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Abstract
Background: Array-based comparative genomic hybridization (array CGH) is a highly efficient
technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or
thousands of loci and the reliable detection of local one-copy-level variations. Characterization of
these DNA copy number changes is important for both the basic understanding of cancer and its
diagnosis. In order to develop effective methods to identify aberration regions from array CGH
data, many recent research work focus on both smoothing-based and segmentation-based data
processing. In this paper, we propose stationary packet wavelet transform based approach to
smooth array CGH data. Our purpose is to remove CGH noise in whole frequency while keeping
true signal by using bivariate model.

Results: In both synthetic and real CGH data, Stationary Wavelet Packet Transform (SWPT) is
the best wavelet transform to analyze CGH signal in whole frequency. We also introduce a new
bivariate shrinkage model which shows the relationship of CGH noisy coefficients of two scales in
SWPT. Before smoothing, the symmetric extension is considered as a preprocessing step to save
information at the border.

Conclusion: We have designed the SWTP and the SWPT-Bi which are using the stationary
wavelet packet transform with the hard thresholding and the new bivariate shrinkage estimator
respectively to smooth the array CGH data. We demonstrate the effectiveness of our approach
through theoretical and experimental exploration of a set of array CGH data, including both
synthetic data and real data. The comparison results show that our method outperforms the
previous approaches.

Background
Gene amplifications or deletions frequently contribute to

tumorigenesis. When part or all of a chromosome is
amplified or deleted, a change in DNA copy number
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results. Characterization of these DNA copy number
changes is important for both the basic understanding of
cancer and its diagnosis. Cancer researchers currently use
array comparative genomic hybridization (array CGH) to
identify sets of copy number changes associated with the
particular cancer or its congenital and developmental dis-
orders. In array CGH, because the clones contain
sequences information directly connecting with the
genome database, array CGH offers rapid genome-wide
analysis at high resolution and the information it pro-
vides is directly linked to the physical and genetic maps of
the human genome. Bacterial Artificial Chromosomes
(BAC) based CGH arrays were amongst the first genomic
arrays to be introduced [1] and are routinely used to detect
single copy changes in the genome, owing to their high
resolution in the order of 1 Mb [1,2]. More recently Oligo-
nucleotide aCGH [3,4] was developed to allow flexibility
in probe design, greater coverage, and much higher reso-
lution in the order of 35–100 Kb [5].

In order to develop effective methods to identify aberra-
tion regions from array CGH data, the previous research
works focus on both smoothing-based [5-9] and segmen-
tation-based data processing [10-14]. The array CGH is
very noisy. For example, in cDNA array CGH data, the sig-
nal to noise ratio is often approximately 1 (0 dB) [15].
Research in this area has been active in the last few years.
Beheshti et al. proposed to use the robust locally weighted
regression and smoothing scatterplots (lowess) method in
[6]. Eilers and Menezes [7] perform a quantile smoothing
method based on the minimization of the sum of abso-
lute errors to create sharper boundaries between seg-
ments. Hsu et al. [8] investigated the usage of maximal
overlap discrete wavelet transform (MODWT) in the anal-
ysis of array CGH data. They have shown translation
invariant wavelets are promising methods for array CGH
data smoothing and also observed that the denoising
techniques may miss singleton clones that have small
changes but somehow are consistent across tumors. In
2005, Lai [16] compared 11 different algorithms for ana-
lyzing array CGH data. Many smoothing and estimation
methods were included in [16] such as CGHseg (2005)
[17], Quantreg (2005) [7], CLAC (2005) [18], GLAD
(2004) [11], CBS (2004) [14], HMM (2004) [19],
MODWT (2005) [8], Lowess [6], ChARM (2004) [13], GA
(2004) [12], ACE (2005) [20]. Lai concluded that Wave-
let, Quantreg and Lowess method gave better detection
results (higher true position rate and lower false position
rate) than other methods. So, the wavelet based smooth
was considered as the promising approach. More recently
Y. Wang and S. Wang [5] extended the stationary wavelet
(SWT) denoising and regression for nonequispaced data,
because the physical distance between adjacent probes
along a chromosome are not uniform, even vary drasti-
cally. However, if a signal is decomposed by using SWT or

MODWT, we get unequal sub-bands and a long high fre-
quency sub-bands. Because true CGH signals include
many step functions, they contain important information
in high frequency. If long high frequency is used to
remove noise, maybe, some high frequency true informa-
tion of CGH will be loosen.

In this paper, we propose to use the Stationary Wavelet
Packet Transform (SWPT) to denoise the array CGH data.
Because, in SWPT, all sub-bands are also shift invariant,
each sub-band provides a shiftable description of signal in
a specific scale as the same SWT or MODWT. SWPT ana-
lyzes signal to many equally frequency sub-bands. So,
information in both of low and high frequency sub-band
are saved. Moreover, new bivariate shrinkage function is
used in SWPT instead of universal thresholding at the first
time, soft thresholding [21-23] and BayesShrink [24]. We
demonstrate the effectiveness of our approach through
theoretical and experimental exploration of a set of array
CGH data, including both synthetic data and real array
CGH data. The comparison results show that our method
outperforms the previous approaches about 6.4% –
57.9%. Let's see detail results in next section.

Results and discussion
In this section, results of our proposed methods such as
the SWPT and the SWPT-Bi will be compared to the other
efficient smooth methods such as the Lowess [16], the
Quantreg [7,25], the SWTi [5], the DTCWTi-bi [26]. In our
experiments, the artificial chromosomes are generated
using the methods proposed in [27] and [5]. Finally, real
data examples are showed to make sure that our methods
are still better the others.

Synthetic data
First, we describe how to create synthesis data as follow.

Artificial chromosome generation
Willenbrock and Fridlyand [27] proposed a simulation
model to create the synthetic array CGH data with equally
spaced along the chromosome. More recently Y. Wang
and S. Wang [5] extended this model by placing unequally
spaced probes along chromosome. As suggested in [27]
and [5], the chromosomal segments with DNA copy
number c = 0, 1, 2, 3, 4 and 5 are generated with probabil-
ity 0.01, 0.08, 0.81, 0.07, 0.02 and 0.01. The lengths for
segments are picked up randomly from the corresponding
empirical length distribution given in [27]. Each sample is
a mixture of tumor cells and normal cells. A proportion of
tumor cells is Pt, whose value is from a uniform distribu-
tion between 0.3 and 0.7. As in paper [27], the log2ratio is
calculated by

log ratio
cPt Pt2

2 1
22= + −⎛

⎝⎜
⎞
⎠⎟

log
( )

, (1)
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where c is the assigned copy number. The expected
log2ratio value is then the latent true signal.

Gaussian noises with zero mean and variance  are

added to the latent true signal. Till now, we get the equally
spaced CGH signal. Because the distances between two
probes are randomly, the best way to get these distances is
from the UCSF HumArray2 BAC array. Thus, we create a
real CGH signal from the equally spaced CGH signal
when the unequally spaced probes are placed on the chro-
mosome. Now, we have many artificial chromosomes of
length 200 Mbase which are created by many noise levels

σn = 0.1, 0.125, 0.15, 0.175, 0.2, 0.25 and 0.275.

Comparison by RMSE
In this section, we will present the results when applying
six methods such as the Lowess [16], the Quantreg [7,25],
the SWTi [5], the DTCWTi-bi [26] and our methods the
SWPT and the SWPT-Bi. One thousand artificial chromo-
somes with seven different noise levels σn = 0.1, 0.125,
0.15, 0.175, 0.2, 0.25 and 0.275 are denoised.

The denoising results of all methods are shown in the Fig-
ure 1. We can see that the proposed SWPT and SWPT-Bi
methods yield the better performance than the others. The

SWPT and SWPT-Bi outperform the Lowess by 43.4% –
55% and 48.4% – 54.2% respectably, the Quantreg by
50.3% – 53.7% and 49.5% – 57.9% respectably and the
SWTi by 27.5% – 31.5% and 26.8% – 35.3% in terms of
the root mean squared errors (RMSEs). If compared the
DTCWTi-bi, the SWPT-Bi gets better by 6.4% – 17.9% for
seven noise level and the SWPT performs better by 1% –
19.2% for six noise levels (0.1 – 0.225). For all noise lev-
els, the SWPT-Bi consistently achieves much better results
than the others.

Some examples of wavelet denoising results by using the
Lowess, the Quantreg, the SWTi, the DTCWTi-bi, the
SWPT and the SWPT-Bi methods are shown in Figure 2 at
the noise level of σ = 0.2. In those Figures, the black solid
lines represent the latent true signals, the blue points
stand for the noisy DNA copy data log2ratio at the probe
loci and the red lines correspond to the denoised data. We
should note that the line connecting the denoised data
points is only for visualization purpose.

At the copy three c = 3 (from 1 kbase to 1.4 × 104 kbase) as
shown in Figure 2, the log2ratio value of the latent true sig-
nal is 0.3598, but these values of the Quantreg, the SWTi
and the DTCWTi-bi based denoised signal in Figure 2 are
from 0.2262 to 0.4966, from 0.1774 to 0.3828 and from
0.09233 to 0.6182 respectably. These values can cause a

σ n
2

Comparison by RMSEFigure 1
Comparison by RMSE. Comparison of average RMSEs obtained from the 1,000 artificial chromosomes with each of the 7 
noise levels using the Lowess, the Quantreg, the SWTi, the DTCWTi-bi and our methods such as the SWPT and the SWPT-Bi.

Figure 1-Comparison by RMSE
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Example of wavelet denoising resultsFigure 2
Example of wavelet denoising results. Example of wavelet denoising results at the noise level of σ = 0.2 using the Lowess, 
the Quantreg, the SWTi, the DTCWTi-bi and our methods such as the SWPT and the SWPT-Bi.
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mistake when we segment the DNA copy number data.
However, the denoised data using the Lowess, the SWPT
and the SWPT-Bi will be segmented correctly as the copy
three (from 0.2 to 0.4) because the log2ratio values are
from 0.2129 to 0.3619, 0.2794 to 0.3649 and from
0.2565 to 0.3964. At the copy two c = 2 (from 1.4 × 104

kbase to 1.2 × 105 kbase), the denoised data in the second
sub-figure (denoised by Quantreg) of Figure 2 has an
amplitude of 0.2262 which will make an error in segmen-
tation process, while the denoised data in other sub-fig-
ures of Figure 2 will give a correct segmentation. In this
copy, the denoised signals using DTCWTi-bi, the SWPT
and SWPT-Bi are approximately the latent true signals,
while the denoised data using the Lowess, the Quantreg
and the SWTi have many ripples. At the copy zero c = 0
(from 1.2 × 105 kbase to 1.79 × 105 kbase), if we use TPR
(true position rate = number of denoised probes belove -
0.4/total of true probes), the Lowess, the Quantreg and
our methods gave a ratio of 22 over 34 instead of 17/34
and 14/34 of the SWTi and DTCWTi-bi. However, the
denoised signals of the Lowess, the SWPT and the SWPT-
Bi look better than of the Quantreg. At the copy two c = 2
(form 1.79 × 105 kbase to the end of the chromosome), the
fourth, fifth and sixth sub-figures's signal (denoised by
DTCWTi-bi, SWPT the and SWPT-Bi) of Figure 2 look
smoother than the others. Furthermore, the denoised sig-
nals at the first sub-figure (the Lowess's) and the second
sub-figure (the Quantreg's) may cause error when seg-
mentation because denoised signals change from -0.3133
to 0.101 (Lowess) and from -0.2119 to 0.2084
(Quantreg).

From above results, we can see that our proposed SWPT
and SWPT-Bi methods with the stationary wavelet packet
transform are better than the others. Now, real data will be
used to test five smoothing methods as follow.

Real data examples
In this paper, the BAC array data on 15 fibroblast cell lines
[8,28] has been used to show that denoising by the SWPT
and the SWPT-Bi are better than by the others such as the
Lowess, the Quantreg, the SWTi and the DTCWTi-bi. This
data set is from Stanford University, which can be freely
downloaded at [29]. Because the true copy number
changes are known for these cell lines, we choose these
data as a proof of principles. We pick up the chromosome
1 of GM13330 from these data and apply six algorithms
for denoising. In Figure 3, the number copies are two and
four. At the copy two (from 1 kbase to 1.56 × 105 kbase),
the SWPT and SWPT-Bi based smoothed signals are
smoother than the others. With the copy four, from 1.56
× 105 kbase to the end of this chromosome, the perform-
ance of the Lowess, the SWPT and the SWPT-Bi based
denoising methods are the better than of the Quantreg,
the SWTi and the DTCWTi-bi. From the above figures, we

can believe that our methods perform better than the oth-
ers in denoising of real CGH data.

Conclusion
In this paper, we explored the stationary wavelet packet
transform method with the new bivariate shrinkage esti-
mator in array CGH data denoising study. In the simula-
tion situations, the denoising results from the SWPT and
the SWPT-Bi are much better (improve 6.4% – 57.9%)
than the previous methods in terms of the root mean
squared error measurement at different noise levels. Fur-
thermore, we also demonstrate our method by using the
real array CGH data. In our future work, we will develop
a smoothing and segmentation combinatorial algorithm
to improve the aberration regions identification from
DNA copy number data.

Methods
Our methods named the SWPT (SWPT and universal
shrinkage function) and the SWPT-Bi (SWPT and bivariate
shrinkage function) will be introduced. First, lets review
wavelet transform and see how SWPT operates.

Wavelet methods
We will provide a brief review of wavelet transforms
which were used for array CGH data smoothing and is
used by this paper. We should note that the simple wave-
let transform will be introduced firstly and the SWPT will
be mentioned finally.

Discrete wavelet transform
The discrete wavelet transform (DWT), showed in Figure
4, based on the octave band tree structure, can be viewed
as the multiresolution decomposition of a signal. It takes
a length N sequence, and generates an output sequence of
length N using a set of lowpass and highpass fiters fol-
lowed by a decimator. It has N/2 values at the highest res-
olution, N/4 values at the next resolution, and N/2L at the
level L. Because of decimation, the DWT is a critically sam-
pled decomposition. However, the drawback of DWT is
the shift variant property. In signal denoising, the DWT
creates artifacts around the discontinuities of the input
signal [30]. These artifacts degrade the performance of the
threshold-based denoising algorithm.

Stationary wavelet transform
The stationary wavelet transform (SWT) [30], showed in
Figure 4, is similar to the DWT except that it does not
employ a decimator after filtering, and each level's filters
are upsampled versions of the previous ones. The SWT is
also known as the shift invariant DWT. The absence of a
decimator leads to a full rate decomposition. Each sub-
band contains the same number of samples as the input.
So for a decomposition of L levels, there is a redundant
ratio of (L + 1): 1. However, the shift invariant property of
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Real Data ExamplesFigure 3
Real Data Examples. The wavelet denoising results of array CGH data on chromosome 1 in the real signal GM13330 using 
some methods such as the Lowess, the Quantreg, the SWTi, the DTCWTi-bi and our methods such as the SWPT and the 
SWPT-Bi.
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the SWT makes it preferable for the usage in various signal
processing applications such as denoising and classifica-
tion because it relies heavily on spatial information. It has
been shown that many of the artifacts could be suppressed
by a redundant representation of the signal [30].

Dual-tree complex wavelet transform
A dual-tree structure that produces a dyadic complex
DWT, showed in Figure 4, is proposed by Kingsbury
[31,32]. In the case of 1-D signals, the structure consists of
two binary trees of multi-resolution decomposition of the
same signal. It is therefore an overcomplete representa-
tion with a redundant ratio of 2:1. In the two trees, the fil-

ters are designed in such a way that the aliasing in one
branch in the first tree is approximately canceled by the
corresponding branch in the second tree. The relation
between the wavelet filters of the two trees yields shift-
invariant property [31].

The analysis FB for the DTCWT is an iterative multi-scale
FB. Each resolution level consists of a pair of two-channel
FBs. The purpose of the dual-tree CWT is to provide a
shiftable and scalable multiresolution decomposition.
The input signal is passed through the first level of a mul-
tiresolution FB. The low frequency component, after dec-
imation by 2, is fed into the second level decomposition
for the second resolution. The outputs of the two trees are
the real and imaginary parts of complex-valued subbands.
To reconstruct the signal, the real part and imaginary part
are inverted to obtain two real signals, respectively. These
two real signals are then averaged to obtained the final
output. For more details of the construction of the dual-
tree, the reader is referred to [33].

Discrete wavelet packet transform
We continue with an another basic othornormal wavelet
transform. Discrete wavelet packet transform (DWPT),
which can be readily computed by using a very simple
adjustment of the pyramid algorithm for DWT, will be
mentioned. All of DWPT scales are performed at the same
level j. The jth level DWPT decomposes the frequency
interval [0, 1/2] into 2j equal and individual intervals,
each of which has N/2j values if taking a length N
sequence. DWPT still keeps a shift variant property.

Stationary wavelet packet transform
Stationary Wavelet Packet Transform (SWPT), showed in
Figure 4, still keeps two important properties of SWT such
as shift invariance and redundancy. In the SWPT, both
scaling and wavelet coefficients are subjected to the high-
pass and low-pass filter when computing the next level
coefficients. At the given level L, there are 2L scales with
the same length as the input signal's. The redundant ratio
is (2L): 1 for a decomposition of L levels. SWPT is really
combination of SWT and DWPT. So, it is very useful in
denoising of DCN data. After wavelet transform, reader
should be introduced a new shrinkage function to remove
noise of CGH data in SWPT domain as follows.

New vivariate shrinkage function for SWPT-based 
denoising
In this sub-section, the bivariate shrinkage function which
describes the relationship of child and parent (Figure 4)
coefficients will be reminded. Because SWPT, which
decomposes a signal into many subbands at the same
scale, just has child and cousin coefficients (Figure 4) at
the same level, new bivariate shrinkage function will be
developed to exploit the relationship between child and

Wavelet TransformFigure 4
Wavelet Transform. Analysis filter bank and the position 
of child, parent and cousin coefficients of discrete wavelet 
transform (DWT), stationary wavelet transform (SWT), dual 
tree wavelet complex transform (DTCWT), discrete wavelet 
packet transform (DWPT) and stationary wavelet packet 
transform (SWPT).
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cousin coefficients. A simple denoising algorithm via
wavelet transform consists of three steps: decompose the
noisy signal by wavelet transform, denoise the noisy
wavelet coefficients according to some rules and take the
inverse wavelet transform from the denoised coefficients.
To estimate wavelet coefficients, some of the most well-
known rules are universal thresholding, soft thresholding
[21-23] and BayesShrink [24]. In these algorithms, the
authors assumed that wavelet coefficients are independ-
ent. Sendur and Selesnick [34] has recently exploited the
dependency between coefficients and proposed a non-
Gaussian bivariate pdf for the child coefficient wc and its
parent wp. Nguyen et el [26,35] applied that function to
recover CGH data successfully and got some promising
results.

Now basing on the idea in [34], we try to discover the con-
nection of child and cousin coefficients in SWPT with
CGH data. We assume that we get the DNA copy number
data Y which includes the deterministic signal D and the
independent and identically distributed (IID) Gaussian
noise n. This Gaussian noise has zero mean and variance

.

Y = D + n. (2)

After decomposing the data Y by the SWPT, we get the
coefficients yk. In the wavelet domain, those coefficients
can be formulated as

where y1 and y2 are noisy wavelet coefficients, w1 and w2
are true coefficients, w2 represents the cousin of w1 (child),
n1 and n2 are independent Gaussian noise coefficients. If
the cousin scale y2 continue being decomposed, we will
get detail and approximation coefficients. Let's call y3 as
approximation coefficients of y2. We can calculate y3 from
y2 by the follow equation:

where h [n] is the low pass filter and N is the length of sig-
nal y2. In general, we can write

y = w + n, (5)

where y = (y1, y3), w = (w1, w3) and n = (n1, n3). The noise
pdf of two next scales should be followed as

The standard MAP estimator [34] of w from y is followed
as

As [34], we propose a non-gaussian bivariate pdf for w1
and w3 as

With this pdf, two variables w1 and w3 are really depend-
ent. Let us define:

By using (6), (7) becomes:

Solving above equation is the same solving of two follow-
ing equations:

where  and  represent the derivative of f(w) with

respect to w1 and w3, respectively. We can get  and 

from (9)

Substituting (13) and (14) into the (11) and (12) gives:
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where . Drawing r from (15):

If replacing r by (16) into (15), the MAP estimator can be
written as:

where (u)+ is defined by

Replacing y3 from (4) to (17), we can rewrite the MAP esti-
mator as

In (19), σ can be estimated by

where  is the noise deviation which is estimated from

the finest scale wavelet coefficients by using a robust
median estimator [22] as follows

 is the deviation of observation signal estimated by

where M is the size of the neighborhood N(k). In the
packet wavelet transform, the cousin scales have not any
parent scale. In this case, we can use hard thresholding

estimator [21] to recover cousin coefficients :

Now, after getting new bivariate shrinkage functions, we
should compare this new function to the bivariate func-
tion of Sendur [34] as the table 1. From this table, our
function has four different parts with Sendur's. Now, we
have one more pre-processing step to save data at the bor-
der of CGH data. That is signal extension which will be
discussed more as follow.

Signal extension
CGH data is finite signal. If we apply wavelet smooth
method directly, we may get error at the border of
denoised signal. So, extension step is a very important pre-
processing step before denoising. There are three main
extension methods. According to the book [36] (chapter
8), symmetric extension is the best if applied to a filtered
image because we can save information at the border bet-
ter. With CGH data, we also need save the information at
the border. So, we recommend that symmetric extension
method should be used as a preprocessing step before
denoising. Let's assume that the length of the CGH signal
is N. In order to get the best performance in the wavelet
denoising algorithm, the length of the input signal is
required to be a power of two [37]. If N is not a power of
two, we can extend our signal to make sure N = 2j by using
symmetric extension method. Finally, the SWPT-Bi will be
detailed in next part.

Proposed method
The DWT with the redundant ratio of 1:1 is efficient for
the denoising applications. However, the DWT creates
artifacts around the discontinuities of the input signal
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Table 1: Comparison table of our new bivariate shrinkage function and function in [34]

Comparison Table

Method New bivariate shrinkage function. Bivariate shrinkage function in [34].

Applying to Relationship
y3

Transform

CGH data.
child and cousin coefficient.

y3 = h * y2, where h is a low pass filter.
SWPT and DWPT.

image.
child and parent coefficient.

yp = g * y2, where g is a high pass filter.
DWT, SWT and DTCWT.
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[30] because it is shift-variant. To overcome this problem,
SWT [5] or MODWT [8] and DTCWT [26,35] with trans-
lation invariant property was proposed for signal denois-
ing. It has been shown that many of the artifacts could be
suppressed by a redundant representation of the signal
[30]. One important thing is that CGH data contains
many step functions which their information is in both
low frequency and high frequency. The above wavelet
methods have one disadvantage which some high fre-
quency components of CGH data were removed. In this
paper, the SWPT will be used to overcome some above
problems because it keeps shift invariant property and
looks for signal both in low frequency and in high fre-
quency band for denoising operation. Several methods
were proposed for selecting thresholding values such as
hard universal [21,22] and un-universal thresholding
[23]. However, the dependency between wavelet coeffi-
cients are not exploited in these methods. Thus, we pro-
pose the usage of shift invariant SWPT and new bivariate
shrinkage estimator which takes advantage of the depend-
ency between wavelet coefficient and its cousin for array-
based DNA copy number data denoising.

Our purpose is to find  from Y so that the root mean
squared error (RMSE) (24) is the smallest.

and N is the number of input samples, D = {Di} and

.

We propose a stationary wavelet packet transform and
new bivariate shrinkage function based smooth method
(SWPT-Bi). The SWPT-Bi can be summarized as follows:

Step 1: Extend Y by using symmetric extension method and
decompose new data Y' by the SWPT to L levels as (25). The
numbers of decomposition levels [38](at the remark 11) can be
computed by

L = log2(N) - J. (25)

where J = 3, 4, 5, 6. This is a perfect number of levels
[38]which yields the best denoising result. In this paper, we use
J = 4 as the same in [8]and [5].

Step 2: Calculate the noise variance and the marginal var-

iance for wavelet coefficient yk by using (21), (22) and

(20).

Step 3: Estimate the child coefficients as in (19) and

estimate the counsin coefficients as in (23). In this case, k

= 1.45 should be chosen.

Step 4: Reconstruct data from the denoised coefficients

and by taking inverse SWPT.

We also propose one simple method SWPT. In the SWPT
method, hard thresholding [22] method is used. The
SWPT method can be summarized as follows:

Step 1: Extend Y by using symmetric extension and decompose
new data using the SWPT.

Step 2: Estimate the noise variance by (21).

Step 3: Find the denoised coefficients from noisy coefficients as
follow

where N is length of y.

Step 4: Reconstruct data from the denoised coefficients

by taking inverse SWPT.
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