting the PSWM
data set to 'perfect' palindromes (no mismatches allowed)
increased operon prediction accuracy in S. coelicolor but
not E. coli and therefore, and supports the conclusion that
genome-specific models for operon prediction should be
employed [19,50]. The improved performance in S. coeli-
color compared to E. coli may be a result of the PSWM con-
struction strategy. The complete upstream intergenic
regions were used in S. coelicolor whilst a restricted set
based on annotated TFBSs was used in E. coli to find over-
represented dimers. This would be expected to lead to
increased coverage in S. coelicolor, and perhaps increased
specificity in E. coli. This is borne out by the results, where
high TFBS prediction coverage leads to superior operon
prediction performance.

The false negatives (FNs) in this operon prediction strat-
egy are intra-operonic genes (genes known to be tran-
scribed together with its respective upstream gene) that
have a predicted binding site (given the set of predicted
PSWMs and applied threshold) in their upstream non-
coding regions. The existence of these is not wholly sur-
prising given our previous results [19] which demon-
strated that intra-operonic genes with increased
expression relative to the first gene of the same operon are

more likely to have a predicted TFBS in their upstream
non-coding regions. This intra-operonic promotion of
gene expression has been noted by other groups
[11,32,33]. Using a μbackground+4σbackground as a PSWM
threshold we found that 23% of the S. coelicolor and 43%
of the E. coli false negatives (35 and 227 FNs respectively)
had higher expression than the first gene of the same
operon. Therefore, when microarray expression data is
available, it is possible to combine this with high quality
TFBS predictions to improve the overall accuracy of
operon prediction and gain information on the dynamic
nature of some operons (specific, isolated control within
operons for specific responses). This would not be possi-
ble with the application of intergenic distance alone to
predict operons, and offers a way forward to address the
true complexity of operon regulation.

Conclusion
This work has demonstrated the suitability of predicted
TFBSs as operon predictors independently. We are cur-
rently working on a genome specific operon predictor for
both S. coelicolor and E. coli that is able to combine TFBSs
and other features found to be useful in operon predic-
tions (Laing et al, Manuscript in preparation). Integrated
approaches to operon prediction in prokaryotes are
clearly needed, since expression of genes within operons
is affected by several factors, not least the presence of suit-
able transcription factor binding sites, and array-based
data on its own is insufficient to understand this phenom-
enon. Indeed, a recently developed operon prediction
method for S. coelicolor [11] that combines intergenic dis-
tance, expression data and terminators, whilst able to
show comparable operon prediction accuracy to that pre-
sented here, is unable to predict 'dynamic' operons,
defined as the isolated expression of a gene(s) from their
'common' (under 'normal' conditions) transcriptional
unit to which they reside. The findings of this work sug-
gests that TFBS are a useful feature for predicting operons
of all prokaryotes in their own right but also have the
capacity to allow the modelling of dynamic operon struc-
tures of an entire genome in a particular, specific condi-
tion (e.g. response to a stress) when combined with
expression data [19].
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Additional file 1
Operon definitions used in this study. This file contains list of operonic 
and non-operonic genes used in the datasets tested in this study, for Strep-
tomyces coelicolor and E. coli. Data sets are divided into known operons, 
non-operon gene pairs at known transcriptional boundaries, and non-
operon genes from triplet data where genes are transcribed in opposite 
directions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-79-S1.doc]

Additional file 2
Repressor and Activator site footprint data. This file contains full 
details of all the 211 repressor sites, 77 activator sites and 341 dual reg-
ulator sites taken footprint data in RegulonDB for E. coli and used in this 
study for analysing trends in palindromicity.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-79-S2.doc]
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