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Abstract

Background: Ocimum sanctum L. (O. tenuiflorum) family-Lamiaceae is an important component of Indian tradition
of medicine as well as culture around the world, and hence is known as “Holy basil” in India. This plant is mentioned
in the ancient texts of Ayurveda as an “elixir of life” (life saving) herb and worshipped for over 3000 years due to its healing
properties. Although used in various ailments, validation of molecules for differential activities is yet to be fully analyzed, as
about 80 % of the patents on this plant are on extracts or the plant parts, and mainly focussed on essential oil components.
With a view to understand the full metabolic potential of this plant whole nuclear and chloroplast genomes were
sequenced for the first time combining the sequence data from 4 libraries and three NGS platforms.

Results: The saturated draft assembly of the genome was about 386 Mb, along with the plastid genome of 142,245 bp,
turning out to be the smallest in Lamiaceae. In addition to SSR markers, 136 proteins were identified as homologous to five
important plant genomes. Pathway analysis indicated an abundance of phenylpropanoids in O. sanctum. Phylogenetic
analysis for chloroplast proteome placed Salvia miltiorrhiza as the nearest neighbor. Comparison of the chemical
compounds and genes availability in O. sanctum and S. miltiorrhiza indicated the potential for the discovery of new active
molecules.

Conclusion: The genome sequence and annotation of O. sanctum provides new insights into the function of genes and
the medicinal nature of the metabolites synthesized in this plant. This information is highly beneficial for mining
biosynthetic pathways for important metabolites in related species.
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Background
Ocimum sanctum L. (O. tenuiflorum) is an important sa-
cred medicinal plant of India known as “holy basil”,Thulasi,
Vishnupriya, and Tulsi [1] and worshipped for over more
than 3000 years [2, 3]. This herb is popular in traditional
medicine as “The Queen of Herbs,” “The Incomparable
One,” and “The Mother Medicine of Nature” [4]. Being le-
gendary sacred basil (Tulsi), is recognized [5, 6] not only
for its sanctity, but forms an indispensible part of the trad-
itional herbal medicine of East as discussed in Ayurvedic
text of Charaka Samhita as well as Unani medicinal system.
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It is native to India and parts of northern and eastern Af-
rica, Hainan Island, and Taiwan, and grows wild throughout
India up to an altitude of 5900 ft (1800 m) in the Himalayas
[7–9]. The leaf of the plant owes a stronger, somewhat
pungent taste than other basils due to a sesquiterpenoid
beta-caryophyllene, and a phenylpropanoid eugenol [10].
O. sanctum has been suggested to possess anti-fertility,
anti-cancer, anti-diabetic, anti-fungal, anti-microbial,
cardioprotective, analgesic, anti-spasmodic and adapto-
genic actions [6]. The chemical composition of Tulsi is
highly complex, containing many biologically active
phytochemicals with variable proportions among varieties
or even plants within the same field. The volatile oil of
leaf [11] contains eugenol (1-hydroxy-2-methoxy-4-
allylbenzene), euginal, urosolic acid [12], carvacrol,
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limatrol, caryophyllene, methyl carvicol while the seed
volatile oil has fatty acids and sitosterol. In addition,
the seed mucilage contains some levels of sugars and
the anthocyans are present in green leaves [6]. The
leaf volatiles (terpenes and phenylpropenes) are syn-
thesized and sequestered in glandular hairs present on
the leaves, also known as peltate trichomes, which are
the characteristic of lamiaceae members [13, 14]. Two
types of O. sanctum L. are used for cultivation: (i)
plants with green leaves known as Sri/ Rama Tulsi &
(ii) plants with purple leaves known as Krishna/
Shyama Tulsi [8]. Furthermore, the quantity of many
of its constituents can be significantly altered by vary-
ing conditions used for growing; harvesting, process-
ing and storage that are not yet well understood [15].
All of the varieties of Ocimum have unique and indi-
vidual chemical compositions; but their medicinal
properties are not yet explored completely. Despite
huge importance of Ocimum, very little transcriptomic
and genomic data of Ocimum sp. is available limiting
studies on important phytochemical pathways. But
comparative transcriptome analysis of Ocimum species
(O. sanctum and O. basilicum) was recently reported
[16]. This report correlated higher digital expression
of phenylpropanoid/ terpenoid pathway genes of O.
Fig. 1 Process workflow of Ocimum sanctum whole genome sequencing a
basilicum to higher essential oil content and chromo-
some number (O. sanctum, 2n = 16; and O. basilicum,
2n = 48). Also several cytochrome P450s (26) and tran-
scription factor families (40) were identified which
could be utilized to characterize genes related to sec-
ondary metabolism and its regulation.
Hence, there was a need to know about the genome of

this plant to understand its metabolic potential, diversity,
regulation and evolutionary implications. Here, we re-
port the draft nuclear genome sequence of 386 Mb and
the plastid of 142,245 bp sequenced with a composite
next generation sequencing technologies. On the basis
of assembly, 53,480 protein coding genes were identified.
Gene model prediction revealed the similarity of O.
sanctum genome to Nicotiana tabacum and Solanum
lycopersicum, all sharing same sub-class (asterid).

Results and discussion
Genome sequencing, assembly and validation
A whole-genome shotgun sequencing strategy by gener-
ating long and short paired-end reads, along with long
reads and mate-pair libraries was applied to assemble
the 386 Mb genome sequence of O. sanctum. The
process workflow of the same has been provided in the
Fig. 1. Two libraries (long and short reads) of Illumina
nd assembly
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HiSeq2000, one library of 454 GS FLX and one mate-pair
library of SOLiD 5500XL were constructed. Illumina li-
braries were used to generate the contigs and Illumina
paired-end data along with 454 GS FLX single end data
were used for contig merging as a result of which scaffolds
were generated. While Illumina generated 45.37 Gb data
(Additional file 1), 454 sequencing resulted in 320.3 Mb
(Additional file 2) data and SOLiD generated 12.68 Gb
(Additional file 3) data representing approximately ~130-
fold coverage of the predicted O. sanctum genome. With
the help of the two Illumina library data (short insert and
long insert) the assembly showed significant improvement
in respect of N50. Long- and short-paired end reads from
Illumina deep sequencing was used to assemble a total of
107,785 contigs into 22,776 scaffolds. Super-scaffolding
was performed in order to merge the existing gap-closed
scaffolds into super-scaffolds using relative orientation of
SOLiD mate pair reads. Finally, 9059 super-scaffolds of
maximum length upto 2,211,552 bp were generated
(Table 1). Out of the total super-scaffolds generated, 4159
super-scaffolds are larger than or equal to 1 kb in length
(Table 1). The N50 length of contigs, scaffolds and super-
scaffolds was found to be 12,769 bp, 61,854 bp and
303,233 bp respectively (Table 1). The total length of the
gaps in the assembled scaffolds was 26.11 Mb in a total of
3999 super-scaffolds. The total number of gaps present is
45,803 considering even the presence of a single N as one
gap. The biggest gap identified was of 4906 bp in length.
Mate-pair reads significantly closed ~60 % of gaps be-
tween scaffolds and five-fold change in N50 value and
N90 value was also observed where N50 increased from
61,242 to 303,233 while N90 from 12,534 to 73,672. In
order to validate the genome assembly, a total of 69,117
transcripts generated from our previous study [16] were
mapped to the genome data and more than 95 % tran-
scripts (66,891) showed 100 % coverage (Additional file 4).
Table 1 Assembly statistics of contigs and scaffolds generated using
FLX and SOLiD 5500XL

Description Contigs

Contigs generated 107785

Maximum Contig Length 115044

Minimum Contig Length 147

Average Contig Length 3454

Total Contigs Length 372395755

Total Number of non-ATGC characters 0

Percentage of non-ATGC characters 0

Contigs > = 1 Kb 43174

Contigs > = 10 Kb 11594

N50 value 12769

N90 value 2071
De-novo assembly of chloroplast and mitochondria
genome data
The complete chloroplast (cp) genome of O. sanctum is
142,524 bp in length (Fig. 2). Recently, Qian et al [17] had
reported the chloroplast genome of Salvia miltiorrhiza to
be the smallest with the exception of Epifagus virginiana
[18] cp genome of order lamiales. But this investigation
revealed O. sanctum cp genome to be 8804 bp smaller
than S. miltiorrhiza (member of the Ocimum family-
lamiaceae) cp genome of length 151,328 bp. Hence O.
sanctum cp genome is now reported as the smallest of the
Lamiales cp genomes as it is ~8800 bp smaller than E.
virginiana cp genome. The overall GC content of the O.
sanctum cp genome is 36.2 %, which is similar to the other
reported asterid cp genomes [17, 19–22]. The O. sanctum
cp genome was found to code a total 158 genes, including
43 transfer RNA (tRNA) genes and four ribosomal RNA
(rRNA) genes. The aligned reads of cp genome of O.
sanctum to other angiosperms (referred in materials and
methods section) were assembled into contigs for finally
generating the scaffolds using all the Illumina data. Similar
procedure was carried out for mitochondrial genome
(Additional file 5 and 6) assembly except considering S.
miltiorrhiza as the reference mitochondial genome. A
total of 48 scaffolds from 140 contigs from cp genome,
and 41 scaffolds from 124 contigs (Additional file 5 and 6)
from the mitochondrial genome got generated.

Genomic composition and SSR prediction
GC content is an important indicator of the genomic
composition including evolution, gene structure (intron
size and number), gene regulation and stability of DNA
[23]. Average GC content of O. sanctum was 38.37 %.
Earlier researchers have reported that across the broad
phylogenetic sweep, genome size may be correlated with
intron size [24–26], suggesting that some fraction of
the three sequencing platforms Illumina HiSeq2000, 454 GS

Scaffolds GapClosed scaffolds Super-scaffolds

22776 22776 9059

414711 411690 2211552

200 200 200

16984 16629 44354

386828951 378759759 401803260

17898452 2665702 26110056

4.627 0.704 6.498

14791 14769 4159

7544 7407 2357

61854 61242 303233

12742 12534 73672



Fig. 2 Gene map of the Ocimum sanctum chloroplast genome Genes drawn inside the circle are transcribed clockwise, and those outside are
counterclockwise. Genes belonging to different functional groups are color-coded. The darker gray in the inner circle corresponds to GC content,
while the lighter gray corresponds to AT content
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genome size evolution takes place within genes [27].
While performing the annotation of gene models, tak-
ing N. tabacum and S. lycopersicum as references, it
was found that the percent genes containing introns
from these plants were 55.5 % and 64.5 %, respectively
(Additional file 7). It has been observed that introns
and their positions are highly conserved during land
plant evolution excluding conifers [28, 29].
Comparative studies had revealed that intron lengths

and the abundance of mobile repetitive elements have a
direct correlation with genome size, such that large ge-
nomes have longer introns and a higher proportion of mo-
bile elements [30, 31]. Intron sizes in the genes of O.
sanctum ranged from 5 bp to 8000 bp (Additional file 7).
A reason for intron size variation among organisms may
be due to inherent mutational processes generating
insertions and deletions [24, 32–35]. It was also reported
that low distribution of recombination regions leads to in-
creased intron size [36, 37].
Among different classes of molecular markers, micro-

satellite or simple sequence repeat (SSR) markers are the
most preferred for its array of applications in plant
genetics and breeding due to their multi-allelic nature,
reproducibility, co-dominant inheritance with high abun-
dance and wide genome coverage [38, 39]. A total of 4827
sequences greater than 500 bp length were examined for
SSR search out of which 2612 sequences were found hav-
ing SSR repeats while 2364 sequences showed the pres-
ence of more than one SSR (Fig. 3). A sum of 142,601
SSRs were predicted, with the highest being mono-repeats
(85,624) and (13,389) complex SSR’s. The sequences
were checked for mono-repeats occurring at-least 10



Fig. 3 Frequency distribution of SSRs based on motif types. p1: Mono-nucleotide repeats; p2: Di-nucleotide repeats; p3: Tri-nucleotide repeats, p4:
Tetra-nucleotide repeats; p5: Penta-nucleotide repeats; p6: Hexa-nucleotide repeats; Complex: no. of SSRs involved in compound formation
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times, di-repeats occurring at-least 6 times and tri/
tetra/ penta/ hexa-repeats occurring atleast 5 times. The
SSR was classified as complex when two SSR’s were
present within 100 bp distance of each other. On the
other side, 1,166,753 sequences of less than 500 bp were
identified, only 162 SSRs highest being mono-repeats
(68) followed by complex SSR’s (57) (Fig. 3). Previously,
we reported SSRs from the transcriptome of O. sanctum
[16] but the SSRs identified were very few in comparison
to the present report. Similarly, efforts were made by re-
searchers towards the development of molecular markers
in order to carry out genetic diversity studies on Ocimum
sp. [40–42]. But, SSRs reported from the present study
with a large data set would be helpful in providing insights
to the plant breeders and geneticists for evaluation of de-
sired genotypes with varied essential oil compositions and
also for further development of new species of Ocimum.
A gene density of ~30 genes per 100 kb and ~20 genes

per 100 kb was observed in O. sanctum gene model pre-
diction taking N. tabacum (tobacco) and S. lycopersicum
(tomato), respectively as references. Since O. sanctum is a
small genome plant, the gene density is similar to that of
Arabidopsis thaliana i.e., upto 38 genes per 100 kb [43].
Large genomes like barley and wheat show a gene density
of about 5 genes per 23 kb [44] as it was suggested that
the larger genomes would have accumulated non-coding
sequences between the single-copy genes [45].

Gene prediction and annotation
In order to assign putative functions to the predicted
genes of O. sanctum, they were compared against the
NR (non-redundant) protein sequences of Arabidopsis.
The associated hits were searched for their respective
GO. Based on sequence homology, 85,723 protein
sequences were categorized into 31 functional groups
under three main categories: biological processes (BP),
cellular components (CC) and molecular functions (MF)
(Fig. 4, Additional file 8). Genes were predicted from
22,776 scaffolds by mapping (BLASTP) the predicted
proteins with UNIPROT with all Viridiplantae clade pro-
tein sequences. Out of 85,723 protein coding loci from
22,776 scaffolds, a total of 53,480 were annotated with
UNIPROT (Additional file 9) but only 22,270 protein
coding genes were found to be unique. On observing the
plant species distribution of hits to UNIPROT database,
maximum hits were from the plant Genlisea aurea
(Additional file 10) which is one of the smallest known
genome among higher plants [46]. The number of
unique protein coding genes (22,270) in the O. sanctum
genome, was in range as reported in potato, tomato [47],
neem [48] and grapevine [49], having 35,004, 34,727,
20,000 and 30,434 protein coding genes, respectively.
Ab initio gene model prediction was performed on

scaffold sequences utilizing minimal information from
the nearest available species. Overall, 130,526 and 87,918
proteins were predicted using training sets of Nicotiana
tabacum and Solanum lycopersicum respectively. A total
of 65,935 proteins were common between the two pre-
dictions. Gene annotation of the predicted proteins with
BLASTP resulted in annotation of 80,516 NR proteins. A
set of 38,868 of these annotated proteins were common to
the predictions from N. tabacum and S. Lycopersicum, re-
spectively. The un-annotated predicted proteins were
scanned with Pfam and another 18,940 proteins got anno-
tated with a predicted domain signature. Database annota-
tion of assembled scaffold sequences greater than 500 bp
was carried out for matching with the EST/mRNA
sequences available for Ocimum in the NCBI databases



Fig. 4 Pie-chart showing top 10 functional classes in each of the 3 categories of gene ontology classification. The three main categories are:
biological process, cellular component and molecular function representing the assignment O. sanctum predicted proteins with BLAST matches
in NR (non-redundant) protein sequences of Arabidopsis to each GO term
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(Additional file 11). A total of 23,420 EST and 52 mRNA
were queried, with a match to the assembled scaffolds for
21,984 of the EST/mRNA sequences at greater than 90 %
sequence identity. Also Arabidopsis sequences (Additional
file 12) from TAIR database and N. tabacum (Additional
file 13) and S. lycopersicum (Additional file 14) sequences
from NCBI were Blast- checked against the O. sanctum
scaffolds with percent hitting scaffolds of 34.65 %, 4.9 %
and 5.29 %, respectively. Database annotation of EST/
mRNA from NCBI datasets identified the mitochondria
and chloroplast expressed proteins. All of the 392 scaf-
folds identified were annotated to potentially map to these
sequences (Additional file 15). Out of 392 scaffolds, 270
were redundant and only 122 were non-redundant. On
the basis of annotation of chloroplast and mitochondria
encoded proteins against TAIR database, it was found that
out of 122 non-redundant scaffolds of O. sanctum, 95 were
chloroplastic while remaining 27 were mitochondrial.

Phylogenetic analysis
To identify the phylogenetic position of O. sanctum

within the asterid lineage, multiple sequence alignments
was performed using 63 protein-coding genes (Additional
file 16) commonly present in the 32 complete cp genomes
representing 10 families within five orders of asterids in-
cluding Apiaceae, Araliaceae, Asteraceae, Convolvulaceae,
Gesneriaceae, Lamiaceae, Oleaceae, Pedaliaceae, Rubiaceae
and Solanaceae (Additional file 17). Two additional eudicot
cp genomes, Spinacia oleracea and Arabidopsis thaliana,
were set as outgroups. A phylogenetic tree was generated
using maximum parsimony and maximum likelihood
method (Fig. 5). Bootstrap analysis showed that there were
25 out of 31 nodes with bootstrap values >95 %, and 14 of
these had a bootstrap value of 100 %. The tree topologies
formed two major clades, euasterids I and II. The results
strongly supported the position of Ocimum sanctum and
Salvia miltiorrhiza with 100 % bootstrap from the same
family lamiaceae as the sister of the closely related species
Sesamum indicum and Boea hygrometrica in the order
Lamiales. As the chloroplast genome is considered to be
free from evolutionary processes, like gene duplication/ de-
letion, intensive evolution and pseudogene formation,
which are characteristically frequent among nuclear genes,
this was included in the phylogenetic analysis [50]. Slow
rate of sequence evolution in chloroplast DNA is appropri-
ate to include cp genome in phylogenetic studies of the
highly cross pollinated plant like O. sanctum [51].

Pathway identification
To identify the biological pathways functional in O.
sanctum 85,723 protein sequences from scaffolds were
mapped to the reference canonical pathways in KEGG



Fig. 5 The phylogenetic tree of the asterid clade based on 63 protein-coding genes of chloroplast genome. Numbers above each node are bootstrap
support values. Spinacea oleracea and Arabidopsis thaliana were set as outgroups
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taking Arabidopsis thaliana and Oryza sativa as refer-
ence organisms, out of which only 6328 proteins got
predicted in KAAS (Additional file 18). All transcripts
were classified mainly under five categories: metabolism,
cellular processes, genetic information processing, envir-
onmental information processing and others. Highest
numbers of sequences were related to metabolism. Max-
imum percentage of the sequences fell under the cat-
egory of phenylpropanoid biosynthesis. O. sanctum is
good source of phenylpropene- eugenol and is one of
the compounds which attributes to its medicinal prop-
erty [52, 53]. Precursor molecules for phenylpropanoid
biosynthesis are derived from the shikimate pathway
while terpenoid biosynthesis utilizes isoprenoid precur-
sors from cytosolic MVA (mevalonate) as well as plastid-
ial MEP pathways (2-Cmethyl-D-erythritol 4-phosphate/
1-deoxy-D-xylulose 5-phosphate/non-mevalonate path-
ways) [16]. On sorting 53,480 protein coding genes of O.
sanctum annotated from UNIPROT for phenylpropanoid
(Fig. 6) and terpenoid (MEP and MVA) pathway genes
(Fig. 6) it was found that the highest number of phenyl-
propanoid pathway genes were identified as compared to
the terpenes. Since the O. sanctum variety used in the
present study is high-yielding, eugenol-rich, oil produ-
cing variety [54] with 83 % eugenol in the oil, it corre-
lates with the presence of higher number of
phenylpropanoid pathway genes. Interestingly, highest
number transcripts of copalyl diphosphate synthase
(CPS) were present among the mevalonate pathway
genes (Fig. 6). This enzyme participates in gibberellin
biosynthesis [55].
Not only gibberellins, but a wide range of secondary me-

tabolites, including terpenes and alkaloids, are also derived
either from ent-copalyl pyrophosphate itself or from ent-
kaurene or ent-kaurenoic acid, the next two intermediates
in the metabolic pathway to gibberellins. Knowledge of
these secondary metabolic pathways is very much limited
as compared to gibberellin biosynthetic pathway, and is
often little more than a speculation [56]. Further functional
characterization studies for copalyl diphosphate synthase



Fig. 6 Abundance of phenylpropanoid, mevalonate and non- mevalonate pathway genes as per the annotation of predicted genes against all
Viridiplantae clade genes in Uniprot. [Abbreviations used- Alcohol dehydrogenase (ADH); Polyphenol oxidase (PPO); Flavonoid O-methyltransferase
(FOMT); Cinnamate 4-hydroxylase (C4H); Cinnamyl alcohol dehydrogenase (CAD); Cinnamoyl-CoA reductase (CCR); Hydroxyphenylpyruvate reductase
(HPPR); 4-Coumarate:coenzyme A ligase (4CL); Anthocyanidin 3-O-glucoside 5-O-glucosyltransferase (PF3R4); Chalcone synthase (CHS); Tyrosine
aminotransferase (TAT); Hydroxycinnamoyl transferase (HSHCT); Rosmarinic acid synthase (RAS); Phenylalanine ammonia-lyase (PAL); Dihydroflavonol
4-reductase (DFR); Flavonoid 3’ 5’-hydroxylase (F3’5’H); UDP-glucose: flavonoid 7-O-glucosyltransferase (UFGT); Eugenol synthase 1 (EGS); p-Coumaroyl
shikimate 3’-hydroxylase (CS3’H); p-Coumarate 3-hydroxylase (C3H); Alcohol acyltransferase (AAT2); Caffeoyl CoA O-methyltransferase (CCOMT); Chalcone
isomerase (CHI); Ferulate 5-hydroxylase (F5H); Arogenate dehydrogenase (ADH); Chavicol O-methyltransferase (CVOMT); Prephenate aminotransferase (PAT);
Chorismate mutase (CM); Dehydroquinate dehydratase/ shikimate dehydrogenase (DHQ-SDH); Anthocyanidin synthase (ANS); Cinnamate/p-coumarate
carboxyl methyltransferase (CCMT); Caffeic acid 3-O-methyltransferase (COMT); 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS); Flavanone
3-hydroxylase (F3H); Flavonoid 3’-hydroxylase (F3’H); Glutathione S-transferase (GST); 4-Hydroxyphenylpyruvate dioxygenase (HPPD); Chorismate synthase
(CS); Eugenol O-methyltransferase (EOMT); Benzoate carboxyl methyltransferase (BAMT); Arogenate dehydratase (ADT); 3-dehydroquinate synthase (DHQS);
Copalyl diphosphate synthase(CPS); Bicyclogermacrene synthase (Ov-TPS4); Sesquiterpene synthase (SesquiTPS); 3-hydroxy-3-methylglutaryl-coenzyme
A reductase (HMGR); (R)-limonene synthase (LS); Terpene synthase (TPS); Geraniol synthase (GES); Gamma-cadinene synthase (CDS); Secologanin
synthase (SLS); Selinene synthase (SES); Multifunctional triterpene synthase (Multifunc triTPS); (+)-menthofuran synthase (MFS); Ent-kaurene synthase (KS);
Lupeol synthase(LUP); Nerolidol/linalool synthase (NES/LIS-1); Alpha-zingiberene synthase (ZIS); Germacrene D synthase (GDS); 3-hydroxy-3-methylglutaryl
coenzyme A synthase(HMGS); Mevalonate kinase (MVK); Mevalonate diphosphate decarboxylase (MDC); Farnesyl diphosphate synthase(FPPS); Squalene
synthase (SQS); Beta-amyrin synthase (bAS); Mixed amyrin synthase (AS); 5-epi-aristolochene synthase (EAS); Beta-myrcene synthase (MYS); Cis-muuroladiene
synthase (MxpSS1); Monoterpene synthases (MTPS); Cineole synthase (CinS2); Terpinolene synthase (TES); Valencene synthase (ValCS); 5-
phosphomevalonate kinase (PMK); (-)-endo-fenchol synthase (FES); (+)-epi-alpha-bisabolol synthase (LdTPS8); Tricyclene synthase 0e23 /(E)-beta-ocimene
synthase 0e23/ Terpenoid synthase 0e23) (Terpenoid synthase); Geranyl diphosphate synthase (GPPS); 1-deoxy-D-xylulose 5-phosphate synthase (DXS); 4-
hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR); Geranylgeranyl diphosphate synthase (GGPPS); Isopentenyl diphosphate isomerise (IDI); 1-deoxy-
D-xylulose-5-phosphate reductoisomerase (DXR); 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (MCT); 4-diphosphocytidyl-2-C-methyl-D-erythritol
kinase (CMK); 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MECPP); 4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS)]
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may help in proving the possibility of CPS involvement in
terpene and alkaloid biosynthesis.

Medicinal nature of O. sanctum
In this analysis O. sanctum cp genome was observed to
be evolutionarily nearest to S. miltiorrhiza. In the ab-
sence of complete genome sequence data (unfinished
draft genome) of S. Miltiorrhiza, the chloroplast genome
comparison analysis was taken into account. Both the
plants are used widely in two different traditional medi-
cine systems (Indian and Chinese, respectively), and
hence may be implicated for similar molecules, activities
vis a vis the genes biosynthesizing metabolites. In
addition, both plants have chromosome number de-
scribed to be 2n = 16 [16, 57]. The active ingredients in
S. miltiorrhiza are both hydrophilic (phenolic acids like
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rosmarinic acid, salvianolic acid B, lithospermic acid and
dihydroxyphenyllactic acid) and lipophilic diterpene
components (tanshinones, including structurally related
tanshinone I, tanshinone IIA, cryptotanshinone, and
dihydrotanshinone I) [58]. These molecules are respon-
sible for a wide array of activities like anti-bacterial, anti-
oxidative and anti-viral to hepatoprotective activities. The
chemical composition of Tulsi is highly complex, and the
important are triterpene like urosolic acid (cardioprotective
effect), phenolics like rosmarinic acid, apigenin, cirsimaritin,
isothymusin and isothymonin (exhibiting antioxidant and
anti-inflammatory activities), and important aroma compo-
nents like 1, 8 cineole, linalool, methyl chavicol (estragole)
and eugenol [16]. Phenolic acid compounds production by
hairy root culture have been reported in both O. basilicum
and S. miltiorrhiza [59]. In addition, the vast literature indi-
cates phenylpropanoid derivatives in these two plants are
responsible for a range of major activities. In this investiga-
tion also we could observe the dominance of phenylpropa-
noid pathway genes. The highest number of sequences
among the mevalonate pathway genes in O. sanctum are
observed to be homologous to copalyl diphosphate
synthases (CPS), that are involved in the biosynthesis of an
important bioactive diterpene tanshinone in S. miltiorrhiza
[58]. As O. sanctum is traditionally used for many aliments
and the compounds of this plant are not fully investigated,
the possibility exists for the discovery of tanshinone like
compounds and other novel diterpenes.

Conclusion
The genome of Holy basil, assembled de novo in this
study, presents the smallest nuclear genome in the fam-
ily Lamiaceae and smallest cp genome in the order
Lamiales. Phylogenetically, S. miltiorrhiza is most similar
to O. sanctum with a reported genome size of approxi-
mately ~600 Mb [17]. Although, both S. miltiorrhiza
and O. sanctum predominantly produce phenylpropa-
noids and both have the identical diploid number of
chromosome (2n = 16), the genome size of O. sanctum is
little more than half of the genome size of S. miltiorrhiza.
Hence, O. sanctum genome (386 Mb) seems to be quite
compact with relatively less repeat sequences, even
though it falls in the identical phylogenetic clade. In
contrast to the genome sizes of the plants used in the
gene model prediction like Solanum lycopersicum (~900
Mb) and Nicotiana tabacum (~4567 Mb), O. sanctum
genome (~386 Mb) falls in the category of the plants
with small genome and is just 1.5 times that of the
model plant Arabidopsis thaliana (~135 Mb) while ap-
proximately same size as that of Oryza sativa (~420
Mb) [47, 60, 43, 61].
Besides the saturated genome sequence, this investiga-

tion also provides an assembled chloroplast genome,
showing highest similarity to that of S. miltiorrhiza, an
important medicinal plant of traditional Chinese medi-
cine. Both the plants are rich in phenylpropanoids and
their derivatives, and many of these are implicated for
different therapeutic activities. The presence of large
number of homologs of copalyl diphosphate synthases
(CPS) in O. sanctum genome indicates the possibility of
finding newer diterpenes having potential bioactivity not
implicated so far. Genomic information generated in this
investigation not only is an important resource for evo-
lutionary studies it will also catalyze modern genetic re-
search by augmenting the data available for plant
comparative genomics. This will also accelerate identifi-
cation of important secondary metabolite-synthesizing
genes, not identified yet from this medicinal and aro-
matic plant. Specific pathway related genes identified or
mined in this genome could be used for the production
of secondary metabolites following synthetic biology ap-
proaches. Genetic markers can be developed based on
these genome sequences for studies involving genetic
map construction, positional cloning, strain identifica-
tion and marker-assisted selection. These molecular
tools and genomic resources will accelerate molecular
breeding and ultimately Holy basil’s utility in medical
community.
Methods
Plant material, DNA preparation
Leaf tissues of O. sanctum L. (variety CIM Ayu) were
collected from the experimental farm at the CSIR-
Central Institute of Medicinal and Aromatic Plants. High
molecular weight genomic DNA isolated (Plant DNA ex-
traction kit, Qiagen) from the leaves of O. sanctum was
analyzed for its concentration and integrity. This DNA
was then used for a whole-genome shotgun and mate-
pair library preparation.
Library preparation methods
Long and short shot gun library construction
Long and short insert libraries for whole genome se-
quencing were constructed as per Illumina TruSeq DNA
library (TruSeq DNA Sample Preparation Guide, Part
No. 15005180 Rev. A, Nov 2010). 2 microgram of gen-
omic DNA was used to prepare the DNA library acous-
tic shearing (Covaris Inc., USA) to a fragment
distribution ranging between 150 to 600 bp and purified
(Agencourt Ampure XP SPRI beads, Beckman Coulter,
Inc.). Fragment distribution was analyzed (high sensitiv-
ity bioanalyzer chip, Agilent Technologies), finally puri-
fied (Agencourt Ampure XP SPRI beads) and quantified
(Qubit fluorometer, Invitrogen as well as a high sensitiv-
ity bioanalyzer Chip, Agilent Technologies). The library
shows a peak at the range of 300-400bp for short insert
and 500-600bp for long insert libraries, respectively.
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Finally the libraries prepared were found suitable for
100bp paired end sequencing on Illumina.

Long reads 454 GS FLX library library construction
454 GS FLX library was constructed according to the
Roche rapid library preparation method manual (GS
FLX+ Series—XL+, May 2011). Briefly ~1ug genomic
DNA was fragmented (using a nebulizer), purified
(Minelute PCR purification kit, Qiagen) and end-
repaired followed by adapter ligation. The prepared
library was validated for quality (high sensitivity bioana-
lyzer chip, Agilent Technologies) which showed an ex-
pected peak range of 1.4–1.8 kb.

Mate-pair library construction
Mate pair libraries were generated as per the SOLiD
Mate Pair Library preparation protocol. 23ug genomic
DNA was sheared (ultra-sonicator, Covaris, USA) and
analyzed for the size distribution (high sensitivity bioa-
nalyzer chip, Agilent Technologies) also verified on 2 %
E-gel. Next step was end-repairing of the fragments ran-
ging from 2.5 to 3.5kb (resolved on 0.6 % agarose)
followed by MPR-MPL adaptor ligation. Further, nick-
translation was performed on circularized adaptor li-
gated DNA digested with T7 endonuclease I followed by
S1 Nuclease enzymes. These products were 3’ adenyla-
tion by P1-T and P2-T, and captured using streptavidin
beads (Invtirogen). Adaptor ligated sample was amplified
with 18 cycles of PCR and size selected in the range of
250bp to 350bp using E-Gel (Invitrogen).

Sequencing of shot-gun and mate-pair libraries and
Genome assembly
Long and short insert libraries, were sequence on
Hiseq2000 (Illumina) using 100 base paired end chemis-
try. Long single end reads were generated using Roche
454 (Roche) and mate-pair libraries were run on SOLiD
5500XL (Life technologies). Illumina generated
224,617,107 paired end reads (45.37 Gb data), 454 se-
quencing resulted in 643,134 single end reads (320.3Mb
data) while SOLiD generated 126,824,255 mate pair
reads (12.68 Gb data)
Long and short reads paired-end read data

(HiSeq2000) of 449,234,214 (449 million) reads with
high quality ( > = Q30) were assembled with Edena v3.1
[62]. Edena was used with default parameters, i.e. mini-
mum overlap size being 50 and coverage cutoff, 4. Total
genome coverage from the long and short insert
paired-end reads was ~18.25X and ~82.55X (Additional
file 1), respectively. 643,134 long single end 454 reads,
processed for quality filtering with Phred score > =Q20
having a genome coverage of ~0.71X were then used
for contig extension using SSPACE-2.03 [63]. SSPACE
was used with these parameters: (i) minimum number
of overlapping bases with the seed: 45, (ii) minimum
overlap required between contigs to merge adjacent
contigs in a scaffold:50, (iii) minimum number of read
pairs to compute scaffold: 5 and contig extension
switched on (iv) minimum number of reads needed to
call a base during an extension: 20 and, (v) maximum
number of allowed gaps during mapping with Bowtie:
1. Scaffolds thus generated do consisted of uncalled
bases (Ns). Gap filling of these inter-scaffold Ns with
nucleotides was carried out using GapClosure tool [64].
252 million reads were generated using SOLiD showed
~30X coverage on the genome. SOLiD reads, with
mean quality of Q20, and reads that have any uncalled
bases (Ns) were filtered using SOPRA v1.4.6 [65] tool.
Super-scaffolding was performed in order to merge the
existing gap-closed scaffolds into super-scaffolds using
relative orientation of SOLiD mate pair reads. Super-
scaffolding using MIP-scaffolder [66] requires F3 and
R3 reads to be mapped on preassembled scaffolds. This
was achieved using SHRiMP2 [67] tool, which aligns
reads in colorspace format.

Gene prediction and annotation
Ab initio Gene model prediction was performed on scaf-
fold sequences greater than 500bp using gene prediction
software AUGUSTUS v2.5.5 [68]. Parameters from N.
tabacum and S. lycopersicum species which share the
same sub-class (asterid) with Ocimum sanctum were ap-
plied as training sets. Gene annotation of predicted pro-
teins was done by matching to NCBI Non Redundant
database using BLASTP (ncbi-blastv2.2.26+) [69]. Do-
main prediction for unannotated proteins was performed
against Pfam (release 27) HMM signatures [70] using
Pfam-A set with HMMSCAN option in HMMER 3.0
[71] at default parameters. Further scaffold sequences
greater than 500bp in length were matched for match to
EST/mRNA sequences available for Ocimum in the
NCBI databases. Arabidopsis sequences from TAIR data-
base were also BLAST checked against the Ocimum scaf-
folds (greater than 500bp). Nicotiana and Solanum
EST’s from NCBI database were retrieved and matched
against the assembled scaffolds which had length greater
than 500bp.

Comparative genomics and SSR prediction
The comparison of scaffolds with the Ocimum se-
quences was carried out using blat- Standalone BLAT v.
34x12 [72] fast sequence search command line tool. A
total of 23,368 EST and 52 mRNA were queried, with a
match to the assembled scaffolds for 21,984 of the EST/
mRNA sequences at greater than 90 % sequence iden-
tity. Arabidopsis sequences from TAIR as well as N.
tabacum and S. lycopersicum EST’s from NCBI database
were also blast checked against the O. sanctum scaffolds
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(greater than 500bp). Apart from the database annota-
tion of the assembled scaffolds these were also queried
for intron length, intron distribution and gene density
determination using AUGUSTUS v2.5.5 [68] with N.
tabacum and S. lycopersicum as references.
Scaffold sequences of length less than 500bp as well as

greater than 500bp were separately checked for simple se-
quence repeats (SSRs) using MISA tool (http://pgrc.ipk-
gatersleben.de/misa/). The sequences were checked for
mono-repeats occurring at-least 10 times, di-repeats oc-
curring at-least 6 times and tri/tetra/penta/hexa-repeats
occuring atleast 5 times.

Annotation and de-novo assembly of chloroplast and
mitochondrial genome data
Processed short reads paired-end read data of
72,912,212 (72.91 million) reads were aligned using
BOWTIE2-2.1.0 [73] to “Liquidambar formosana
(Accession no. KC588388.1), Nandina domestica (Acces-
sion no. DQ923117.1), Arabidopsis thaliana (Accession
no. NC_000932), Citrus sinensis (Accession no.
NC_008334), Cucumis sativus (Accession no.
NC_007144), Gossypium hirsutum (Accession no.
NC_007944), Helianthus annuus (Accession no.
NC_007977), Nerium oleander (Accession no.
KJ953906.1), Oenothera biennis (Accession no.
NC_010361), Platanus occidentalis (Accession no.
NC_008335), Populus trichocarpa (Accession no.
NC_009143), Spinacia oleracea (Accession no.
NC_002202), Ximenia americana (Accession no.
HQ664594.1), Ilex cornuta (Accession no. HQ664579.1),
Dillenia indica (Accession no. HQ664593.1), Oxalis lati-
folia (Accession no. HQ664602.1), Plumbago auriculata
(Accession no. HQ664581.1), Staphylea colchica (Acces-
sion no. HQ664600.1), Lonicera japonica (Accession no.
HQ664582.1), Antirrhinum majus (Accession no.
HQ664592.1), Cornus florida (Accession no.
HQ664596.1), Ficus sp. (Accession no. HQ664605.1)
chloroplast genomes. Database annotation of EST/
mRNA from NCBI datasets identified the mitochondria
and chloroplast expressed proteins. These 122 scaffolds
were annotated to potentially map to these sequences.
The aligned reads were assembled using SPAdes-3.1.0
[74]. The assembled contigs were scaffolded using
SSPACE-2.0 using all the four libraries Illumina data.
Saffolds were gapclosed using Gapcloser-1.6. Organellar-
GenomeDRAW (OGDRAW) was used for generating
graphical maps of plastid genomes [75].
Similar procedure carried for mitochondria assembly

except chloroplast genomes Salvia miltiorrhiza mito-
chondria genome used as reference and scaffolding and
gapclosing was done using MIP-Scaffolder [66] using
SOLiD data. Chloroplast Scaffolds greater than 10kb
were filtered, ordered and joined with 2 N’s though
using Salvia miltiorrhiza chloroplast genome. Annota-
tion was carried from draft genome using DOGMA tool
[76].

Sequence divergence and phylogenetic analysis
The 32 complete cp sequences representing the asterid
lineage of angiosperms were downloaded from NCBI
Organelle Genome Resources database (Additional file
17). The 63 protein-coding gene sequences were aligned
using the Clustal algorithm [77]. For the phylogenetic
analysis, a set of 63 protein-coding genes commonly
present in the 31 analyzed genomes was used. Maximum
parsimony (MP) and Maximum likelihood (ML) analysis
was performed for the phylogenetic analysis and the tree
was generated using MEGA 6.0 [78] software. In the
analysis Spinacia oleracea and Arabidopsis thaliana
were set as outgroups.

Genome annotation and pathway identification
85,723 protein coding sequences were blasted against
NR proteins GO (Gene Ontology) terms were assigned
for each protein based on the GO terms annotated to its
corresponding homologue in the NR database. Each an-
notated sequence may have more than one GO term,
assigned either for different GO categories (Biological
Process, Molecular Function and Cellular Component)
or in the same category [79].
Nucleotide sequences of the predicted proteins from

scaffolds were retrieved (BEDTools-Version-2.13.1) [80]
and mapped to KAAS [81] server to match pathway
datasets from curated model species. Homology driven
match of KO ID’s to best hits was done with default pa-
rameters. Match to model dicot and moncot plants
Arabidopsis and Oryza were applied for pathway
annotation.

Data access
Genomic data generated by all the three platforms of O.
sanctum whole project are available at NCBI under acces-
sion numbers SRX760129, SRR1653607 (Illumina);
SRX760132, SRR1653610 (454_GS_FLX) and SRX761338,
SRR1654829 (SOLiD). The data was submitted by SRA
submission portal with submissionID, SUB745374 and Bio-
Project ID, PRJNA267195.

Availability of supporting data
The data sets supporting the results of this article are in-
cluded within the article (and its additional files).
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