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Abstract

Background: Genome evolution is shaped not only by nucleotide substitutions, but also by
structural changes including gene and genome duplications, insertions, deletions and gene order
rearrangements. The most popular methods for reconstructing phylogeny from genome
rearrangements include GRAPPA and MGR. However these methods are limited to cases where
equal gene content or few deletions can be assumed. Since conserved duplicated regions are
present in many chloroplast genomes, the inference of inverted repeats is needed in chloroplast

phylogeny analysis and ancestral genome reconstruction.

Results: We extend GRAPPA and develop a new method GRAPPA-IR to handle chloroplast
genomes. A test of GRAPPA-IR using divergent chloroplast genomes from land plants and green
algae recovers the phylogeny congruent with prior studies, while analysis that do not consider IR
structure fail to obtain the accepted topology. Our extensive simulation study also confirms that

GRAPPA has better accuracy then the existing methods.

Conclusions: Tests on a biological and simulated dataset show GRAPPA-IR can accurately
recover the genome phylogeny as well as ancestral gene orders. Close analysis of the ancestral
genome structure suggests that genome rearrangement in chloroplasts is probably limited by
inverted repeats with a conserved core region. In addition, the boundaries of inverted repeats are
hot spots for gene duplications or deletions. The new GRAPPA-IR is available from http:/

phylo.cse.sc.edu.
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Background

Mutations in a genome consist of not only base pair level
changes but also events that alter the chromosome struc-
ture, such as inversions, duplications or deletions [1].
Ancestral gene sequence inference has led to significant
predictions of protein functional shift and positive selec-
tion [2]. For example, comparisons of orthologous chro-
mosomal segments showed heterogeneous rates of
evolution of the X chromosome in human, mouse and rat
[3]. However, on the genome level, the evolutionary
change of genome structure is poorly understood. Infer-
ence of ancestral genomes was mainly achieved at the
DNA level, but limited to closely related organisms where
rearrangements were negligible, partly because of the
complexity in assigning genes in duplicated segments to
orthologous groups [4]. In this paper, we take a simple,
alternative data set of chloroplast genomes to study the
phylogeny and genome structural changes. Chloroplasts
are the green, photosynthetic organelles that originated
from a free-living cyanobacteria-like ancestor [5]. Chloro-
plasts maintained a reduced genome through over one
billion years of endosymbiosis [6]. Typical chloroplast
genomes are circular single chromosomes with 120 —
200 genes, which encode proteins, tRNAs, rRNAs and
hypothetical open reading frames. Most chloroplast
genomes consist of four distinct parts: two duplicated
regions (inverted repeats, or IR) separated by a large single
copy (SSC) and a small single copy (ISC) region. Figure 1
shows the four regions (LSC-IRa-SSC-IRb) of Gossypium
hirsutum chloroplast [7]. One common characteristic of
the chloroplast IR is the presence of three TRNA genes
(rrn5s, rm16s and rrn23s, or rrf, 1rs, and rrl), which are
homologous to genes of the cyanobacterial rrn operon.
The structure of chloroplast genomes of land plants is
highly conserved, with almost collinear gene order, except
for elevated level of rearrangements in specific lineages
including green algae [8], conifers and members of a few
flowering plant families including Campanulaceae [9],
Geraniaceae[10] and Fabaceae|11]. The gene content of
chloroplast IRs vary greatly, largely due to the expansion
and contraction of the IR at the IR-SC boundaries; this
"ebb and flow" of IR boundary has been observed even
within a genus [12,13]. Chloroplast genomes of green
algae (charophyte and chlorophyte algae) also contain
more variations of gene order and some are highly rear-
ranged [8], with some evidence that rearrangements may
be adaptive in nature [37]. Because of their compact size
and the availability of conserved DNA probes, many chlo-
roplast genomes have been mapped [14], and 121 have
been completely sequenced to date. Thus, chloroplast
genomes provide an ideal example for modeling genome
rearrangements over a broad evolutionary time scale.

http://www.biomedcentral.com/1471-2164/9/S1/S25

Genome rearrangements

We assume a reference set of n genes {g;, g, ® ® *, g,}, thus
a genome can be represented as a signed ordering of these
genes, and each gene is given an orientation that is either
positive, written g;, or negative, written —g;. Genomes can
evolve through events such as inversions, transpositions
and transversion, as well as other events such as deletions,
insertions and duplications of fragments. Let G be the
genome with signed ordering of g1, g2,..., g,. An inversion
(reversal) between indices i and j (i <), transforms G to a
new genome with linear ordering

&ir & i1 =8 &1 =8 &1 1 &

A transposition on genome G acts on three indices ij,k,
with i <jand k &owm; [i,j], picking up the interval gi,gi+1,

.. g and inserting it immediately after gk. Thus genome
G is replaced by (assume k > j):

81811811 8rr 8ir8iv1r 181 8krr 1 8w

Because gene rearrangements are rare genomic events[15],
gene-order data enable the reconstruction of evolutionary
events far back in time, thus many biologists have
embraced this new source of data in their phylogenetic
work [9,14,16,38].

Genome rearrangement analysis

Given two genomes G, and G,, we define the edit distance
d(G,, G,) as the minimum number of events required to
transform one genome into the other. The breakpoint dis-
tance [17] is not a direct evolutionary distance measure-
ment. A breakpoint in G, is defined as an ordered pair of
genes (g; &) such that g; and g; are adjacent in G, but not
in G,. The breakpoint distance is simply the number of
breakpoints in G, relative to G,. When only inversions are
allowed, the edit distance is the inversion distance. Han-
nenhalli and Pevzner [18] developed a mathematical and
computational framework for signed gene-orders and
provided a polynomial-time algorithm to compute the
edit distance between two signed gene-orders under inver-
sions; Bader et al. [19] later showed that this edit distance
can be computed in linear time. However, computing the
inversion distance is NP-hard in the unsigned case [20].

Gene rearrangement phylogeny was first proposed by
Sankoff and an algorithm using break-point distance was
implemented in BPAnalysis [4]. The inversion phylogeny
was introduced to improve the accuracy and was imple-
mented in GRAPPA. Extensive simulations showed that
inversion median were superior to breakpoint median
[21] and the trees returned were more accurate than using
either distance-based or parsimony methods [22]. The
current version of GRAPPA (version 2.0) is able to esti-
mate the phylogeny and inversion medians using
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Gene map of the Gossypium hirsutum chloroplast genome. The bright thick lines indicate the extent of the inverted
repeats (IRa and IRb), which separate the genome into small (SSC) and large (LSC) single copy regions. The gene map is drawn

using CGView [35].

genomes with equal gene content (i.e., no insertion, dele-
tion or duplication are allowed) [22]. A scaled-up version,
DCM-GRAPPA, is able to estimate the gene-order phylog-
eny with very high accuracy for thousands of genomes,
thus greatly increasing the power of genome phylogeny
using large datasets [23]. We extended GRAPPA [24] so
that it is able to analyze data sets with a limited number
of deletions, but no duplication is allowed. To remedy
this problem, we develop a new algorithm (GRAPPA-IR)
for chloroplast genomes that take into account the unique

quadripartite structure (e.g., LSC-IRa-SSC-IRb), which is
common to not only the chloroplast genomes, but also
some other IR-containing DNAs. The assumption of our
new approach is that inversions do not occur across
inverted repeats, because the genome structure will be dis-
rupted by such inversions that "flip" the repeats from
inverted to the same orientation. According to the model,
a change of gene content within the IR region is mainly
due to growth or shrinkage of the IR at the IR-SC bound-
aries. This approach is in agreement with the observation
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that in most IR-containing chloroplasts, the gene content
in the whole genome is conserved, but IR length and IR
gene contents can be varied.

Results and discussion
We assess the new GRAPPA-IR through both biological
and simulated datasets.

Analysis of six chloroplast genomes

We select a test case of six chloroplast genomes represent-
ing major lineages of land plants and green algae, all of
which share the quadripartite structure (LSC-IRa-SSC-
IRDb). The organisms include Nicotiana tobacum (tobacco,
nt), Psilotum nudum (whisk fern, pn), Marchantia polymor-
pha (liverwort, mp), Chaetosphaeridium globosum (a charo-
phyte alga, cp), Nephroselmis olivacea (a chlorophyte alga,
no), and Mesostigma uiride (a photosynthetic protist, mv).

A reference phylogenetic tree was constructed using the
maximum parsimony method with 50 concatenated pro-
teins. Cyanophora proteins were used to root the tree. The
reference phylogeny of these six chloroplast genomes is
shown in Figure 2. The reference tree is the same as the
phylogeny by Lemieux et al. [25] in which Mesostigma is
basal to other green plants and algae. An alternative phyl-
ogeny was published by Karol et al. based on maximum
likelihood analysis of four chloroplast genes and includ-
ing many more algal taxa, in which Mesostigma is basal to
charophyte green algae and sister to chlorophyte green
algae [26]. We extracted 73 unique genes from the six
genomes. Actual number of genes included in each
genome ranges from 76 to 80 due to duplicated genes in
AIR. The gene set includes 62 characterized protein-cod-
ing genes, 3 rRNAs, 7 tRNAs (identified by amino acid
anticodons) and a hypothetical conserved open reading
frame (ycf1). The encoding reflects the order and orienta-
tion of genes in the genome. Location of multi-exon genes
was determined by the starting position of the first exon.
In one case, the order of overlapping genes (psbD-psbC)
was determined by the position of the start codon. We

—— Nicotiana (nt)

—— Psilotum (pn)

Marchantia (mp)

Chaetosphaeridium (cg)

Nephroselmis (no)

Mesostigma (mv)

Figure 2
The reference phylogeny of chloroplast genomes
from land plants and green algae.
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— Psilotum (pn)

—— Nicotiana (nt)

—— Marchantia (mp)

L_  Chaetosphaeridium (cg)

Nephroselmis (no)

Mesostigma (mv)

Figure 3
The best tree obtained by GRAPPA-IR. The topology
is the same as the reference tree.

evaluate all possible trees for the six genomes using the
GRAPPA-IR. After 100 min of computation on a PIV
3.4GHz workstation, GRAPPA-AIR returned a best tree
with 74 inversions, with a topology agrees with the refer-
ence tree, which is shown in Figure 3.

We tested this data set with the original GRAPPA by ignor-
ing the region boundaries and removing the IRb region.
The inference allows inversions to occur across the IR and
single copy regions. The best tree obtained requires 73
inversions, yet the topology (Figure 4) is very different
from the reference trees and is in conflict with the biolog-
ical relationship of these organisms. Although GRAPPA is
a heuristic, extensive testing on simulated and biological
data confirmed its high accuracy, thus its failure in this
test suggests that the IR-boundary do perform a unique
role in the evolution of chloroplast genomes, and a better
method as GRAPPA-IR should be preferred.

We examined the reconstructed ancestral gene orders on
the best tree returned by GRAPPA-IR. This six-genome
dataset contains chloroplast genomes of land plants,
green algae and a flagellate protist, which were separated
by at least 450 million years of evolution [27]. The ances-
tral chloroplast genomes of land plants and algae contain
inverted repeats, which is consistent with the hypothesis
that IR is a feature derived early in the chloroplast endo-
symbiosis [16]. Although the sequenced cyanobacteria
Nostoc and Synechococcus do not maintain rrn-containing
IRs, if other cyanobacteria are identified with structures
similar to the chloroplast IR, then it would suggest an
even earlier origin for this structure. In addition, the
ancestral IR contains the same gene content to that of Mes-
ostigma, which agrees with the observation that Mes-
ostigma chloroplast genome encodes several ancestral
gene clusters [25]. By comparison of ancestral gene orders
to the extant genomes, it is possible to test formally the
evolutionary force of gene order changes. For example,
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—— Psilotum (pn)
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Figure 4

The best tree when no IR boundary is imposed, with
score 73. Notice that the topology is different from the ref-
erence tree.

ancestral gene clusters may be more likely to be main-
tained if they share related function and are under con-
straints in the face of genome rearrangements.

Simulations to assess accuracy

Phylogenetic analysis methods deal with lost historic
information, thus their accuracy should also be assessed
through simulations, where the true evolutionary history
is known.

We first define our measure for the accuracy of recon-
structed trees. Given an inferred tree, we compare its "top-
ological accuracy" by computing "false negatives" and
"false positives" with respect to the "true tree" [28]. For
every tree there is a natural association between every edge
and the bipartition on the leaf set induced by deleting the
edge from the tree.

Let T'be the true tree and let T' be the inferred tree. An edge
e in T is "missing" in T' if T' does not contain an edge
defining the same bipartition; such an edge is called a false
negative (FN). Note that the external edges (i.e. edges inci-
dent to a leaf) are trivial in the sense that they are present
in every tree with the same set of leaves. The false negative
rate is the number of false negative edges in T' with respect
to T divided by the number of internal edges in T. The false
positive (FP) rate is defined similarly, by swapping T and
T'. The Robinson-Foulds (RF) rate is defined as the average
of the FN and FP rates.

In this study, we generated datasets of 6 and 10 genomes,
each with 78 genes (70 genes in LSC, 5 in SSC and 3 in IR),
roughly in the range of our dataset described in the paper.
We used a large range of evolutionary rates: let r denote
the expected number of evolutionary events along an edge
of the model tree, we used values of r in the range of 4—
10. The actual number of inversions along each edge is

http://www.biomedcentral.com/1471-2164/9/S1/S25

sampled from a uniform distribution on the set {1,2,...,
2r}. Given the model tree, we assigned the identity gene
order to the root, and randomly generated gene order for
each node based on the edge length and the gene order of
its parent, with the assumption that inversions can not
cross the IR boundaries. For each combination of param-
eter settings, we simulated 20 datasets and averaged the
results.

We compared GRAPPA-IR to the original GRAPPA. We
considered all trees with the minimum score given by
both methods and took their strict consensus (of course,
most time there is only one single best tree was returned).
Therefore, the trees returned by both methods need not to
be fully resolved and they tend to have somewhat better
rates for false positives than for false negatives. As a result,
we only report FN rates rather than FP rates or a single
Robinson-Foulds score [29]. Figure 5 and Figure 6 show
the results. This simulation indicates that GRAPPA-IR is
clearly more accurate than the original GRAPPA for data-
sets with r < 10, which is in accordance with results on the
six-genome dataset.

Since the inferred ancestral genomes have direct impact
on the tree scores, we can examine the quality of the
inferred ancestral genomes by comparing the best tree
score returned by GRAPPA-IR with the known true tree
score. Averagely speaking, scores of the best trees returned
by GRAPPA-IR was only about 7% less than the true
scores, which strongly indicates that the inferred ancestral
gene orders should be very close to the true ancestral
genomes.

1 5 T T T T
S
o
©
Z
L
evolutionary rate r
Figure 5

FN rate for GRAPPA-IR (solid line) and GRAPPA
(dashed line) as a function of the evolutionary rate r
for 6 genomes. The horizontal line indicates the 5% error
level, a typical threshold of acceptability for accurate phylo-
genetic reconstruction [36].
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Figure 6

FN rate for GRAPPA-IR (solid line) and GRAPPA
(dashed line) as a function of the evolutionary rate r
for 10 genomes.

Discussion

Mechanisms of IR expansion

The gene content of the IR varies across land plants, even
in a single genus or family [12]. It is known that homolo-
gous recombination is frequent between the two copies of
IR [30]. In a single chloroplast, hundreds of copies of
chloroplast DNA co-exist as circular monomer, dimer and
linear chromosomes. In the cellular endosymbiosis envi-
ronment, the selection on accuracy of replication may
have been relaxed to the degree that unequal recombina-
tion and replication slippage contribute to the expansion
or shrinkage of IRs. Short repeat motifs may facilitate
inter-molecular recombination and create diversity of
chloroplast genomes in a population [31]. On the other
hand, the intra-molecular recombination process should
homogenize the sequences of the two IRs and thus the
particular IR size and the gene content are maintained.
The two counteracting phenomena may have played
important roles in shaping the current diversity of chloro-
plast genome gene orders.

Duplications and genome stability

We found that incorrect gene order phylogenies were
recovered without considering the IR boundary informa-
tion. This suggests that maintenance of the IR is necessary
in the evolution of chloroplast genomes in most of the
cases. We propose that IR provides an insulation mecha-
nism that stabilizes the genome structure, and the genes in
single copy regions do not commute across the IR. This
agrees with the observation that gene rearrangements are
more frequent in chloroplast genomes without IR [32].
However, some genomes with residual IRs but infrequent

http://www.biomedcentral.com/1471-2164/9/S1/S25

gene movements between single copy regions compared
to related lineages do not conform to the hypothesis [9].
Future experimental studies on highly rearranged chloro-
plast genomes, for example, in the green alga
Chlamydomonas lineage [8,37], may shed light on the
maintenance of IR and genome rearrangements.

Comparison to other methods

A similar approach used for human and mouse genome
comparison showed the optimal sorting of X chromo-
somes by at least 7 inversions [33]. This is a moderate
amount of change compared to the level we observe in
many chloroplast genomes. If duplications and deletions
are considered in a finer scale, the process will be much
complex, as suggested by the reconstruction of one 1.1 Mb
region in the eutherian mammal ancestor [4]. All meth-
ods proposed in this paper could be applied to MGR and
other method, which will result in a whole new set of
tools for botanists interested in genome level evolution.

Conclusions

We implement a new method to infer phylogeny and
ancestral gene orders with inverted repeats. Tests on a bio-
logical and simulated dataset show GRAPPA-IR can accu-
rately recover the genome phylogeny as well as ancestral
gene orders. Close analysis of the ancestral genome struc-
ture suggests that genome rearrangement in chloroplasts
is probably limited by inverted repeats with a conserved
core region. In addition, the boundaries of inverted
repeats are hot spots for gene duplications or deletions.
This analysis provides new insight into the genome evolu-
tionary process.

Methods

We developed a new method (GRAPPA-IR) to handle
inverted repeats. This method is available online from
http://phylo.cse.sc.edu.

Mapping contents in ancestral genomes

The first step of our new method-GRAPPA-IR is to deter-
mine the gene contents for each region in the genomes
involved. Based on our previous research [24], such map-
ping can dramatically reduce the search space and
improve the overall accuracy. When a genome is on a leaf
(i.e., it is an extant taxon), we can easily determine the
gene content for the LSC, ISC and IR regions through
direct observation. However, since we do not know the
gene order at each internal genome, we can only estimate
the gene content for each region based on the assumption
that all evolutionary events that alter the gene order are
rare and that concurrent (i.e., parallel) changes in two
children are less likely than a change in the parent. Thus,
at each internal node, for a given region, when the
regional gene contents for the two children are known, we
face three possibilities of assigning a gene to the region:
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1. If both children have gene g in the same region, then the
parent has g in that region; otherwise, both children need
to expand (or shrink) IRs and include g in that region,
with a very low probability.

2. If neither child has g then g is absent in the parent.
Since the genomes we test all share 70 unique genes, we
do not consider this case.

3. If g is located in different regions between the children,
then it could be in either region of the parent. The two
choices are equally likely without further information
from the phylogeny. If the tree is rooted, we use the gene
content in the evolutionary path to break the tie; other-
wise, we are left with an undetermined outcome for g.

If a gene is undetermined in some internal node, it may
become determined through a propagation of decisions
from the leaves to the root. The estimated gene content for
the internal nodes of the reference tree is presented in Fig-
ure 7. This figure shows that the gene contents of the IR
and ISC regions vary among the genomes. However the
gene order of part of IR is highly conserved. For example,
some genes (1rn5, rrnl6, rrn23, coded as 67, 68 and 69,
respectively) are always kept together in the IR. If we
assume that inversions do not cross the IR boundary in
most chloroplast genomes, then the evolution of chloro-
plast genome structure can be hypothesize as undergoing
the following two steps:

1. A genome was divided into regions and inversions
occurred independently in each region.

2. A segment from single copy regions was copied twice
and joined to the existing inverted repeats, and the new
genomes with longer IRs propagated.

-3567686971-70 7273 70'?07 —-69 -68 -67 35
-29 67 68”% 7270 =71 -73-69 —68 —67 29

Intl 67 68 69 =70 717273 70 —69 —68 —67
67 68 69 =70 71 =72 =73 70 —69 —68 —67

g
67 68 69 =70 71 =72 -7370 —69 —68 —67

67 68 69 ~70 71 =72 ~7370 —69 —68 —67
mp Ine2
6768 69 =70 71 =72 =73 70 ~69 68 —67 )67 68 69 =7071 =12 1370 ~69 ~68 ~67
67 68 69 ~70 71 72 =73 70 —69 68 ~67
64 ~65 ~66 67 68 69 7071 7273 7069 ~68 ~67 66 65 64
Figure 7

Estimated gene contents for each region (only IR and
SSC are shown).
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676869 70717273 —-69 —68 —67
67 68 69 —70 71 =72 ~73-69 —68 —67)

g
67 68 69 =70 71 =72 =73 —-69 —68 —67

67 68 69 —7071 =72 ~73 —-69 -68 —67

Int2

mp 67 68 69 7071 <72 =73 —69 68 ~67

67 6869 -7071-72-73 —69 —68 —67
pn
67 6869 -7071-72-73 —69 —68 —67

nt
—64 —65 -66 67 68 69 —7071 =72 -73 —69 —68 —67

Figure 8
Revised estimation of gene contents for each region
(only IR and SSC are shown).

One should notice that the above two steps could happen
several times along each edge. Based on the above
assumption, we can further simplify the gene content of
IR and SSC, so that in the evolutionary path, IR regions for
all genomes (leaves and internal) contain gene (67 68
69), and the SSC regions contain gene (70 71 72 73). This
operation treats duplicate genes at the boundaries of IR
and SSC as the last step towards the observed gene orders
in the evolutionary path. Thus it is possible to ignore the
duplications and reduce the problem to all leaf genomes
of equal gene content (or with deletions). The simplified
gene content map is shown in Figure 8.

Phylogeny and ancestral genome reconstruction

We can reconstruct the phylogeny after the regional gene
contents of all genomes are determined. Since the gene
contents are reduced to equal after the simplification step,
it is feasible to use GRAPPA to infer an inversion phylog-
eny. That's to say, if inversions are allowed to cross the
boundaries of pre-determined IR and single copy regions,
we can use the original GRAPPA to compute the ancestral
gene orders and the phylogeny. However, this is unlikely,
since we do not observe any inversions involving genes in
both the IR and single copy regions. Based on our pro-
posed model, we assume that all inversions are bounded
by the boundary of IRs.

Bounding inversions into each region makes each region
(LSC, SSC and IR) independent, which greatly simplify
the computation. For two genomes G; and G, the
genomic distance between these two can be defined as
d(G,,G,) = d(S8SC,, SSC,) + d(LSC,, LSC,) + d(IR;, IR,),
i.e., the overall distance is the summation of all regional
distances. If no gene content is changed for each region,
then the regional distance can be computed using the lin-
ear algorithm proposed by [19]. However, if the regional
content is not equal (deletions or insertions occur), then
more complex algorithm [34] should be used. The small-
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est binary tree contains only three leaf genomes and one
ancestor. This special case is called median problem in some
literatures. Given three genomes G,, G, and G;, solving a
median problem is to find a genome G, that can minimize
the sum of distances from itself to the three given
genomes. Although it is the simplest case for multiple
genome analysis, it is proved to be NP hard even for the
simplest distance of breakpoint. Since we can deal with
each region independently, the median problem can also
be divided into three regional median problems, each of
which is constructed from genes in the same region of
genomes g;, g, and g;. After the regional median is
obtained, the median solution on the whole genome can
be constructed simply by concatenating the regions
together. Again, the regional median problems can be
solved using any of the available inversion median solv-
ers, such as [20] (for equal regional gene content) or [24]
(with deletions and insertions).

To analyze a dataset with more than three genomes,
GRAPPA-IR uses an exhaustive approach devised for the
original GRAPPA-it must test all possible trees to find the
one with the minimum number of inversions. For each
tree, the program tests a lower bound [22] to determine
whether the tree is worth scoring; if so, then the program
will iteratively solve the median problems at internal
nodes and update the internal genomes, until no change
occurs, as outlined in Figure 9. The tree with the lowest
score (smallest number of changes) will be returned as the
phylogeny, and internal gene orders with respect to the
phylogeny can be treated as the estimated ancestral
genomes.
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Initially label all internal nodes with gene orders
Repeat
For each internal node v, with neighbors A, B and C, do
Solve median problem on A, B, C to yield m
If relabeling v with m improves the tree score, then do it
Until no change occurs

Figure 9
The scoring procedure of GRAPPA-IR when the tree
is given.
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