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Abstract
Background: Gene expression data extracted from microarray experiments have been used to
study the difference between mRNA abundance of genes under different conditions. In one of such
experiments, thousands of genes are measured simultaneously, which provides a high-dimensional
feature space for discriminating between different sample classes. However, most of these
dimensions are not informative about the between-class difference, and add noises to the
discriminant analysis.

Results: In this paper we propose and study feature selection methods that evaluate the
"informativeness" of a set of genes. Two measures of information based on multigene expression
profiles are considered for a backward information-driven screening approach for selecting
important gene features. By considering multigene expression profiles, we are able to utilize
interaction information among these genes. Using a breast cancer data, we illustrate our methods
and compare them to the performance of existing methods.

Conclusion: We illustrate in this paper that methods considering gene-gene interactions have
better classification power in gene expression analysis. In our results, we identify important genes
with relative large p-values from single gene tests. This indicates that these are genes with weak
marginal information but strong interaction information, which will be overlooked by strategies
that only examine individual genes.

Introduction
Gene expression data that measure mRNA abundance in
samples under different conditions provide a valuable
tool for studying the difference between the molecular
activities of an organism under these conditions [1,2].
Such a study is usually based on a discriminant analysis of
the sample classes (under different "conditions") using

the gene expression profiles observed in the experiments.
Because of the large number of genes that are measured in
one microarray experiment, a critical step is to select the
genes that are informative about the between-class differ-
ence. Such a selection also allows researchers to identify
genes that are potentially relevant to the between-class dif-
ference in the molecular activities.
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The most popular strategy of selecting informative genes
is to use t-type scores that compute the mean expression
difference of a gene between two classes, standardized by
a measure of within-class variability [1,3,4]. Similar strat-
egies have also been used, motivated by the t-type scores'
relevance to the two-sample mean test, such as the Wil-
coxon test and the maximum invariant test, etc. [5-7]. In
van't Veer et al. (2002) [2], the correlation coefficient
computed between a gene's expression and the class label
(0 and 1) was directly used. This can also be shown as a t-
type score using a different standardizing measure of var-
iability. The common advantage of these tests are their
simplicity. The disadvantage is that they only evaluate the
genes individually (or marginally) and ignore possible
class information contained in gene-gene interactions.
Dudoit et al. (2002) [8] carried out a comparison of cur-
rent discriminant analysis methods and commented on
the lack of gene selection methods that consider interac-
tions among genes.

In this paper, we propose and study a framework of select-
ing informative genes via backward information-driven
search on gene sets. The central idea of this framework
relies on between-class information measures defined on
multi-gene expression profiles. We first consider the Mul-
tigene Profile Association (MPAS) method [9] that was
adapted from the Backward Genotype-Trait Association
(BGTA) method derived in [10] for gene mapping. For the
analysis of gene expression, the innovation lies in the dis-
cretization of the original expression values of genes into
discrete expression state values and the definition of multi-
gene expression state profiles. The discretization is done
through k-means clustering on the training set, where the
expression values of a gene are clustered into three levels:
high, normal, or low. Such a discretization greatly reduces
the complexity of the data and make the formulation of
multigene profiles feasible. It also makes the analysis
more resistant to outliers and extreme values. Once the
discretization is applied to the gene expression levels,
MPAS information measure is readily defined (similar as
in [10]) that measures the association between a partition
of samples by the multigene expression state profiles and
the class label.

Although MPAS has demonstrated improved discrimi-
nant power in our evaluation, its performance depends on
the number of states into which the expression values are
discretized. In our experiment with MPAS, we have used
an intuitive choice of three levels (high, normal or low).
However, the performance could be improved by using a
more refined definition of states. It could also be possible
that different genes or data sets may require different
"optimal" numbers of states. To avoid such arbitrary
choice, we consider a between-class difference informa-

tion measure directly defined on the original expression
values.

The second information-driven method we propose is the
signed Multigene Profile Association (sMPAS) method.
The derivation of sMPAS comes from the methods for
marked point processes (MPP) [11]. Considering the
space of multi-gene expression profiles spanned by several
genes, the discriminant analysis between two classes (can-
cer versus normal, for example) is equivalent to the spatial
segregation problem for two point processes with differ-
ent labels. In spatial statistics, the nearest neighbor dis-
tance (NND) has been used as a good indicator of
separation between clusters of points (e.g., [12,13]).
Therefore, for each point in the training set with n obser-
vations, we compute its distance to the nearest neighbors
in the two sample classes respectively. This gives us n pairs
of distances, the distance to the nearest neighbor of the
same class and the distance to the nearest neighbor of the
other class. The sMPAS information score is than defined
as the sign test [14,15] statistic defined on these n pairs of
distances. For genes whose expression values segregate
one sample class from the other, sMPAS information
score is greater than expected by chance, reflecting the
importance of these genes for the discriminant analysis
task.

On a training set, our approach examines the large set of
genes in a microarray study through repeated backward
elimination screenings on small random sets of genes one
at a time. For each random subset, the information meas-
ures are evaluated based on the expression profiles of
these genes. Genes are removed recursively from the cur-
rent set to increase the information measures until no
improvement can be achieved. The retained genes from
each screening are recorded. After the process is repeated
a large number of times on different random sets of genes,
the genes are then ranked based on their aggregated return
frequencies. It should be noted that our backward recur-
sive elimination is different from Li and Yang (2005) [16].
Li and Yang (2005) [16] proposed to eliminate redundant
genes by using inter-gene association whereas our elimi-
nation is based on gene's contribution to an information
score.

For class prediction based on the informative genes
selected, a neighborhood voting method is naturally formu-
lated. For an inquiry sample, a vote is given by a particular
informative gene, according to the class dominance of the
training data in the neighborhood of this inquiry sample.
The neighborhood of this inquiry sample is defined to be
its expression state on this given gene for MPAS and its
nearest neighbor for sMPAS. The corresponding weight for
this vote reflects the differentiating power of this given
gene with respect to the two classes. Votes are calculated
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for all selected top genes and aggregated using corre-
sponding weights.

We evaluate and compare the performance of MPAS and
sMPAS with several conventional methods including t sta-
tistic [3], gene voting [1], SAM (Significance Analysis of
Microarrays) [4] and correlation score [2], using the train-
ing set studied by van't Veer et al. (2002) [2] that consists
of 78 breast cancer patients. Under a 13-fold cross-valida-
tion framework, our information-driven approach dem-
onstrates advantages and better performance over these
methods (~20% improvement) through the efficient
usage of interaction information. Interestingly, different
from other methods evaluated, MPAS and sMPAS select
and use a substantial number of genes with large marginal
p-values, which would be overlooked by individual-gene
methods.

Methods
To facilitate discussion, suppose that we have a set of
training data that consists of n samples, n1 of which are
from class I and n2 = n - n1 of which are from class II. In the
microarray experiments, a total of P genes are measured.

Multigene profile association (MPAS) method
As discussed in the Introduction section, we discretize each
gene into three states "a","b" and "c", representing low
(under-expressed), normal, and high (over-expressed)
respectively. More specifically, we apply k-means cluster-
ing to a gene's expression values in the training set with
classes I and II pooled, setting the initial centers to be the
minimum, the median and the maximum as illustrated in
Figure 1. After the discretization, the data consist of genes
that each with three states and we are to identify the
important genes that capture the difference between class
I and class II.

In Zheng et al. (2006) [10], backward genotype-trait asso-
ciation (BGTA), a backward screening algorithm was
developed for gene mapping in case-control studies on
complex diseases. In such studies, association is evaluated
between a dichotomous disease trait with genome loci,
each with three genotypes. BGTA considers interactions
between loci when evaluating the association and there-
fore has better power in detecting important genes for

complex diseases. In the following, we directly apply the
BGTA framework on the discretized gene expression val-
ues and derive the gene selection process and correspond-
ing classifier.

Consider K genes, a given sample corresponds to a K-tuple
vector with expression states as its elements, which is
defined as a K-gene multigene profile on these genes. Thus
for a fixed value of K, there are a total of T = 3K patterns
possible. We measure the association between this set of
K genes with the class label using a multigene profile differ-
ence defined as,

where w1 = n_2/(n_1 + n+ 2), w2 = n1/(n1 + n2), ni1 is the
number of profile Pi observed among class I samples and
ni2 is similarly defined for class II. This is a straightforward
adaptation of the genotype-trait distortion (GTD) score
used in BGTA. To evaluate the informativeness of a given
gene, say Gi, among the K genes, we recalculate a MPD
score on expression profiles with this gene removed. The
main statistic in the MPAS method, Multigene Profile Asso-
ciation Score for a given gene among K genes, is then
defined as,

where ΔMPD(Giremoved) = MPD(Giremoved) - MPD and
δ is an adjusting term so that MPAS has an expectation of
0 under the null hypothesis that this gene has no associa-
tion with the class difference.

This is a straightforward adaptation of the genotype-trait
association (GTA) score used in BGTA. More computa-
tional details can be found in [10]. Similar to GTA, MPAS
measures the importance of each gene in terms of its asso-
ciation with the class label, given current genes. Positive
value of MPAS suggests that the deletion of Gi reduces
noise and boosts information measured by MPD and neg-
ative value means information loss.

Based the MPAS, we designed a backward eliminating
process for selecting important genes, similar to BGTA in
[10]. The gene selection process using MPAS:

1. Run B iterations on random subsets of genes.

(a) For the bth iteration, randomly pick a subset of K genes,
Sb out of the P genes in a given study to construct the ini-
tial K-gene profiles. P is usually in the thousands.

MPD = ∗ − ∗
=
∑( )w n w ni i

i

T

1 1 2 2
2

1

(1)MPAS current genes MPD removed( | ) ( )G Gi i= +1
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Use k-means to discretize expression valuesFigure 1
Use k-means to discretize expression values.
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(b) For each gene in Sb, compute MPASr.

(c) If all genes in Sb have negative MPASr scores, stop cur-
rent iteration. Otherwise, remove from Sb the gene with
the highest positive MPAS and iterate back to step 1b.

(d) Record retained genes in the final set of Sb.

2. After B iterations, compute the cumulative selection fre-
quency for each gene, F = (F1,F2,..., FP).

3. Select p genes with the highest selection frequencies.

The random subset selection procedure takes advantage of
the aggregated importance of a gene measured by the
MPAS score. This strategy was evaluated in [17] and [10]
using simulated data, where it was shown that genes with
higher importance have higher overall chance to be
retained by such a screening algorithm. In the validation
example, we used B = 500000 and K = 10.

MPAS class predictor
For class prediction, we propose to use a classifier similar
to that used in [1], as a weighted sum of votes, with
"weights" being a gene's (or gene pair's) level of impor-
tance and "vote" being the gene's (or gene pair's) predic-
tion on a particular inquiry sample. In this study, the
weighted sum uses both individual genes (marginal pre-
dictors) and gene pairs (joint predictors). Detailed con-
struction of a MPAS predictor is outlined as follows.

Once p top genes were determined based on their selec-
tion frequencies. They are to be used as marginal predic-
tors first. Their marginal weights are defined as . Take an

inquire sample with expression values x = {x1,..., xp} on

these selected p genes, the expression values, xi's, are first

discretized using the k-means result on the training data.
Say, for gene i, inquiry sample x falls in state h (h takes val-
ues a, b or c). The vote of gene i towards x is then Vi 

(m) =

w1 *Qi 
h,1/Qi 

h where Qi 
h = w1 *Qi 

h,1 + w2 *Qi 
h,2, is the

adjusted total number of training samples with gene i's
state being h, with Qi 

h,1 and Qi 
h,2 being the numbers of

class I and class II samples with gene i's state being h,
respectively; w1 and w2 are the sample size weights as

defined previously in (). The marginal vote for x is then

The class prediction is class I if P(m)(x belongs to class I|y)
≥ 0.5, and class II otherwise.

To train joint predictors, the MPAS screening process is
run a second time on the p selected genes only. Cumula-
tive selection frequencies are collected for each pair of
genes: . Among these pairs, rated by their selection fre-

quencies, top p* pairs are to be used as joint predictors.
For each selected pair, the weight  and the joint vote  are

similarly defined as for the marginal predictors, except

that the state takes pairs of values, i.e., h ∈ {(a, a), (a, b),
(a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}. The joint vote
is then the weighted sum of votes from these joint predic-
tors,

Finally, the marginal and joint votes are combined into
the MPAS predictor as follows:

where 0 ≤ α ≤ 1 is a constant we use to weigh the contri-
bution from the marginal vote and the joint vote. In the
validation section, we have used 50 for both p and p*,
with α = 0.75 for validation. Here we have chosen the val-
ues of p and p* to make the number of features selected
comparable to the other methods (e.g., [1]). α = 0.75 was
chosen to put more weights on the marginal vote, which
tends to be less overfitting than the joint vote. In future
practice, when the size of the data allows, we plan to use
cross-validation within the training set to select p, p* and
α.

Signed Multigene Profile Association (sMPAS) method
In the previous section, we proposed the use of the multi-
gene expression state profiles for studying association
between a set of genes and the class label. Here, the
expression state is obtained through discretization by k-
means clustering. The number of states needs to be speci-
fied for the k-means algorithm. Without any prior knowl-
edge on what is an appropriate number of states, the
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choice is relative arbitrary. It is also possible that the
number of natural expression states is different for differ-
ent genes. In a data-rich situation, a good estimation of
the gene expression's density function can shed light on
this issue. However, the sample size is usually very small
for gene expression studies. It is then desirable to avoid
such an arbitrary choice in evaluating the importance of
genes. Moreover, converting the original continuous
expression data into discrete values might result in loss of
information. In this section, we propose the signed Multi-
gene Profile Association (sMPAS) method, which incor-
porates the continuous gene expression values into a
multigene expression profile score.

We start the derivation of sMPAS by first restating the fea-
ture selection problem using the spatial segregation nota-
tions. Each individual sample in the training set can be
treated as a spatial point, each with a class label (eg. cancer
or normal), while the expression values of the genes under
study decide the coordinates of each point. In other
words, each gene under study corresponds to one dimen-
sion of the space of multi-gene expression profiles, where
the two classes of points (samples) are to be segregated.
Thus, the original gene selection problem can be studied
as the dimension selection problem for an optimal spatial
segregation. Thus, searching for the informative genes that
are associated with the class differentiation, is equivalent
to searching for the subset of dimensions for an "ideal pat-
tern", under which the neighborhood (defined in the
multi-gene expression profile space) of a class I individual
contains mostly (if not exclusively) points with class I
labels.

Considering K genes under study, the jth sample from class
I has expression profile

Similarly, we denote a sample from class II as Xl 
(II). The

two marked point processes to be segregated are denoted
as X(I) and X(II), corresponding to the two classes respec-
tively. If these K genes segregate class I points from class II
points, we would expect the proportion of X(I) points in
the neighborhood of any fixed X(I) point is greater than
that expected by chance.

Given a fixed point Xj
(I) ∈ X(I), define

as its Euclidean distance to the nearest neighbor among
the other points in the same class as itself (that is, class I).
And define

as its distance to the nearest point that belongs to the
other class (X(II)). Here the distance is computed in the K-
dimensional space spanned by the K genes under study.

Under the null hypothesis that X(I) and X(II) are not spa-
tially segregated, points from class I and class II can be
approximately regarded as two independent point proc-
esses with their intensity ratio being (n1 - 1)/n2 at Xj

(I). As
a result, the probability that ν(Xj

(I)) ≥ τ(Xj 
(I)) is (n1 - 1)/(n

- 1). If the density of class I points is higher than class II at
Xj 

(I) (that is, the class I points are distributed tightly away
from class II, in the feature space spanned by current genes
under study), the probability of having a class I nearest
neighbor is greater than (n1 - 1)/(n - 1). We therefore
define the signed Multigene Profile Information (sMPI)
score as a sign test statistic [14,15] defined on (ν(Xj

(I)),
τ(Xj 

(I))), that is

where 1{·} is the indicator function. sMPI is a non-nega-
tive integer between 0 and n1. This is also equivalent to
counting the correct predictions of the nearest neighbor
classifier for class I using leave-one-out validation.

For the information-driven screening, we define sMPAS
for gene Gi in current evaluation set as the difference
between the sMPI scores without and with Gi, that is,

The above sMPAS is an integer between -n1 and n1, with a
negative value indicating the importance of Gi in terms of
informativeness about X(I) against X(II). Using results on
point processes and some simplifying assumptions, we
can prove that sMPAS has non-negative expectation if Gi is
not informative about the between-class difference (not
shown here).

The information measure and association score can be
similarly defined with points in X(II) as well. These statis-
tics are then to evaluate the informativeness of genes
about class II against class I.

A similar backward elimination screening algorithm as
that used in MPAS is then applied using the scores defined
above. The only difference is that we run the screening
twice, first using the scores for X(I) and then using the
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scores for X(II). During the screening, sMPAS captures
dimensions where the two classes are segregated, and the
segregation of points is very sensitive to the dimensions
considered. It is therefore more important to track the spe-
cific interacting dimensions during the screening. Instead
of counting important genes, for sMPAS, we calculated the
number of times a pair of genes were retained and select
top p pairs of genes for the predictor, half of which for
class I and half for class II. For the validation example, we
choose top 50 pairs of genes according to the sMPAS
method.

sMPAS class predictor
For an inquiry sample x, each selected pair of informative
genes generates a signed vote depending on x's nearest
neighbor from the training set. In the space spanned by
the ith pair of informative genes, identify the nearest neigh-
bor to x from the training data, say with distance NNDi(x)
away from x. The vote from this pair of genes is then

where sign(NN) is 1 if the nearest neighbor in the training
set is from class I and is -1 if the nearest neighbor is from
class II.

The weight of this pair of genes' vote should depend on
their information score sMPIi. For pairs selected for class I
points, sMPI score is between 0 and n1. We propose to use
weight

where θ1 = (n1 - 1)/(n - 1). Assume a random variable X
follows the Binomial distribution with size n1 and proba-
bility θ1. The weight Wi is the probability that X is less
than or equal to the sMPIi observed. This is one minus the
p-value of sMPIi as a sign test statistic. For pairs of inform-
ative genes selected for class II, we define the weight sim-
ilarly,

where θ2 = (n2 - 1)/(n - 1).

Given the votes and their weights, we classify the inquiry
sample x to class I if and only if:

Results
The breast cancer data
It does not seem appropriate to exam our approach using
simulation method due to the lack of commonly recog-
nized statistical models for large-dimensional gene
expression data. For the purpose of validation, we applied
MPAS and sMPAS, as well as other measures to the breast
cancer data studied by van't Veer et al. (2002) [2]. We
choose single gene strategies: p-value from the two-sam-
ple t test, the Gene Voting method [1], SAM [4] and the
correlation coefficient [2] for comparison to illustrate the
information contained in multigene expression profiles.

In van't Veer et al. (2002) [2], expression values of 24,881
genes were measured for 44 good prognosis breast cancer
samples (class I samples) and 34 poor prognosis breast
cancer samples (class II samples). In the original paper,
the authors selected 4936 genes after preliminary analysis.
Here, according to [2], preliminary analysis includes the
elimination and imputation for missing values in original
experiment data. Redundant genes were eliminated using
rules of fold changes and P-values as well. However, since
they were not allowed to disclose the result on these 4936
genes, we used the 4918 genes obtained by Tibshirani et
al. (2002) [18]. Please refer to reference [18] for detailed
information.

For convenience, each gene was standardized by its mean
and standard deviation, so that a gene would have mean
0 and variance 1 across individuals. To create a fair com-
parison, equal sizes of top ranked genes or gene pairs (50
in our analysis) by each gene selection measure were
taken to construct classifiers. For a measure without a
specified classifier, such as t Statistics and SAM, DLDA was
used to make predictions.

Validation results
To avoid the under-estimation of prediction error using
only the training set, we followed the guideline in [18]
and carried out a 13-fold cross-validation on the data to
evaluate the gene selection methods and their correspond-
ing predictors as follows: 1) Divide the 78 cases into K =
13 equal-sized folds of 6 cases each; 2) Set aside one of the
folds. Using only the data from the other 12 folds to select
the top 50 genes or gene pairs ranked by each gene selec-
tion measure; 3) Use the corresponding predictor of each
gene selection method to predict the class labels for the
13th fold; 4) Calculate a total misclassification number
for each of the predictors. Summary for the prediction
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error rate over all 78 cases was given in Table 1. Prediction
errors for each of the 13 folds were plotted in Figure 2.

From Table 1, sMPAS has the best overall performance.
MPAS based on combined votes is only one misclassifica-
tion higher than sMPAS. Actually, out of 13 folds, MPAS
and sMPAS are tied for performance (tied in three folds;
MPAS performs better in five folds and sMPAS performs
better in the other five folds). As seen in Figure 2, either
MPAS or sMPAS has the best performance in 12 out the 13
folds. The overall performance of sMPAS is a ~20%
improvement from the best of the conventional marginal
methods. In Table 1 and Figure 2, we also included the
performance of the MPAS using only the marginal votes.
It is interesting to note that the genes selected by MPAS
has better marginal performance than the methods used
for comparison.

Conclusion and discussion
In this paper, we proposed an information-driven gene
selection approach for discriminant analysis of gene
expression data. The central component of this approach
is information measures defined on multiple genes that
consider gene-gene interaction. We have compared the
empirical prediction performance of genes or gene pairs
selected using our approach through a 13-fold cross-vali-
dation. A decrease of approximate 20% of misclassifica-
tion was shown using MPAS and sMPAS, compared with
the second-to-best predictors: Golub and correlation
score. Prior efforts on this data set are summarized in the
Table 2 in Yan and Zheng (2007) [9], which shows that
this data set projects a difficult task. The best results came
from either one test sample or leave-one-out validation.
Evaluation based on one test sample will rely on the spe-
cific data splitting heavily. Leave-one-out tends to under-
estimate the misclassification rate. One example can be
found in [19]: the LOO-CV kPCA using radial basis func-
tion had perfect performance on leave-one-out validation
but had 0.632 misclassification rate on an independent
test sample. Considering these factors, the classification
performance using genes selected by MPAS is excellent,
even compared with methods such as the support vector
machine (SVM).

In addition to the improved classification performance,
the more interesting feature of MPAS and sMPAS is the
consideration of higher-order gene interactions. By con-
verting original data into discrete states, MPAS potentially
loses some information. However, such reduction of com-

Table 1: Misclassification rates of the evaluated methods on the 
breast cancer data

Gene Selection Classifier Misclassification (Top 50 genes)

P-value of t-test DLDA 0.410
Golub Golub 0.385
SAM DLDA 0.423
Corr Corr 0.385
MPAS Marginal 0.346
MPAS MPAS 0.308
sMPAS sMPAS 0.295

Misclassification for each of the 13 folds using all 7 predictorsFigure 2
Misclassification for each of the 13 folds using all 7 predictors.
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plexity allows us to look at multigene profiles by adopting
an existing method from genetic epidemiology and extract
more interactive information among genes. A simple and
straight-forward example can be illustrated in Figure 3,
where the assignment of class labels are controlled by two
genes jointly, with state distributions (low, low) or (high,
high) being nearly exclusively class I and (low, high) or
(high, low) being class II. In this extreme case, traditional
methods that use marginal signals will not find these two
genes important. In the validation example, MPAS dem-
onstrated comparable performance to sMPAS that directly
uses the continuous-valued gene expression, which may
suggest that the discretization based on k-means cluster-
ing managed to retain important information in the
microarray data. The sMPAS method has the advantage of
its direct use of gene expression values without loss of
information. The current form of the method uses the
Euclidean distance, which makes it less robust to extreme
values and outliers. This may explain its less stable classi-
fication performance shown in Figure 2. Due to its moti-
vation from the theory on marked point processes, our
theoretical inference (not shown in this paper) suggests
sMPAS may turn out to be a much more powerful method
for data of larger sample sizes.

Among the genes selected by MPAS and sMPAS, some
have unusually large p-values. We further investigated this
matter by plotting some of these gene's density curves.

(Figure 4). From these plots, we can see that, with cancer
II samples having much fatter tails in both directions,
there are indeed distinguishable patterns between the two
cancer classes. However, with almost identical means,
such information would be ignored by marginal predic-
tors such as the t-test. Results from MPAS and sMPAS also
indicate that some genes are jointly returned more than
randomly. For instance, gene 4226 (RPS6) were retained
together with gene 844 (EST: Contig24094RC) almost 2.4
times more than expected by chance. In Figure 5, we plot-
ted the joint distribution of gene expression values of
KIAA1493 and KIAA0223. This pair of genes is regarded as
informative about cancer I by the sMPAS method. It is
shown that cancer I points distribute tightly in the space
spanned by these two genes. Such association in the
results of MPAS and sMPAS may lead to interesting
hypothesis for further biological studies on these genes.

Solid lines in Figure 5 indicate the k-means cut-off thresh-
olds for MPAS, which suggest the expression state profiles
of these two genes used by MPAS are not very informative
about the class difference. This clearly demonstrates the
advantage of sMPAS. On the other hand, MPAS demon-
strated more stable performance than sMPAS in Figure 2.
Some combination of these two strategies should be con-
sidered in the future to further improve the performance
and to identify more gene-gene interactions.

Density curves for large p-valued genesFigure 4
Density curves for large p-valued genes. Vertical lines 
indicate the cut-offs produced by k-means. Gene 2737 
(LOC51002) is annotated as a "CGI-121 protein". Gene 4712 
(DAXX) is annotated as "death-associated with protein 6".

Gene expression levels

***********************************************

Cancer I
Cancer II

Density Plot for Gene 2737, pvalue=0.8753

Gene expression levels

******************
**

**
****************************

Cancer I, 
Cancer II

Density Plot for Gene 4712, pvalue= 0.8583

A hypothetical example of gene interactionsFigure 3
A hypothetical example of gene interactions. Cancer I 
individuals have a clear pattern of being (Low, Low) or (High, 
High) while Cancer II individuals share the opposite trend. 
These two genes would not be regarded as important, if eval-
uated only marginally.
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