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Abstract
Background: Being formal, declarative knowledge representation models, ontologies help to
address the problem of imprecise terminologies in biological and biomedical research. However,
ontologies constructed under the auspices of the Open Biomedical Ontologies (OBO) group have
exhibited a great deal of variety, because different parties can design ontologies according to their
own conceptual views of the world. It is therefore becoming critical to align ontologies from
different parties. During automated/semi-automated alignment across biological ontologies,
different semantic aspects, i.e., concept name, concept properties, and concept relationships,
contribute in different degrees to alignment results. Therefore, a vector of weights must be
assigned to these semantic aspects. It is not trivial to determine what those weights should be, and
current methodologies depend a lot on human heuristics.

Results: In this paper, we take an artificial neural network approach to learn and adjust these
weights, and thereby support a new ontology alignment algorithm, customized for biological
ontologies, with the purpose of avoiding some disadvantages in both rule-based and learning-based
aligning algorithms. This approach has been evaluated by aligning two real-world biological
ontologies, whose features include huge file size, very few instances, concept names in numerical
strings, and others.

Conclusion: The promising experiment results verify our proposed hypothesis, i.e., three weights
for semantic aspects learned from a subset of concepts are representative of all concepts in the
same ontology. Therefore, our method represents a large leap forward towards automating
biological ontology alignment.

Background
The fields of biological and biomedical research are char-
acterized by great complexity and imprecise terminolo-

gies. To address this imprecision and to standardize
descriptions of biological entities, extensive efforts have
been dedicated toward ontology development. The most
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successful endeavor is the development of Gene Ontology
(GO), a formal and structured language, by the GO Con-
sortium [1]. GO has three independently structured, con-
trolled vocabularies: molecular functions – activities, such
as catalysis or binding, at the molecular level; biological
processes – events accomplished by one or more ordered
assemblies of molecular functions; and cellular components
– components that are part of some larger objects, such as
an anatomical structure or gene product group [2]. To
coordinate GO and other ontology development for bio-
medical research, the Open Biomedical Ontologies
(OBO) group has developed mechanisms to share differ-
ent ontologies [3]. Many ontologies in OBO have been
represented in both the OBO format and Web Ontology
Language (OWL) as well.

Althoug being formal, declarative knowledge representa-
tion models, ontologies from OBO have exhibited great
variety. This variety stems from the fact that different par-
ties can design ontologies according to their own concep-
tual views of the world. Unless this heterogeneity problem
is resolved, it will be very difficult, if not impossible, to
relate different ontologies and take advantage of the inte-
gration thereafter [4,5]. Current efforts to integrate ontol-
ogies include: 1) merging – merge several ontologies into
a single one; 2) mapping – relate similar concepts or rela-
tionships across different ontologies, resulting in a virtual
integration; and 3) alignment – define relationships
between terms in different ontologies. In fact, mapping is
a speical kind of alignment, i.e., to define equivalentClas-
sOf relationship between two ontologies. This paper con-
centrates on the challenge of finding equivalent concept
pairs from different biological ontologies, which is one of
the most significant tasks in biological ontology align-
ment.

According to the classification in [6], most schema align-
ment techniques can be divided into two categories: rule-
based and learning-based. We briefly discuss these two
categories by summarizing some well-known algorithms.

The rule-based schema alignment techniques consider
schema information only, and different algorithms distin-
guish from each other in their specific rules. PROMPT [7]
provides a semi-automatic approach to ontology merging.
By performing some tasks automatically and guiding the
user in performing other tasks, PROMPT helps in under-
standing and reusing ontologies. Dou et al. [8] view ontol-
ogy translation as ontology merging and automated
reasoning, which are in turn implemented through a set of
axioms. The authors regard the ontology merging as tak-
ing the union of the terms and the axioms defining them,
then adding bridging axioms through the terms in the
merge. Cupid [9] discovers mappings between schema
elements based on their names, data types, constraints,

and schema structure. Cupid has a bias toward leaf struc-
ture where much of the schema content resides. The exper-
imental results show a better performance than DIKE and
MOMIS. Giunchiglia et al. [10] view match as an operator
that takes two graph-like structures and produces a map-
ping between the nodes. They discover mappings by com-
puting semantic relations, determined by analyzing the
meaning which is codified in the elements and the struc-
tures. The hypothesis in [11] is that a multiplicity of ontol-
ogy fragments can be related to each other without the use
of a global ontology. Any pair of ontologies can be related
indirectly through a semantic bridge consisting of many
other previously unrelated ontologies. Huang et al. [12]
extend this work to incorporate: extended use of Word-
Net; use of the Java WordNet Library API for performing
run-time access to the dictionary; and reasoning rules
based on the domain-independent relationships and each
ontology concept's property list to infer new relation-
ships.

The learning-based schema alignment techniques con-
sider both schema information and instance data, and
various kinds of machine learning techniques have been
adopted. GLUE [13] employs machine learning tech-
niques to find semantic mappings between ontologies.
After obtaining the results from a Content Learner and a
Name Learner, a Metalearner is used to combine the pre-
dictions from both learners. Then common knowledge
and domain constraints are incorporated through a Relax-
ation Labeler, and the mappings are finally calculated. In
addition, the authors extend GLUE to find complex map-
pings. Williams [14] introduces a methodology and algo-
rithm, DOGGIE, for multiagent knowledge sharing and
learning in a peer-to-peer setting. DOGGIE enables multi-
agent systems to assist groups of people in locating, trans-
lating, and sharing knowledge represented in ontologies.
After locating similar concepts, agents can continue to
translate concepts and then are able to share meanings.
Soh [15] describes a framework for distributed ontology
learning embedded in a multiagent environment. The
objective is to improve communication and understand-
ing among the agents while agent autonomy is still pre-
served. Agents are able to evolve independently their own
ontological knowledge, and maintain translation tables
through learning to help sustain the collaborative effort.
Wiesman and Roos [16] present an ontology matching
approach based on probability theory by exchanging
instances of concepts. During each step of the matching
process, the likelihood that a decision is correct is taken
into account. No domain knowledge is required, and the
ontology structure plays no role. Madhavan et al. [17]
show how a corpus of schemas and mappings can be used
to augment the evidence about the schemas being
matched. Such a corpus typically contains multiple sche-
mas that model similar concepts and their properties.
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They first increase the evidence about each element being
matched by including evidence from similar elements in
the corpus. Then they learn statistics about elements and
their relationships to infer constraints.

Both rule-based and learning-based algorithms have dis-
advantages. The former ignore the information obtained
from instance data. A more severe problem is the way this
technique treats different semantic aspects. In general,
ontologies are characterized by the aspects of concept
name, concept properties, and concept relationships.
These aspects have different contributions to understand-
ing ontologies' semantics. Take BiologicalProcess ontol-
ogy [18] for example: there is a rich set of super/subClassOf
relationships (over 20,000); however, at the same time,
numerical strings, which are hardly meaningful to
machines, are adopted as concept names, "GO_0030838"
for example. Therefore, it is essential to assign different
weights to different semantic aspects if a more accurate
and meaningful alignment result is favored. Unfortu-
nately, current research has made use of human interven-
tion and/or prior domain knowledge to define these
weights.

The main problems for learning-based algorithms include
a relatively longer running time (due to the learning
phase), and the difficulty in getting enough and/or good-
quality data. The knowledge bases, i.e., ontologies and/or
databases, in biological and biomedical area are usually
huge. For example, there are more than 126,000 concepts
in NCI Thesaurus ontology [19]. The extremely large file
size imposes a higher requirement on any alignment algo-
rithm's efficiency. Moreover, most biological ontologies
have very few instance data, if any at all. Even for those
with instances, these instances are most likely to be in
semi-structured or unstructured formats, and therefore
difficult to use.

In this paper, we present a new approach to align biolog-
ical ontologies that combines both rule-based and learn-
ing-based algorithms. Our contributions are in the
following. (1) Our approach integrates an artificial neural
network (ANN) technique in our algorithm, such that the
weights mentioned above can be learned instead of being
specified by a human in advance. (2) Moreover, our learn-
ing technique is carried out based on the ontology schema
information alone, which distinguishes it from most
other learning-based algorithms.

The rest of this paper is organized as follows. Section 2
gives an overview of our method, and discusses the chal-
lenges in applying machine learning techniques without
instance data information; it also presents the details of
our algorithm. Section 3 reports the experiments con-
ducted and analyzes the results. Section 4 concludes with

an outline of future work in aligning biological ontolo-
gies.

Results and discussion
Purpose of our experiments
Our hypothesis is, three weights for semantic aspects
learned from a subset of concepts are representative of all
concepts in the same ontology. In order to verify this, we
need to show by our experiments: (1) the learning process
itself is a correct one, i.e., three weights converge to certain
values; and (2) the learned weights are meaningful, i.e.,
the resultant equivalent concept pairs have satisfactory
performance on Precision and/or Recall.

Test ontologies
Two real-world biological ontologies, BiologicalProcess
and Pathway, are adopted as the test ontologies. They
have 13922 and 571 concepts, respectively; in addition,
most relationships are super/subClassOf ones.

Experiment design and results
1. Both ontologies adopt numerical strings,
"PW0000015" for example, as concept names, while the
meaningful terms, "alzheimer_disease_pathway" for
example, are embodied as labels. The purpose of this
design is to avoid any potentially repeated concept names.
We preprocessed both OWL files by replacing numerical
strings with corresponding labels. Fortunately, there are
no redundant concept names in either ontology.

2. An initial similarity matrix between these two ontolo-
gies was calculated. Some of this initial matrix is shown in
Figure 1. There are 7,949,462 (13922 times 571) pairs in
total. For each such pair, the first line is the concept from
BiologicalProcess; the second line is the concept from
Pathway; and the third line is their similarity values in
concept name, concept properties, and concept relation-
ships. For example, the similarity values between concepts
"evasion_or_tolerance_by_organism_of_nitric_oxide_pr
oduced_by_other_organism_during
_symbiotic_interaction" and
"duplicated_term_Selenoamino_acid_metabolism" are:
0.15909090909090912, 0.0, and 0.2522271345675601.

3. We then randomly set w1, w2, and w3, and the learning
rate η was also set to some certain value (see next section
for detailed information of our settings). Finally, OAANN
was provided with 30 pairs of equivalent concepts as
training examples by domain experts (these training
examples are listed in Table 1).

4. After a certain number of iterations (again, see next sec-
tion for detailed information) in our ANN, all three
weights for semantic aspects converged, and their values
are 0.64, 0.01, and 0.35, respectively. These learned
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weights were then applied to recalculate the similarity
matrix.

5. Out of the updated similarity matrix, a set of different
thresholds for the similarity were chosen, i.e., from 1.00
to 0.29. We then used these thresholds to calculate equiv-
alent concept pairs from the updated matrix.

6. A figure (Figure 2) was plotted out of the similarity
threshold and the corresponding equivalent concept pair
number. The verizontal-axis value (0.75) at the beginning
of the plateau in this figure was adopted as the similarity
threshold. We then output resultant equivalent concept
pairs according to this threshold.

7. The final result of our methodology, equivalent concept
pairs between two test ontologies, was presented to
domain experts (same as those providing training exam-
ples), and Precision and Recall measurements were evalu-
ated. Portion of these equivalent concept pairs are shown
in Figure 3. Out of all 120 pairs, 108 pairs were agreed by
domain experts, with another 19 pairs not from OAANN
but suggested by domain experts. Precision and Recall are
therefore 0.9 and 0.85, respectively.

Analysis
Based on the experiment results, it is clear that our
hypothesis is validated since:

1. w2 has rather low value, reflecting the low contribution
from concept properties. This exactly conforms to the

Program running log which contains portion of initial similarity matrixFigure 1
Program running log which contains portion of initial similarity matrix. Inside the matrix, for each concept pair, the first line is 
the concept from BiologicalProcess; the second line is the concept from Pathway; and the third line is their similarity values in 
concept name, concept properties, and concept relationships.
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characteristics of our test ontologies. Most properties in
both test ontologies offer little help to the alignment proc-
ess, because most property values are in semi-structured
format and require natural language processing tech-
niques before they can be used effectively.

2. We sorted the similarity matrix by the "concept name
similarity" column, the result is shown in Figure 4. By
comparing this result with that in Figure 3, it is obvious
that our method avoids the situation where string match
alone is considered. For example, "M_phase" and
"S_phase" have a high similarity value in concept name,
however, due to their low relationship similarity, 0 in this
case, they are not considered as equivalent pair in the final
output. On the other hand, "M_phase" and "M_phase"
are in the equivalent pair output, although their overall
similarity is lowered because their relationships are very
different from each other – Pathway has a much more
"flat" super/subClassOf hierarchy than BiologicalProcess.
In a word, OAANN has a promising result by considering
as many semantic aspects as possible, and by assigning
appropriate weights for different aspects as well.

3. The percentage of training examples is around 24% (30
divided by 127). This small percentage reflects the feasi-
bility and possibility of our method.

4. The adopted ANN structure in OAANN is not compli-
cated because only three semantic aspects are considered.
However, this structure is justified via experiment results.
If we also consider other relationships in addition to the
super/subClassOf ones, multilayer networks might be more
appropriate, owing to their representational power.

5. We have tried different settings of initial weights, with
a large range from (0.0, 0.0, 1.0) to (1.0, 0.0, 0.0). Our
conclusion is, these weights converge to the same values,
regardless of their initial values. In addition, varied learn-
ing rates will affect the speed of this convergence. The
greater the learning rate, the smaller the number of itera-
tions needed before the convergence. For example, if η is
set to 0.05, 1000 iterations are needed; while if η is set to
0.1, only 700 iterations are necessary.

6. The curve shape in Figure 2 is: an initial drop followed
by a plateau, which is in turn followed by a second drop.

Table 1: Training examples in OAANN.

Concepts from BiologicalProcess Concepts from Pathway

lipoprotein_metabolic_process (0042157) vs. lipoprotein_metabolic_pathway (0000482)
inositol_phosphate_metabolic_process (0043647) vs. inositol_phosphate_metabolic_pathway (0000154)
glutathione_catabolic_process (0006751) vs. glutathione_metabolic_pathway (0000134)
brassinosteroid_biosynthetic_process (0016132) vs. brassinosteroid_biosynthetic_pathway (0000552)
gamma-aminobutyric_acid_catabolic_process (0009450) vs. gamma-aminobutyric_acid_metabolic_pathway (0000412)
chondroitin_sulfate_biosynthetic_process (0030206) vs. chondroitin_sulfate_biosynthetic_pathway (0000195)
generation_of_precursor_metabolites_and_energy (0010497) vs. energy_metabolic_pathway (248)
acetylcholine_catabolic_process (0006581) vs. acetylcholine_metabolic_pathway (0000408)
cell_cycle_checkpoint(0000075) vs. cell_cycle_checkpoint_pathway (0000094)
DNA_replication_checkpoint (0000076) vs. G2/M_DNA_replication_checkpoint_pathway (0000385)
purine_metabolic_process (0006143) vs. purine_metabolic_pathway (0000031)
dopamine_catabolic_process (0042420) vs. dopamine_metabolic_pathway (0000409)
epinephrine_catabolic_process (0042419) vs. epinephrine_metabolic_pathway (0000441)
leukotriene_metabolic_process (0006691) vs. leukotriene_metabolic_pathway (0000464)
norepinephrine_catabolic_process (0042422) vs. norepinephrine_metabolic_pathway (0000442)
ganglioside_biosynthetic_process (0001574) vs. ganglioside_biosynthetic_pathway (0000164)
glycine_catabolic_process (0006546) vs. glycine_metabolic_pathway (0000440)
glucose_homeostasis (0042593) vs. glucose_homeostasis_pathway (0000553)
aspartate_metabolic_process (0006531) vs. aspartate_metabolic_pathway (0000439)
arachidonic_acid_metabolic_process (0019369) vs. arachidonic_acid_metabolic_pathway (0000460)
histamine_catabolic_process (0001695) vs. histamine_metabolic_pathway (0000411)
alanine_metabolic_process (0006522) vs. alanine_metabolic_pathway (0000438)
glycogen_biosynthetic_process (0005978) vs. glycogen_biosynthetic_pathway (0000532)
germ_cell_programmed_cell_death (0035234) vs. altered_programmed_cell_death (0000287)
C21-steroid_hormone_catabolic_process (0008208) vs. C21-Steroid_hormone_metabolic_pathway (0000070)
glycerophospholipid_metabolic_process (0006650) vs. glycerophospholipid_metabolic_pathway (0000354)
regulated_secretory_pathway (0045055) vs. regulated_secretory_pathway (0000537)
linoleic_acid_metabolic_process (0043651) vs. linoleic_acid_metabolic_pathway (0000523)
serotonin_catabolic_process (0042429) vs. serotonin_metabolic_pathway (0000410)
globoside_metabolic_process (0001575) vs. globoside_metabolic_pathway (0000196)
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It is reasonable to conclude that threshold can possibly be
assigned the value corresponding to the beginning of the
plateau. The intuition is: the semantic similarity between
non-equivalent concepts and that between equivalent
concepts are different, and this difference could be
remarkable enough to form a plateau.

7. OAANN adopts vectors to record semantic aspects, it is
therefore not difficult to handle if more relationships are
to be taken into consideration. What needs to be done is
for us to expand the current vectors into more dimensions
to hold more semantic aspects. Nevertheless, an ANN
with multiple layers might be necessary in this case.

Conclusion
Ontologies help in reconciling different views of inde-
pendently developed and exposed data sources in biolog-
ical and biomedical research area. Due to their inherent
heterogeneity, ontologies need to be aligned before they
can be integrated and used effectively. We present
OAANN, a new alignment algorithm to overcome some
disadvantages of both rule-based and learning-based
approaches. Our contributions are: (1) we exploit an
approach to learning the weights for different semantic
aspects of ontologies, through applying an artificial neural
network technique during the ontology alignment; and
(2) we tackle the difficult problem of carrying out

machine learning techniques without help from instance
data. We explain and analyze our algorithm in detail, and
our promising experiment results verify that OAANN rep-
resents a large leap forward towards automating biologi-
cal ontology alignment.

Our focus has been on locating the equivalent concept
pairs between two ontologies, leaving the other mapping
tasks for future work, such as the discovery of parent-child
concept pairs, the finding of sibling concept pairs, and so
on. Another potential direction for the future work is to
apply our approach in other biological ontologies, anat-
omy ontologies for example, where the bigger file size
imposes some challenges with regard to OAANN's effi-
ciency.

Methods
Overview of our approach
In our opinion, the semantics of an ontology concept are
determined by three aspects: (1) the name of the concept;
(2) the properties of the concept; and (3) the relationships
of the concept. These three features together specify a con-
ceptual model for each concept from the viewpoint of an
ontology designer. For example, in the Pathway ontology
[20], a concept has "altered_metabolic_pathway" as its
name, two properties ("comment" and "label"), and
seven relationships (subClassOf concept

Plot of similarity threshold and equivalent concept pair numberFigure 2
Plot of similarity threshold and equivalent concept pair number. The verizontal-axis value (0.75) at the beginning of the plateau 
in this figure was adopted as the similarity threshold. The intuition is: there is an initial drop followed by a plateau, which is in 
turn followed by a second drop. It is reasonable to conclude that threshold can possibly be assigned the value corresponding to 
the beginning of the plateau. Please refer to "Experiment Design and Results" section for more detailed explanation.
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"classic_metabolic_pathway," superClassOf concepts
"altered_amino_acid_metabolic_pathway,"
"altered_carbohydrate_metabolic_pathway,"
"altered_glycan_metabolic_pathway,"
"altered_lipid_metabolic_pathway,"
"altered_metabolic_pathway_of_cofactors_and_vitamins
," and
"altered_metabolic_pathway_of_other_amino_acids").

Challenges with existing alignment algorithms
Rule-based algorithms usually have the advantage of rela-
tively fast running speed, but share the disadvantage of
ignoring the additional information from instance data.
In addition, there is a more serious concern for this type
of algorithms. In order to obtain a helpful matching result
from automated/semi-automated tools, more than one of
the three semantic aspects mentioned above should be
considered. If only one aspect is taken into account, then

a meaningful matching result is unlikely to be acquired.
Once two or more aspects are considered, it is unavoida-
ble that corresponding weights for different aspects must
be determined to reflect their different importance (or
contributions) in ontology alignment. To the best of our
knowledge, most existing rule-based algorithms make use
of human heuristics and/or domain knowledge to prede-
fine these weights. Moreover, once weights are deter-
mined, they are unlikely to be updated, or at most by trial-
and-error.

While taking advantages of extra clues contained in
instance data, the learning-based algorithms are likely to
be slower. In addition, the difficulty in getting enough
and/or good-quality data is also a potential problem. For
example, in both BiologicalProcess and Pathway ontolo-
gies, there are barely instance data. On the other hand, it
is very challenging for machines to learn to reconcile

Portion of equivalent concept pairs output from OAANNFigure 3
Portion of equivalent concept pairs output from OAANN. The final result, equivalent concept pairs between two test ontolo-
gies, was presented to domain experts, and Precision and Recall measurements were evaluated. Portion of these equivalent 
concept pairs are shown in this figure.
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ontology structures, if machines are provided with
schema information alone. The most critical challenge is
that, because ontologies reflect their designers' conceptual
views of part of the world, they exhibit a great deal of
diversity. Identical terms can be used to describe different
concepts, or vice versa, different terms can be assigned to
the same concept. A more complicated situation is, even if
the same set of terms are adopted, which is almost impos-
sible in the real life, different designers can still create dif-
ferent relationships for the same concept, corresponding
to their different conceptual views for this concept. Com-
pared with schemas, instance data usually have a lot less
variety.

Our solution
Based on the insight of the pros and cons of these two
approaches, we present a new alignment algorithm,
Ontology Alignment by Artificial Neural Network
(OAANN), which combines rule-based and learning-
based solutions. We integrate machine learning tech-
niques, such that the weights of a concept's semantic
aspects can be learned from training examples, instead of
being ad-hoc predefined ones. In addition, in order to
avoid the problem of missing instance data (either in
quality or in quantity), which is common for real-world
ontologies, our weight learning technique is carried out at
the schema level instead of the instance level.

Our main idea is, given a pair of ontologies to be aligned,
although it is true that a lot design diversity might exist, it

Similarity matrix sorted by concept name similarityFigure 4
Similarity matrix sorted by concept name similarity. The similarity matrix was sorted by the "concept name similarity" column. 
Comparing this result with that in Figure 3 indicates that OAANN avoids the situation where string match alone is considered.
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is still reasonable to assume that the contributions of dif-
ferent semantic aspects to ontology understanding would
hold across and therefore be independent of specific con-
cepts. In fact, different contributions, which are the foun-
dation for different weights, are characteristics of
ontologies viewed as a whole. That is, during ontology
alignment, weights are determined by ontologies, rather
than by individual concepts. Therefore, we propose the
following hypothesis: it is possible to learn these weights
for all concepts by training examples from a subset of con-
cepts.

Ontology alignment consists of many mapping tasks, for
example, the discovery of parent-child concept pairs, the
finding of sibling concept pairs, etc. OAANN concentrates
on finding pairs of equivalent concepts as the first step. In
addition, after the successful discovery of equivalent con-
cept pairs, it is not difficult to design an algorithm to
merge corresponding ontologies.

There are many kinds of relationships in ontologies, both
domain-dependent and domain-independent, e.g., super-
ClassOf, subClassOf, partOf, contains, etc. In this paper, we
consider only the super/subClassOf relationships, which
are the most common ones in most real-world ontologies.
We plan to extend OAANN to include other relationships
later. Due to the scalability of our approach (will be dis-
cussed later in this paper), this extension is relatively easy.

Details of OAANN
We build a 3-dimension vector for each concept, and each
dimension records one semantic aspect, i.e., concept
name, concept properties, and concept relationships.
When we match two concepts, we compare their contents
in these three dimensions, and acquire the corresponding
similarity in each dimension. Recall that our goal is to
find the equivalent concept pairs.

Similarity in concept name
The similarity s1 between a pair of concept names is a real
value in the range of [0, 1]. Some pre-processing on these
two strings is performed before the calculation of s1. For
example, the removal of hyphens and underscores.

If two names have an exact string matching, then s1 has a
value of 1. Otherwise, s1 is calculated according to

where d stands for the edit distance between two strings,
and l for the length of the longer string.

Similarity in concept properties
Given two lists of concept properties (including those
inherited from ancestors), p1 and p2, their similarity s2 is a
real value in the range of [0, 1], and s2 is calculated accord-
ing to

where n is the number of pairs of properties matched, and
m is the smaller cardinality of lists p1 and p2.

In order for a pair of properties (one from p1 and the other
from p2) to be matched, their data types should be the
same or compatible with each other (float and double for
example), and the property names should have a similar-
ity value greater than a threshold. Notice that here we use
the same procedure as in Section to calculate the similarity
between a pair of property names. In addition, we adopt
the idea of "stable marriage" in determining the matched
property pairs. That is, once two properties are considered
matched, they both find the best matched one from the
other property list. Imagine a similarity matrix built
between p1 and p2; each time we pick up a pair with the
maximum value in the matrix, say cell [i, j], and then dis-
card row i and column j.

Similarity in concept relationships
We take into account only the super/subClassOf relation-
ships. In order to obtain a better matching result, we make
use of as much information as possible. For example, sup-
pose there are two pairs of equivalent concepts, and the
numbers of concepts in-between are different from each
other, i.e., the ontology with more detailed design tends
to have more intermediate concepts. If the direct parent
alone is considered, the information from this multilay-
ered parent-child hierarchy will be ignored. Therefore, we
not only consider the direct parent of a concept, but also
all ancestors (concepts along the path from a concept up
to the root "Thing") of this concept as well. Descendants
(direct and indirect children of a concept) are not taken
into account, as that would lead to an infinite loop.

Given two lists of concept ancestors, a1 and a2, their simi-
larity s3 is a real value in the range of [0, 1], and is obtained
by first calculating the similarity values for pairwise con-
cepts (one from a1, the other from a2, considering all com-
binations), then assigning the maximum value to s3.
Notice that this is a recursive procedure but is guaranteed
to terminate, because (1) the number of concepts is finite;
and (2) we assume that "Thing" is a common root for the
two ontologies being aligned.

s
d
l1 1= − , (1)

s
n
m2 = , (2)
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Concept similarity matrix
After s1, s2, and s3 between two concepts, C1 and C2, are cal-
culated, the similarity value s between C1 and C2 is
obtained as the weighted sum of s1, s2, and s3:

where . Notice that wi are randomly initialized

and will be adjusted through a learning process (see Sec.
4.5 below).

For two ontologies being matched,  and , we calcu-

late the similarity values for pairwise concepts (one from

, the other from , considering all combinations).

Then we build a n1 × n2 matrix  to record all values cal-

culated, where ni is the number of concepts in . The cell

[i, j] in  stores the similarity value between the ith con-

cept in  and the jth concept in .

Weight learning through ANN
The main purpose of OAANN is to try to learn different
weights for three semantic aspects during the ontology
alignment process. We design our learning problem as fol-
lows.

• Task T: align two ontologies (in particular, find equiva-
lent concept pairs)

• Performance measure P: Precision and Recall measure-
ments with regard to manual matching

• Training experience E: a set of equivalent concept pairs
by manual matching

• Target function V: a pair of concepts → ℜ

• Target function representation: 

We choose ANN as our learning technique, based on the
following considerations.

• Instances are represented by attribute-value pairs

• The target function output is a real-valued one

• Fast evaluation of the learned target function is prefera-
ble

Network design

We adopt a two-layer 3 × 1 network in OAANN, as shown

in Figure 5. The input into this network is a vector ,
which consists of s1, s2, and s3, representing the similarity

in name, properties, and ancestors, respectively, for a
given pair of concepts. The output from this network is s,
the similarity value between these two concepts as given
by Formula 3. Notice that a linear function might not be
powerful enough to reflect the true relationships among
wi. However, the delta rule converges toward a best-fit

approximation to the target concept even when the train-
ing examples are not linearly separable [21]. If more rela-
tionships among ontology concepts are to be considered,
then one or more layers of hidden units might need to be
added to express a rich variety of nonlinear decision sur-
faces.

s w si i

i

=
=
∑( ),

1

3

(3)

wi
i

=
=
∑ 1

1

3

1 2

1 2


 i


1 2

ˆ( ) ( )V b w si i
i

=
=
∑

1

3

Neural network structureFigure 5
Neural network structure. The input into this network is a 

vector , which consists of s1, s2, and s3, representing the 
similarity in name, properties, and ancestors, respectively, for 
a given pair of concepts. wi are weights assigned to each 
input. The output from this network is s, the similarity value 
between these two concepts as given by Formula 3.

s

s
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Initially, we obtain a concept similarity matrix  for 

and , with wi being initialized randomly. Then we ran-

domly pick up a set of concepts from , and find the

corresponding equivalent concepts by a manual matching

with . Each of such manually matched pairs will be

processed by OAANN, and the similarity values in name,
properties, and ancestors for these two concepts are calcu-
lated and used as a training example to the network in Fig-
ure 5.

Hypothesis space and our searching strategy

We regard the hypothesis space in this learning problem
as a 3-dimensional space consisting of w1, w2, and w3, i.e.,

a set of weight vectors . Our objective is to find the
weights that best fit the training examples. We adopt gra-
dient descent (delta rule) as our training rule, and our
searching strategy within the hypothesis space is to find
the hypothesis, i.e., weight vector, that minimizes the
training error with regard to all training examples. Accord-
ing to [21], a standard definition of the training error E of
a hypothesis is given by

where D is the set of training examples, td is the target out-
put for training example d, and od is the output of the net-
work for d.

We customize the above formal definition according to
the characteristics of our learning problem as follows. For
any training example d, instead of a given target value td,

we need some other values. The intuition is that a given
pair of manually matched concepts corresponds to a cell
[i, j] in ; therefore, the value of cell [i, j] should be the
maximum one in both row i and column j. Suppose the
maximum value for row i and column j are tr and tc,

respectively. Then, our customized description of E is

Accordingly, the weight update rule for gradient descent
in OAANN is

where η is the learning rate, and sid is the si value for a spe-
cific training example d.

Recalculate concept similarity and output equivalent concept pairs

After we obtain the learned weights, we apply them to
recalculate the similarity matrix . We then pick up a
threshold (see next section for details) and output the
equivalent concept pairs according to this threshold. The
resultant equivalent concept pairs between two ontologies
are then presented to domain experts for verification.
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