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Abstract
Background: Gene expression profiles based on microarray data are recognized as potential
diagnostic indices of cancer. Molecular tumor classifications resulted from these data and learning
algorithms have advanced our understanding of genetic changes associated with cancer etiology and
development. However, classifications are not always perfect and in such cases the classification
rankings (likelihoods of correct class predictions) can be useful for directing further research (e.g.,
by deriving inferences about predictive indicators or prioritizing future experiments). Classification
ranking is a challenging problem, particularly for microarray data, where there is a huge number of
possible regulated genes with no known rating function. This study investigates the possibility of
making tumor classification more informative by using a method for classification ranking that
requires no additional ranking analysis and maintains relatively good classification accuracy.

Results: Microarray data of 11 different types and subtypes of cancer were analyzed using MDR
(Multi-Dimensional Ranker), a recently developed boosting-based ranking algorithm. The number
of predictor genes in all of the resulting classification models was at most nine, a huge reduction
from the more than 12 thousands genes in the majority of the expression samples. Compared to
several other learning algorithms, MDR gives the greatest AUC (area under the ROC curve) for
the classifications of prostate cancer, acute lymphoblastic leukemia (ALL) and four ALL subtypes:
BCR-ABL, E2A-PBX1, MALL and TALL. SVM (Support Vector Machine) gives the highest AUC for
the classifications of lung, lymphoma, and breast cancers, and two ALL subtypes: Hyperdiploid > 50
and TEL-AML1. MDR gives highly competitive results, producing the highest average AUC, 91.01%,
and an average overall accuracy of 90.01% for cancer expression analysis.

Conclusion: Using the classification rankings from MDR is a simple technique for obtaining
effective and informative tumor classifications from cancer gene expression data. Further
interpretation of the results obtained from MDR is required. MDR can also be used directly as a
simple feature selection mechanism to identify genes relevant to tumor classification. MDR may be
applicable to many other classification problems for microarray data.
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Background
Numerous studies have shown that cancer involve accu-
mulated genetic aberrations in the cell. Advances in DNA
microarray technology have revolutionized cancer
research by enabling, within a given cell population, the
simultaneous monitoring of the transcription and com-
plex changes in the expression of thousands of genes dur-
ing cancer development. This makes rapid genetic analysis
for genome-wide cancer studies feasible. Researchers can
quickly compare gene expressions between normal and
malignant cells, and explore the genetic changes associ-
ated with cancer etiology and development. Microarray
analysis offers promising avenues to the discovery of both
new biomarkers for cancer diagnosis and prognosis and
new treatments. Microarray data are being used to catego-
rize tumors on the basis of their molecular profiles, to
identify subtypes of tumors, to predict patients' responses
to treatment and risk of relapse, and to explore the biolog-
ical properties of tumors [1-7].

Recent cancer research has applied a variety of machine
learning algorithms for tumor prediction by associating
expression patterns with clinical outcomes for patients
with tumors in various stages [3,4,8,9]. Due to the distinc-
tive huge dimensionality of the data, the majority of
research has focused on building accurate classification
models from reduced sets of features. The analysis aims to
gain understanding of the differences between normal
and malignant cells and to identify genes that are differen-
tially regulated during cancer development. While this is
useful, when classification models are not 100% accurate,
the likelihoods of correctness for the class predictions
(i.e., classification ranking) can be useful for further
research (e.g., deriving inferences for predictor genes and
prioritizing experiments). For example, some of the
genetic abnormalities in malignant cells may be the most
important contributing factors for cancer. Classification
ranking is a challenging problem, particularly in microar-
ray data, which has a huge number of factors whose rela-
tive importance is largely unknown. Most machine
learners focus on classification and do not explicitly assess
the likelihood of correctness for their class predictions,
unless additional analysis is performed.

This paper describes a simple microarray data analysis
technique for tumor classification ranking. In particular,
we apply MDR, our recently developed Multi-Dimen-
sional Ranking algorithm, for analyzing gene expression
in various types of cancers including leukemia, lung, pros-
tate, lymphoma, and breast cancers. These data have been
used in previous cancer research studies [1,3,5-8,10]. They
are publicly available and can be obtained from the Kent
Ridge Biomedical Data Set Repository [11].

Results
We analyze microarray data for 11 types and subtypes of
tumors using MDR. The two Leukemia expression data
sets are concerned with classification of acute lymphob-
lastic leukemia (ALL). Golub et al. [8] used the ALL-AML
Leukemia expressions to help discover a single diagnostic
test to differentiate between two types of human acute
leukemia: acute myeloid leukemia (AML) and ALL. The
ALL-subtype expression data were used by Yeoh et al. [7]
to identify six known prognostically important leukemia
subtypes of ALL from pediatric ALL patients. These ALL
subtypes include: BCR-ABL, E2A-PBX1, Hyperdiploid >
50 chromosomes, MALL, T-ALL, and TEL-AML1. Because
different leukemia types and subtypes respond to chemo-
therapy differently, the ability to determine the classifica-
tion of an ALL subtype for a new leukemia tissue sample
can be valuable for cancer treatment. MDR has been
designed for binary classification ranking. When dealing
with multiple classes, we employ the "one against many"
strategy (i.e., for each class, perform a binary classification
between that class and all the other classes). As recom-
mended in a recent study by Li and Liu [9], we divide the
ALL-subtype expression data into six cases, each of which
focuses on classification of a particular ALL subtype
against all the other subtypes. The ALL classification
model (or classifier) obtained from MDR contains two
predictor genes, whereas the number of predictor genes in
the classifiers for the six ALL subtypes ranges from one to
nine. This is a huge reduction from the original number of
genes, over 12,000, in the ALL-AML and ALL subtype
expression data.

The lung cancer data are analyzed to distinguish between
malignant pleural mesothelioma (MPM) and adenocarci-
noma (ADCA) [3], whereas the prostate and breast profile
expression data are analyzed for tumor diagnosis and
prognosis (e.g., "relapse" in patients who developed dis-
tance metastates within five years), respectively [5,6]. The
lymphoma microarray data include gene expressions of
diffuse large B-cell lymphoma, a subtype of non-Hodg-
kin's lymphoma [1]. To indicate different stages of B-cell
malignancies, gene expression patterns studied are of two
types: the germinal centre B-like type and the activated B-
like type. Patients with the germinal centre B-like type
have had better survival rates. The classification models
obtained by MDR from the lung, prostate, lymphoma and
breast expression data contain five, six, three and eight
predictor genes, respectively. The predictor genes in each
of these MDR classification models, derived from the cor-
responding expression data sets, are shown in Table 1.
While constructing the classification model, MDR reduces
the number of data dimensions to a smaller number,
selecting features relevant for classification ranking in the
model. Unlike the machine learners that require an addi-
tional step for feature selection, MDR does not do feature
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selection as a separate step. MDR could be viewed as an
alternative, simple method for a boosting-based feature
selection technique. However, proper verification of
MDR's effectiveness as a method for feature selection
would require research beyond the scope of this paper.

The performance of MDR is compared to that of other
high performance machine learners in Weka [12]. Figure
1 shows a comparison of ROC curves obtained from MDR
and five other learners (ZeroR, C4.5, Bayes, 3NN, and
SVM) for the prostate cancer data set. The ZeroR learner
predicts values based on the majority of the class distribu-
tion and is commonly used as a baseline measure of per-
formance. As expected, ZeroR shows performance
equivalent to random guessing, giving an ROC curve close
to a diagonal line. Therefore, it has no predictive power.
The ROC curves obtained from C4.5 and Bayes show bet-
ter performance than ZeroR. The top three performers
appear to be MDR, 3NN and SVM. Both MDR and SVM
dominate the others but we cannot draw a firm conclu-
sion on comparative performance by looking at the ROC
curve alone. While the ROC curve is effective for ranking
quality, it is not always conclusive. Thus, our analysis
employs alternative standard performance measures (as
described in the Method section), including recall (true
positive rate, sensitivity, hit rate), FPR (false positive rate,
false alarm rate, type I error), FNR (false negative rate, type
II error), ACC (accuracy), AUC (area under ROC curve)
and precision. The results of these measures (shown as
average percentages over 10-fold cross validation)
obtained from six learners are given in Table 2, for the
classification of five types of cancer, and Table 3, for the
classification of six subtypes of acute lymphoblastic leuke-
mia (ALL).

Consider the results shown in Table 2. For prostate cancer,
the AUCs obtained by all the learners are consistent with
the observations from the ROC curves shown in Figure 1,

but now we can make conclusive comparisons. Based on
AUC, MDR, at 92.3%, and is slightly better than SVM,
91%. However, when considering all other measures,
SVM generally performs better than MDR with differences
of no more than 3.39%. AUC ranks the results differently
than the other measures because it is a more suitable
measure for ranking evaluation. Nevertheless, MDR out-
performs 3NN by larger differences (9.56% in accuracy,
10.34% in precision, 15.25% in FPR (Type I error) and
about 5% in AUC, recall and FNR (Type II error)). Both
the accuracies and AUCs obtained from C4.5 and Bayes
are much lower than those of MDR. For prostate cancer
classification, MDR can rank well (with over 90% AUC)
while its classification quality remains competitive with
the other learners (close to 90% for accuracy, recall and
precision).

For ALL-AML Leukemia, the top three performers are
SVM, Bayes and MDR. All have the same FPR of 4%. SVM
and Bayes have the highest recall, accuracy, precision and
the lowest FNR. However, MDR has the best AUC of
99.02%, and the second best values for the other meas-
ures, with precision lower by only 0.04%, accuracy lower
by about 1%, and differences in FNR and recall of about
2%. This is similar to the results obtained in prostate can-
cer. However, here SVM and Bayes give highly competitive
results in all measures except AUC. On the other hand,
MDR has reasonably high precision, accuracy and recall
(97.87%, 97.22%, and 97.87%, respectively). MDR per-
forms very well on the classification ranking of ALL.
MDR's performance on lung cancer is similar to its per-
formance on lymphoma cancer. For lung cancer, SVM,
Bayes and MDR consistently performed better than the
rest. The AUC and ACC obtained by MDR were 0.39% and
2.76% lower than those of the top performer, but it still
has over 90% on almost all measures, with a low 2% FPR.
Unfortunately, the 9.68% for FNR obtained by MDR is
rather high, but still better than the 12.9% and 35.48% of 

Table 1: Features in the classification models obtained by MDR.

Name Features

ALL-AML Leukemia attribute1834, attribute6855
Lung cancer 37954_at, 33328_at, 1500_at, 34320_at, 37716_at
Prostate cancer 37639_at, 34163_g_at, 38406_f_at, 1776_at, 33784_at, 32057_at
Lymphoma GENE3328X, GENE3512X, GENE3261X
Breast cancer AL080059, AF035278, AB014543, Contig16531_RC, Contig64861_RC, NM_004469, Contig34634_RC, Contig15044_RC
BCR-ABL 1636_g_at, 36591_at, 37602_at, 40698_at
E2A-PBX1 32063_at
Hyp 31308_at, 38461_at, 37543_at, 1916_s_at, 36620_at, 39721_at, 36517_at,

38402_at
MALL 33412_at, 31397_at, 34306_at, 31318_at, 40506_s_at, 31329_at,

38413_at, 31324_at, 36777_at
TALL 38319_at
TEL-AML1 36985_at, 31572_at, 31492_at, 36239_at, 32645_at, 31691_g_at
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C4.5 and 3NN, respectively. In the lymphoma cancer
analysis, Bayes and SVM are top performers, followed by
MDR. The AUC for MDR is 93.61%, which is 4.29% lower
than that of Bayes and SVM. Compared to MDR, 3NN has
4.17% lower FPR (type I error) but 25.8% higher FNR
(type II error), which is usually a more critical measure for
tumor prediction. The ACC and AUC obtained by C4.5
and 3NN are not competitive to those obtained by MDR.

All the machine learners had poor results for the breast
cancer data. Furthermore, the results obtained from differ-
ent measures are not consistent. For example, Bayes has
100% precision but very low AUC and ACC of only about
50–55%, and an extremely high Type II error of about
95%. This suggests that the data are probably very skewed.
The results obtained from SVM are the best with AUC,
ACC and recall all close to 70%. However, its precision is
only 65%, and it has very high type I & II errors of about
30%. MDR does not perform well. Nevertheless, the
majority of its results rank second best among all the
learners. We now discuss the results obtained in the ALL

subtype classification as shown in Table 3. For the classi-
fication of subtypes E2A-PBX1 and T-ALL, MDR has per-
fect averages in all measures. For the subtype BCR-ABL,
although MDR has the highest AUC, 88.48%, and high
accuracy, 92.66%, (3.98% lower than the accuracy
obtained by the best learner, SVM), it has low precision,
low recall, and high FNR, about 80%. The results obtained
by the other learners also show similar inconsistency
across different measures. Thus, for BCR-ABL classifica-
tion, all learners are likely to perform well but with high
variances. For the rest of the ALL subtypes: Hyperdiploid
> 50 chromosomes (HYP > 50), MALL and TEL-AML1, the
results are similar in that the top three performers are
SVM, 3NN, and C4.5 on almost all measures except AUC.
However, MDR gives reasonably high accuracy, ranging
from 80% to 93%, and AUC ranging from 85% to 91%.
Since AUC is the area under the ROC curve, which is a plot
between TPR and FPR, it may seem strange that a lower
TPR and higher FPR can yield a higher AUC. However, this
is possible when multiple points on the curve are consid-
ered (e.g., results obtained by MDR and C4.5 in HYP > 

ROC curves on prostate cancer expressionsFigure 1
ROC curves on prostate cancer expressions
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Table 3: Classification results on six subtypes of acute 
lymphoblastic leukemia.

ALL-BCR-ABL

Learner Recall FPR FNR ACC AUC Precision

C4.5 33.33 2.88 66.67 94.19 59.10 35.71
Bayes 0.00 0.32 100.00 95.11 49.80 0.00
3NN 13.33 0.00 86.67 96.02 75.10 100.00
SVM 26.67 0.00 73.33 96.64 63.30 100.00

ZeroR 0.00 0.00 100.00 95.41 41.40 nan
MDR 20.00 3.85 80.00 92.66 84.65 20.00

ALL-E2A-PBX1

Learner Recall FPR FNR ACC AUC Precision

C4.5 100.00 0.00 0.00 100.00 100.00 100.00
Bayes 3.70 0.00 96.30 92.05 53.70 100.00
3NN 92.59 0.00 7.41 99.39 99.00 100.00
SVM 96.30 0.00 3.70 99.69 98.10 100.00

ZeroR 0.00 0.00 100.00 91.74 46.10 nan
MDR 100.00 0.00 0.00 100.00 100.00 100.00

ALL-HYP

Learner Recall FPR FNR ACC AUC Precision

C4.5 65.63 6.08 34.38 88.38 79.50 72.41
Bayes 20.31 1.52 79.69 83.18 60.20 76.47
3NN 73.44 1.52 26.56 93.58 93.30 92.16
SVM 87.50 0.76 12.50 96.94 93.40 96.55

ZeroR 0.00 0.00 100.00 80.43 47.70 nan
MDR 37.50 9.13 62.50 80.43 85.44 50.00

ALL-MALL

Learner Recall FPR FNR ACC AUC Precision

C4.5 80.00 1.95 20.00 96.94 89.00 72.73
Bayes 0.00 0.33 100.00 93.58 49.80 0.00
3NN 50.00 0.00 50.00 96.94 86.50 100.00
SVM 70.00 0.00 30.00 98.17 85.00 100.00

ZeroR 0.00 0.00 100.00 93.88 49.70 nan
MDR 45.00 3.58 55.00 93.27 88.90 45.00

ALL-T-ALL

Learner Recall FPR FNR ACC AUC Precision

C4.5 100.00 0.35 0.00 99.69 99.80 97.73
Bayes 23.26 0.35 76.74 89.60 61.50 90.91
3NN 81.40 0.00 18.60 97.55 94.40 100.00
SVM 97.67 0.00 2.33 99.69 98.80 100.00

ZeroR 0.00 0.00 100.00 86.85 47.20 nan
MDR 100.00 0.00 0.00 100.00 100.00 100.00

ALL-TEL-AML1

Learner Recall FPR FNR ACC AUC Precision

C4.5 87.34 2.42 12.66 95.11 92.50 92.00
Bayes 37.97 2.42 62.03 83.18 70.60 83.33
3NN 93.67 3.63 6.33 95.72 97.90 89.16
SVM 100.00 1.61 0.00 98.78 99.20 95.18

ZeroR 0.00 0.00 100.00 75.84 49.10 nan
MDR 82.28 5.65 17.72 91.44 91.50 82.28

Table 2: Classification results on five cancer types.

ALL-AML Leukemia

Learner Recall FPR FNR ACC AUC Precision

C4.5 85.11 32.00 14.89 79.17 72.00 83.33
Bayes 100.00 4.00 0.00 98.61 97.90 97.92
3NN 95.74 40.00 4.26 83.33 87.50 81.82
SVM 100.00 4.00 0.00 98.61 98.00 97.92

ZeroR 100.00 100.00 0.00 65.28 42.60 65.28
MDR 97.87 4.00 2.13 97.22 99.02 97.87

Lung cancer

Learner Recall FPR FNR ACC AUC Precision

C4.5 87.10 3.33 12.90 95.03 93.00 84.38
Bayes 96.77 1.33 3.23 98.34 97.70 93.75
3NN 64.52 0.00 35.48 93.92 96.50 100.00
SVM 96.77 0.00 3.23 99.45 98.00 100.00

ZeroR 0.00 0.00 100.00 82.87 48.50 nan
MDR 90.32 2.00 9.68 96.69 97.61 90.32

Prostate cancer

Learner Recall FPR FNR ACC AUC Precision

C4.5 87.01 30.51 12.99 79.41 79.00 78.82
Bayes 32.47 13.56 67.53 55.88 59.50 75.76
3NN 84.42 28.81 15.58 78.68 87.10 79.27
SVM 92.21 10.17 7.79 91.18 91.00 92.21

ZeroR 100.00 100.00 0.00 56.62 47.90 56.62
MDR 89.61 13.56 10.39 88.24 92.30 89.61

Lymphoma cancer

Learner Recall FPR FNR ACC AUC Precision

C4.5 69.57 12.50 30.43 78.72 77.00 84.21
Bayes 100.00 4.17 0.00 97.87 97.90 95.83
3NN 60.87 8.33 39.13 76.60 81.30 87.50
SVM 100.00 4.17 0.00 97.87 97.90 95.83

ZeroR 0.00 0.00 100.00 51.06 40.80 nan
MDR 86.96 12.50 13.04 87.23 93.61 86.96

Breast cancer

Learner Recall FPR FNR ACC AUC Precision

C4.5 52.17 27.45 47.83 62.89 66.00 63.16
Bayes 4.35 0.00 95.65 54.64 52.20 100.00
3NN 45.65 31.37 54.35 57.73 59.50 56.76
SVM 69.57 33.33 30.43 68.04 68.10 65.31

ZeroR 0.00 0.00 100.00 52.58 46.50 nan
MDR 60.87 35.29 39.13 62.89 63.65 60.87
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50). This is why AUC is one of the most widely used meas-
ures for evaluating probabilistic classification models
[13].

To better understand MDR's performance for various
types of cancer microarray data analyses, Table 4 focuses
on comparisons of AUC in average percentages over 10-
fold cross validations. For each type and subtype of tumor
classification, the base line performance (ZeroR) gives an
average AUC ranging from 41.4% to 49.7%. This follows
the expected behavior of the ROC no-discrimination line,
which implies that there is about 50% chance that a ran-
domly selected sample of a target class (tumor) has a
higher estimated probability of being predicted than a
randomly selected sample from a non-target class (nor-
mal). For each data set, Table 4 shows the highest AUC in
bold. MDR gives the highest AUC for the classifications of
ALL-AML and Prostate, and four ALL subtypes: BCR-ABL,
E2A-PBX1, MALL and TALL. SVM gives the highest AUCs
for the rest. In the former group of classifications, SVM
underperforms MDR with AUC differences ranging from
1% to 25.2%, whereas in the latter group, MDR underper-
forms SVM with AUC differences ranging from 0.4% to
7.9%. Specifically, SVM does poorly in BCR-ABL with an
AUC 25.2% lower than the best AUC, obtained by MDR,
whereas MDR has the largest AUC difference in subtype
Hyp > 50 with an AUC 7.9% lower than that of SVM, the
best performer. For the lymphoma cancer, SVM ties with
Bayes for the best AUC, 97.9%, while MDR is competitive
with an AUC of 93.6%. For classification of subtypes E2A-
PBX1, MDR and C4.5 both have an AUC of 100%. Neither
MDR nor SVM perform well on breast cancer, with AUCs
of 63.7% and 68.1%, respectively. In terms of overall aver-
age AUCs, SVM and MDR outperform the other learners.
MDR performs best on six of the eleven classification test
cases and has an average AUC over all eleven cases of
91.01%. The overall average AUC obtained from SVM is
90.07%, and SVM has the best performance for five of the
data sets. However, the difference between the average
AUCs of MDR and SVM is not statistically significant.

Therefore, we can conclude that MDR is at least competi-
tive to the other learners. In addition, recall that MDR pro-
vides the additional information of ranking predictions.
We note that, unlike other learners, the AUC obtained
from Weka for SVM is based on an ROC curve created
using a single point (e.g., see Figure 1). Since SVM is a
binary classifier that is not designed for classification
ranking, this may seem to be a reasonable way to estimate
AUC. However, this method may result in an optimistic
AUC for SVM whenever SVM has high accuracy. Another
observation is that MDR's performance may associate
with the class distribution in the sample data. When the
class distribution is extremely unbalanced, MDR does bet-
ter than other learners. For example, in all subtype classi-
fications of ALL, for which MDR outperformed other

learners, the proportion of the target class is at most 15%.
In particular, the proportions of the target class for sub-
types BCR-ABL, E2A-PBX1, MALL and T-ALL are 0.04,
0.09, 0.06 and 0.15, respectively. To further compare the
performance of MDR and SVM, we ran additional experi-
ments (on a PC with a 3.2 GHz Pentium Processor and 3.6
GByte of RAM) with the TIS (Translation Initiation Sites)
data obtained from [10,11]. Although these are vertebrate
genomic sequences and not gene expression data, the TIS
data set differs from all of the above expression data sets
in that it has a much higher number of instances (13,375) 
than the number of attributes (927) with a class distribu-
tion ratio of about 25%. Our results show that while both
SVM and MDR give the same AUC of 0.82, the training
time of SVM is 1080.39 sec., which is significantly higher
than MDR's training time of 84.26 sec. This shows that
SVM is suitable for high dimensional data while MDR
appears to be robust for data with high dimension and
volume.

Conclusion
This paper investigates the potential of MDR, a recently
developed ranking algorithm, for obtaining effective and
informative tumor classifications from gene expression
data. MDR gives promising results with an average AUC of
91.01% and accuracy of 90.01% over 11 types and sub-
types of cancers. The results show that MDR is competitive
with other widely used high performance machine learn-
ers for microarray data analysis. Based on our experi-
ments, MDR appears to be robust to unbalanced data and
performs well even when the tumor class distribution is
extremely unbalanced. In addition, MDR provides explicit
assessment of classification rankings. MDR's accuracy in
classifying different types of tumor is relatively high (close
to 90%) on all types of cancer except breast cancer, where
the accuracy and AUC obtained by MDR are about 63%.
However, even SVM, which is the top performer for breast
cancer, has accuracy and AUC of only about 68%. This
implies that the breast cancer data used for the analysis

Table 4: AUC Comparisons.

Data set C4.5 Bayes 3NN SVM ZeroR MDR

ALLAML 72.00 97.90 87.50 98.00 42.60 99.02
Lung 93.00 97.70 96.50 98.00 48.5 97.61
Prostate 79.00 59.50 87.10 91.00 47.90 92.30
Lymphoma 77.00 97.90 81.30 97.90 40.8 93.61
Breast 66.00 52.20 59.50 68.10 46.5 63.65
BCR-ABL 59.10 49.80 75.10 63.30 41.40 88.48
E2A-PBX1 100.00 53.70 99.00 98.10 46.10 100.00
Hyp 79.50 60.20 93.30 93.40 47.70 85.47
MALL 89.00 49.80 86.50 85.00 49.70 89.41
TALL 99.80 61.50 94.40 98.80 47.20 100.00
TEL-AML1 92.50 70.60 97.90 99.20 49.10 91.60

Average 82.45 68.25 87.10 90.07 46.14 91.01
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may not have the structure and patterns that allow types
of tumors to be discriminated. MDR performed very well
on classifying all six subtypes of acute lymphoblastic
leukemia, with the classification for subtype Hyp > 50
being the least accurate. Our work is preliminary and has
been validated only on a limited number of data sets.
Future work could include an investigation on the effects
of the number of boosting rounds required by MDR dur-
ing training, fine-tuning and experimentation with addi-
tional data sets to see how tolerant MDR is to noisy and
inconsistent data. Further interpretation of the results
obtained from MDR is required. Furthermore, since MDR
can be viewed as a feature selection tool that is very simple
and fast, it would be interesting to see if MDR can be
applied for this purpose. These issues are part of our ongo-
ing research.

Methods
The MDR algorithm
MDR (Multi-Dimensional Ranker) is a machine learning
algorithm for constructing a predictive model (classifier)
that ranks each sample in a data set based on its likelihood
of being the member of a target class. In expression profil-
ing data analysis, a typical target class represents a type of
disease (e.g., a type or subtype of cancer). The algorithm
is based on the Martingale boosting technique [14]. Intu-
itively, boosting iteratively uses results from one learner to
tune the training instances so that learning in the next
boosting round can incrementally improve prediction
accuracy. Figure 2 shows basic steps of MDR.

In each boosting round, MDR performs a greedy search to
select an appropriate attribute and its sorting order
(increasing or decreasing) in each partition to improve the
ranking pattern of target class samples in a given training
data set. The selection is biased towards the ideal ranking,
where samples are ordered from those with highest prob-
ability of being in the target class to the lowest. During the
search, MDR uses a heuristic evaluation function, R as a
rating function to compare lists (in a selected partition)
sorted on different attributes in both increasing and
decreasing orders. The partitioning condition ensures that
the class attribute values (e.g., disease or non-disease) are
well distributed in each partition for training. If the con-
dition cannot be satisfied exactly, having the same
number of target class instances is preferred (to having the
same proportion of target class instances).

We now define the rating function for L = [s1, s2,..., sn], a
list of samples in a partition of the training set. Let di = 1
if a sample si is a member of the target class and di = 0 oth-
erwise. We define rating of L as follows:

The rating is biased to ranking patterns that have target
class members at the top of the list and non-target class
members at the bottom. Ratings can range from 0 to d(n -
d)/n where d is the total number of samples that belong to
the target class. Note that smaller rating values are better.
For example, consider lists L1 = [0, 0, 1, 1], L2 = [0, 1, 0, 1],
and L3 = [1, 1, 0, 0]. It is clear that L3 is the most desirable
since target class members are all towards the top of the
list and L1 is the least desirable. This is consistent with the
heuristic values: R(L1) = 1, R(L2) = 3/4, and R(L3) = 0.

The output model is a list of triplets of the form (A, s, p),
where A, s and p represent an attribute, a sorting order type
(Inc for increasing, Dec for decreasing) and a ratio of the
partition size to the number of training instances, respec-
tively. Figure 3 shows an example of the model generated
by MDR on a data set when the total number of boosting
round is specified to be 3. The list of triplets for each par-
tition in each boosting round is shown, where Ai repre-
sents attribute i of the data set.

To apply the model to a given set of testing data instances,
the list is repeatedly sorted according to the attributes
selected by the model. For example, if we use the model
in Figure 3, we will first sort the whole list according to
attribute A14 in decreasing order. Next (in round 2), we
partition the sample list into two parts with the top part
containing 20% of the total number of testing samples.
We sort the top partition by attribute A12 in decreasing

R L r r
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order and sort the bottom partition by attribute A10 in
increasing order.

Finally, in round 3, we partition the list into three parts:
the top and middle parts contain 12% and 18% of the
total number of testing instances, respectively. The rest are
in the last partition. In the top partition, NULL signifies
that no attribute is selected and therefore there is no sort-
ing required. Thus, this top partition remains unchanged.
We then sort the middle and bottom partitions in decreas-
ing order by attributes A7 and A11, respectively. The result-
ing list gives the ranking predictions.

Unlike most machine learners, MDR is specifically
designed to produce ranking models. The proposed MDR
algorithm is similar to the MartiRank algorithm employed
in the ROAM system [15] in that both are based on Mar-
tingale Boosting [14]. However, MDR differs slightly from
MartiRank in that it uses a different heuristic evaluation
function. Furthermore, MDR records each partition
boundary in terms of the ratio of its size to the total
number of training instances, whereas MartiRank uses an
absolute boundary location. Consequently, MDR is more
general than MartiRank in that MDR can be applied to
testing data sets of any size whereas MartiRank can only
be applied to those with the same size as the training data
set. Currently, MDR, implemented in Java, interfaces, at
certain levels, with Weka, a popular data mining tool [12]
in order to facilitate valid comparisons of results obtained
from MDR and other machine learners provided by Weka.

The performance metrics
To evaluate the quality of our classification models, we
employ various standard performance measures; ideally,

different measures provide different insights. In machine
learning, modeling involves classification or prediction
that associates patterns from data points with classes that
express different concepts. One of the most popular per-
formance measures in machine learning classification is
accuracy (ACC), which is defined to be the ratio of the
number of correct predictions to the total number of
instances in the test sample. However, ACC does not make
use of the nature of the incorrect predictions, which can
be useful in many domains including tumor classifica-
tion.

Consider, for example, a model that classifies data points
into the binary classes: positive and negative, as shown in
Figure 2. TP (True Positive) represents the number of pos-
itive samples correctly classified, whereas FP (False Posi-
tive) represents the number of negative samples
incorrectly classified as positive. TN (True Negative) and
FN (False Negative) are defined symmetrically. ACC is
computed as (TP+TN)/(TP+FP+TN+FN) and does not
take into account the difference between false alarms (type
I errors), measured by FP, and missed detections (type II
errors), measured by FN. The latter value is particularly
important in clinical medicine and defect management.
Furthermore, ACC can be especially misleading when the
distribution of the sample class is unbalanced. For exam-
ple, a model can achieve 90% accuracy on a sample in
which only 10% of the data points are positive simply by
classifying every instance as negative, even though all of
its classifications for positive samples are incorrect.

As shown in Figure 4, a variety of metrics have been
defined to measure different types of errors. In particular,
TPR (True Positive Rate) is defined to be the ratio of pos-
itives correctly classified to the actual number of positives,
and FPR (False Positive Rate) is defined to be the ratio of
negatives incorrectly classified to the actual number of
negatives. TPR is also called the hit rate, recall, or sensitivity.
FPR is also referred to as the false alarm rate. Similarly, spe-
cificity is defined as the ratio of correctly classified nega-
tives to the actual number of negatives. TPR and specificity
are independent, i.e., neither one tells us anything about
the value of the other. Note that the sum of specificity and
FPR is one, and thus, knowing one allows us to calculate
the other. Another useful metric is precision (PREC), the
ratio of correctly classified positives over the total number
of samples classified as positive.

In this paper we also use AUC (Area Under the ROC
Curve) as an additional performance metric. The ROC
curve is a two-dimensional plot between the TPR (Y-axis)
against the FPR (X-axis) of the predictions. The values of
TPR and FPR range from zero to one. The set of points
(FPR, TPR) defines the ROC space. Given a ranking list of
sample predictions, each sample point in the list can be

Example of a model produced by MDRFigure 3
Example of a model produced by MDR
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used as a cutoff point. For each cutoff point, the corre-
sponding TPR and FPR can be computed and plotted as a
single point in ROC space. Connecting these points gives
the ROC curve for the list of predictions. ROC curves can
be used to compare predictions. The closer the curve is to
the Y-axis (high true positives) and the further away it is
from the X-axis (low false positives), the more accurate the
predictions are. When predictions are made by random
guessing, TPR and FPR grow linearly yielding an ROC
curve, which is a straight line 45 degrees from the horizon-
tal. This is referred to as the no-discrimination line [13].

Unfortunately, using ROC curves for performance com-
parisons does not necessary give conclusive results since
one ROC curve may dominate another in one region but
be dominated in a different region. According to [13], the
AUC of a learner can be interpreted as the probability that,
given a randomly chosen positive and negative example,
the learner will give a higher ranking to the positive exam-
ple than to the negative. Thus, AUC (the area under the
ROC curve) is used as a value to compare the performance
of different learners on a data set. The higher the AUC, the
better the learner. Our study uses AUC to evaluate ranking
quality [13]. AUC has been shown to be equivalent to the
Wilcoxon statistic rank test [16] and, in fact, is a better
measure for evaluating predictive ability of machine
learners than accuracy [13]. Most researchers have now
adopted AUC as the standard performance metric. Figure
5 illustrates three ROC curves obtained by applying the
same classification model to the same testing sample
using either different orderings for the testing data or
using a different number of cutoff points. In particular,
ROC1 and ROC2 are plotted using multiple cutoff points as
the model incrementally classifies each testing instance,
whereas ROC3 uses a single point to create the ROC curve
with a cutoff point where all testing instances have been
classified. ROC1 and ROC2 are obtained from the same

testing instances but in different orders. Even though all
the three classification results have the same accuracy,
they have different AUCs. AUC is more sensitive to the
order of classification ranking than it is to accuracy.

Microarray data
We use microarray gene expression data for leukemia,
lung, prostate, lymphoma, and breast cancers. These are
real-world expression profiling data sets that are used in
various types of cancer research [1,3,5-8,12]. They can be
obtained from the Kent Ridge Biomedical Data Set Repos-
itory [11].

Table 5 gives a summary of the basic characteristics of
these data sets, including the subject of the study, number
of features (which represent, for example, genes or prob-
ing conditions of the microarray profiling experiments)
and number of samples (cells or tissues from different
patients). Each data set is concerned with a binary classifi-
cation for different types or subtypes of cancers. The last
two columns of Table 5 show the names of the target (e.g.,
tumor or type of cancer) and non-target classes and the
number of instances of each. All data represent the expres-
sion levels and durations of the expressed genes. The last
six rows of Table 5 represent expression data for binary
classifications of six different subtypes of acute lymphob-
lastic leukemia (ALL). One characteristic shared by all
these expression data sets is high dimensionality (many
factors) but low volume (few sample points). As shown in
Table 5, the dimensions range from 4,026 to 15,154,
whereas the volumes range from 47 to 327. This character-
istic is well known to challenge many existing microarray
data analysis techniques.

ROC curves on breast cancer classification of the same accu-racyFigure 5
ROC curves on breast cancer classification of the 
same accuracy
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Experimentations
To avoid overfitting, n-fold cross-validation [12], a standard
re-sampling technique, is used. In n-fold cross validation,
a data set is randomly partitioned into n approximately
equally sized subsets (or folds or tests). The learning algo-
rithm is executed n times; each time it is trained on the
data that is outside one of the subsets and the generated
model (classifier) is tested on that subset. The estimated
accuracy for each cross-validation test is a random varia-
ble that depends on the random partitioning of the data.
The estimated accuracy is computed as the average accu-
racy over the n test sets. Typically n-fold cross-validations
are repeated several times to assure data randomness, and
the estimated accuracy is the average over these repeti-
tions. In this paper, we use the number of folds, n = 10, as
is standard practice. For efficiency control, MDR allows a
user to specify the number of boosting rounds (T). In this
study, we use T = 5 as the number of rounds. A method for
selecting the best T is a subject for future research. We ran
10-fold cross validations on all eleven test cases of the six
data sets using our MDR ranking algorithm and five other
machine learning approaches, which are available on
Weka [12]. The other five machine learners are ZeroR,
C4.5, Bayes, k-NN and SVM [2,12,17,18]. ZeroR is a
majority learner that is commonly used to provide a base-
line measure of performance in machine learning. C4.5 is
a decision tree learner, Bayes is a well known Naive Bayes
classifier, and k-NN is a nearest-neighbor classifier, for
which we specify the number of neighbors to be k = 3 (as
in [9]). The support vector machine learner, SVM, is
known to have high performance and is widely used in
Bioinformatics. The five learners were selected for com-
parison because they perform well and cover a variety of
techniques that use different representational models; for
example decision tree models for C4.5, probabilistic mod-
els for Bayes, and regression models for SVM.
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