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Abstract

Background: Plasmodium falciparum, the deadliest malaria-causing parasite, has an extremely AT-rich (80.7 %)
genome. Because of high AT-content, sequence-based annotation of genes and functional elements remains
challenging. In order to better understand the regulatory network controlling gene expression in the parasite, a
more complete genome annotation as well as analysis tools adapted for AT-rich genomes are needed. Recent
studies on genome-wide nucleosome positioning in eukaryotes have shown that nucleosome landscapes exhibit
regular characteristic patterns at the 5’- and 3’-end of protein and non-protein coding genes. In addition, nucleosome
depleted regions can be found near transcription start sites. These unique nucleosome landscape patterns may be
exploited for the identification of novel genes. In this paper, we propose a computational approach to discover novel
putative genes based exclusively on nucleosome positioning data in the AT-rich genome of P. falciparum.

Results: Using binary classifiers trained on nucleosome landscapes at the gene boundaries from two independent
nucleosome positioning data sets, we were able to detect a total of 231 regions containing putative genes in the
genome of Plasmodium falciparum, of which 67 highly confident genes were found in both data sets. Eighty-eight
of these 231 newly predicted genes exhibited transcription signal in RNA-Seq data, indicative of active transcription.
In addition, 20 out of 21 selected gene candidates were further validated by RT-PCR, and 28 out of the 231 genes
showed significant matches using BLASTN against an expressed sequence tag (EST) database. Furthermore, 108 (47 %)
out of the 231 putative novel genes overlapped with previously identified but unannotated long non-coding RNAs.
Collectively, these results provide experimental validation for 163 predicted genes (70.6 %). Finally, 73 out of 231 genes
were found to be potentially translated based on their signal in polysome-associated RNA-Seq representing transcripts
that are actively being translated.

Conclusion: Our results clearly indicate that nucleosome positioning data contains sufficient information for novel
gene discovery. As distinct nucleosome landscapes around genes are found in many other eukaryotic organisms, this
methodology could be used to characterize the transcriptome of any organism, especially when coupled with other
DNA-based gene finding and experimental methods (e.g., RNA-Seq).
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Background
As one of the world’s most deadly infectious diseases,
malaria is responsible for about 584,000 deaths annually,
the vast majority of which are children under the age of
five [1]. Currently, no approved vaccine is available for
disease prevention, and the rapid development of para-
site resistance to current antimalarial drugs is a major
challenge for the control of malaria. Out of five human
malaria parasite species, Plasmodium falciparum causes
90 % of all malarial deaths [1]. P. falciparum has a com-
plex life cycle involving multiple stages in two host
organisms, humans and mosquitoes. This multi-stage
life cycle is tightly regulated, presumably by strict control
of stage-specific gene expression. However, the mecha-
nisms regulating gene expression in P. falciparum are still
poorly understood. In particular, relatively few specific
transcription factors and regulatory elements have been
identified [2, 3]. In addition, the annotation of protein
coding and non-protein coding genes is incomplete. To
facilitate our understanding of the parasite’s life cycle and
its regulatory mechanisms and thus assist the develop-
ment of antimalarial drugs, a more accurately annotated
genome is needed.
The draft of the annotated genome of P. falciparum was

first published in 2002 [4]. P. falciparum has a relatively
compact genome consisting of fourteen chromosomes
with a total length of approximately 23 Mb [4]. The P. fal-
ciparum genome is the most AT-rich eukaryotic genome
sequenced to date, with an overall AT-composition of
80.7 %, rising to 90-95 % in introns and intergenic regions
[5]. Currently, 5,777 predicted protein coding genes have
been reported (plasmoDB v26) and ~50 % of these genes
share little or no sequence similarity to genes or the
encoded proteins in other organisms [4–6]. The average
gene length in P. falciparum is 2.3 kb and the average
length of intergenic regions is ~1.7 kb [7]. Both computa-
tional and evidence-based gene-finding methods have
been applied to obtain gene annotations. Genome annota-
tions of the reference strain 3D7 were performed in silico
using software tools including Artemis, Genefinder, Glim-
merM, and phat [8, 9]. Most of the predicted genes have
been verified using various experimental techniques in-
cluding full-length cDNA, expressed sequence tag (EST),
and mass spectrometry analysis, among others [7, 10–13].
More comprehensive annotations of the parasite’s gene
structure and other functional elements have been pos-
sible since the advent of second-generation sequencing
technology [6, 13–18].
Despite significant advances in the analysis of the para-

site’s genome, genome annotation in P. falciparum is still
a work in progress. The AT-richness and the relative lack
of sequence homology to other organisms hamper the
application of sequence-based gene prediction tools and
complicate the identification of functional DNA elements,

such as protein-binding sites, promoters, or TATA-like
boxes. In addition, as mentioned earlier, the parasite has a
complicated multi-stage life cycle involving multiple hosts.
Due to technical challenges, it is nearly impossible to
capture the transcriptome at all different life cycle stages.
We are therefore still in need of an improved genome
annotation, as well as analysis tools capable of handling
the parasite’s AT-rich genome that will help us to better
understand the regulatory mechanisms controlling gene
expression in the parasite.
In mammalian genomes, a large number of non-coding

transcripts have been identified based on chromatin signa-
tures H3K4me3 and H3K36me3 [19]. This finding suggests
that elements defining and bracing chromatin architecture
may be used to assist the identification of undiscovered
genes. In this study, we present a machine learning ap-
proach to predict genes in P. falciparum that is completely
independent from the primary DNA sequence, but instead
exploits the underlying chromatin structure and nucleo-
some landscape. The fundamental unit of chromatin is a
nucleosome, a stretch of ~147 bp of DNA wrapped around
a core of eight histone proteins. Nucleosomes are distrib-
uted non-uniformly around genes, and this distinct nucleo-
some landscape is known to play an important role in gene
regulation. In particular, the core promoter is usually char-
acterized by a nucleosome-depleted region that allows the
binding of transcription factors and facilitates the assembly
of the transcription preinitiation complex [20, 21]. Previous
studies in our lab have highlighted several common and
unique eukaryotic features of the P. falciparum nucleosome
landscape. Similar to other eukaryotes, Plasmodium’s pro-
moters and transcription start sites are relatively nucleo-
some depleted, and nucleosome occupancy is higher inside
genes as compared to intergenic regions [22–24]. However,
in contrast to the strongly positioned +1 nucleosome dir-
ectly downstream of the transcription start site in other
eukaryotes [20, 25–28], the most strongly positioned nucle-
osomes in P. falciparum are located at the start and end of
the open reading frame [22, 23]. Based on these nucleo-
some landscape characteristics, we propose a novel method
for gene detection using classifiers trained on nucleosome
profiles of annotated genes. Other experimental methods
used for gene detection, such as RNA-Seq or expressed
sequence tags (EST), can be noisy, potentially resulting in
false predictions. Therefore, our methodology may serve as
a complementary approach for refining genome annota-
tions, especially coupled with sequence-based gene predic-
tions and other experimental methods.

Results
Building a classifier on nucleosome positioning profiles
In a previous study, our lab has used second-generation
sequencing to generate high-resolution nucleosome posi-
tioning profiles for three different stages of P. falciparum’s
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asexual cycle [22]. This data set revealed a distinct nucleo-
some landscape around genes, with higher nucleosome
occupancy inside genes, lower nucleosome coverage in
intergenic regions, and strongly positioned nucleosomes
at the gene boundaries (Fig. 1a). In addition, as observed
in other eukaryotic genomes [26, 27, 29], a nucleosome-
depleted region was found immediately upstream of the
transcription start site, which likely harbors the binding
sites of transcription factors [22]. These observations were
replicated using an independently generated P. falciparum
nucleosome occupancy data set [22, 30] (Fig. 1b). In this
paper, we exploited this nucleosome landscape around
genes to identify regions in the genome containing puta-
tive novel genes. To gain additional power for gene detec-
tion, we decided to predict the presence of novel genes
using the two independently published nucleosome posi-
tioning data sets [22, 30]. For each data set, we summed
the sequence coverage profile at each of the parasite’s
asexual stages into a single genome-wide nucleosome
positioning data set. This resulted in a total of two com-
bined profiles, namely i) profile B1 from Bunnik et al. [22]
consisting of three asexual cycle time points, and ii) profile
B2 from Bartfai et al. [30] consisting of four asexual cycle
time points.

From each of the combined nucleosome profiles, we
extracted windows that either contained a gene start
within its defined central region (positive class windows)
or were completely derived from intergenic regions (nega-
tive class windows) (see Methods; Additional file 1: Figure
S1). We then used these positive and negative class win-
dows to train a binary classifier (i.e., a support vector
machine with RBF kernel) to recognize the general nu-
cleosome occupancy pattern at gene start codons. The
parameters of the classifier were optimized using cross
validation (see Methods; Additional file 1: Figure S2). In
parallel, an independent classifier was trained on the
nucleosome landscape at gene stop codons. Since we
observed that nucleosome landscapes on the forward and
reverse strands have slightly different characteristics, we
independently optimized both strand-specific and non-
strand-specific classifiers. All classifiers performed in very
similar ways and optimized classifiers from both data
sets gave total recall rates between 91 and 95 %
(Additional file 1: Table S1).
These classifiers were then used on the nucleosome

landscape of the whole P. falciparum genome to detect
putative novel gene starts and ends. A sliding-window
method was used to scan intergenic regions for the

Fig. 1 Nucleosome occupancy patterns in P. falciparum. a Average sequence coverage profiles around the start (left panel) and the end (right
panel) of genes (colored line), and in intergenic regions (black line) in the nucleosome occupancy data set from Bunnik et al. [22] (data set B1).
b Similar analysis for the nucleosome occupancy data set from Bartfai et al. [30] (data set B2). In all windows, the genomic position indicated on
the x-axis is relative to the location of the gene start/end, or to the midpoint of intergenic windows
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presence of predicted gene starts or gene ends. The clas-
sifier produced a confidence score between 0 and 1 for
each prediction. A valid gene candidate was defined as a
locus with a gene start and a gene end predicted using
the same strand classifier with confidence scores above
0.7 and located within the same intergenic region (Fig. 2a).
No additional constraint on the distance between a pre-
dicted gene start and gene end was required, given the
relatively short length of intergenic regions in the genome
of P. falciparum (1.7 kb on average). A total of 298 final
candidate regions with an average segment length of 1 kb
were manually identified, of which 97 were detected using
the B1 nucleosome positioning profile, and 201 were
identified using the B2 nucleosome positioning profile
(Additional file 2). Of the 298 candidate regions, 67
genes were identified in both B1 and B2 data sets
with an average overlap in predicted gene region of 81 %.
This intersect between genes predicted by both data sets
was highly statistically significant (P < 7.422e-66, calcu-
lated based on an hypergeometric distribution analysis
[31]). Since overlapping regions may represent alternative
splicing variants of the same gene, we merged overlapping
regions using mergeBed (BEDtools [32]), resulting in a
total of 231 unique regions harboring potential novel
genes. All putative novel genes are uniformly distributed
over the 14 chromosomes of the P. falciparum genome
(Fig. 2b).
Among these 231 predicted genes, 88 showed a signal

(defined as an average of two or more reads per base) in
a previously obtained RNA-Seq data set [18], which we
considered strong evidence for the presence of a tran-
scribed gene in this region (Additional file 2). On average,
predicted gene regions are covered by eight reads per
base, which is significantly higher than that the RNA-Seq
coverage in intergenic regions of the same length (Table 1,
P = 0.015, bootstrap Welch t-test with n = 100,000). In

addition, 108 out of these 231 (47 %) uniquely predicted
regions overlap with previously identified long non-coding
RNAs (lncRNAs), defined as non-coding transcripts
larger than 200 bp that are not antisense or circular
RNA [17, 33–36]. To further confirm transcriptional ac-
tivity in the predicted gene regions, we designed a set of
primers targeting 21 selected candidate regions. We were
able to amplify 20 of the 21 targeted fragments from
cDNA (Fig. 3 and Additional file 3), suggesting that the
majority of candidate genes may indeed be transcribed.

Characteristics of candidate novel P. falciparum genes
To further investigate the putative genes identified in
this study, we compared several characteristics of the
predicted regions with known coding and non-coding
regions in the P. falciparum genome. The average length
of the predicted gene is 1,004 bp, which is similar to the
average length of exons and lncRNAs in P. falciparum.
The average GC-percentage for the predicted genes
(16 %) is lower than known coding genes (23 %), but
close to previously identified lncRNA regions (15 %) and
slightly higher than intergenic regions (13 %) (Table 1
and Additional file 1: Figure S3A). Similarly, the average
nucleosome occupancy in predicted gene regions ranged
between that of known protein-coding genes and that of
lncRNA genes (Additional file 1: Figure S3B-C). The
nucleosome profiles at the predicted gene starts and
gene ends recapitulate the nucleosome features observed
in annotated genes, albeit at lower average nucleosome
levels (Fig. 4). Furthermore, the predicted novel genes
have similar expression levels in steady-state mRNA-Seq
[18] and polysome-associated mRNA-Seq [18] data
sets as compared to lncRNA genes (Additional file 1:
Figure S3D-E). Lastly, we examined the patterns of his-
tone variant H2A.Z and histone marks H3K4me3 and
H3K36me3. In P. falciparum, H2A.Z is almost exclusively

Fig. 2 Characterization of regions containing putative novel genes. a Genome browser view of an intergenic region containing a predicted gene
region (Pf3D7_11_v3: 513,659 – 515,381, shown in red). Predicted gene starts and gene ends are indicated in purple and teal, respectively. This
putative novel gene shows sequence coverage in both steady-state RNA-seq (green) and polysomal RNA-seq (blue) data sets. b Random distribution
of 97 regions predicted using classifiers trained on data set B1 across the 14 chromosomes of the P. falciparum genome
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found in nucleosomes located in intergenic regions [30],
while H3K4me3 is enriched at the gene boundaries and
H3K36me3 is enriched inside gene bodies [37] (Additional
file 1: Figure S4). We found that the average H2A.Z occu-
pancy is higher in predicted genes than in annotated
genes, and very similar to intergenic and previously identi-
fied lncRNA genes (Table 1 and Additional file 1: Figure
S3F). In line with H3K36me3 being more abundant in cod-
ing regions as compared to noncoding regions in P. falcip-
arum, we observed that the abundance of H3K36me3 in
our predicted genes is in between that of coding and non-

coding regions. In addition, H3K36me3 levels in our
predicted genes are higher than in previously identified
lncRNAs (Table 1 and Additional file 1: Figure S3G). Simi-
lar to the H3K36me3, H3K4me3 occupancy in our pre-
dicted genes is also found to be higher than in previous
identified lncRNA and ranged between coding and non-
coding regions (Table 1 and Additional file 1: Figure S3H).
As the majority of the predicted genes showed charac-

teristics similar to those of lncRNA genes, we further clas-
sified our novel gene candidates into putatively protein-
coding and non-protein-coding genes using a previously

Table 1 Characteristics of the 231 putative novel genes in comparison with annotated P. falciparum genes

Average
RNA-seq
coverage

Average
Poly-seq
coverage

Average
GC%

Average
length (bp)

Avgerage Nuc
coverage (B1)

Average Nuc
coverage (B2)

Average H2A.z
coverage

Average
H3K36me3
coverage

Average
H3K4me3
coverage

n

Exon 58 30 27 949 35 77 20 41 84 14,795

Gene 75 34 23 2,494 37 69 17 50 83 5,680

Intergenica 3 7 13 1,000 8 37 31 10 22 1,565

Published
lncRNA
[17, 33–36]

10 7 15 1,114 12 47 35 16 37 986

Predicted
genes (B1)

13 4 18 934 22 62 29 25 63 97

Predicted
genes (B2)

9 5 16 1,010 17 62 35 18 49 201

All predicted
genes (B1 + B2)

8 4 16 1,004 17 62 34 19 50 231

aIntergenic regions were defined as the middle 1 kb of all non-coding regions longer than 1,500 bp that do not overlap with annotated genes, predicted genes,
or previously identified lncRNAs

Fig. 3 RT-PCR validation of 21 predicted novel genes. a Amplification of a fragment of PfAlba3 (PF3D7_1006200) using genomic DNA (middle
lane) or cDNA prepared from DNase-treated total RNA (right lane) as a template. Primers were designed on both sides of intron 1, yielding a
429 bp PCR product from genomic DNA and a 164 bp PCR product from cDNA. The presence of a single 164 bp PCR product amplified from
cDNA confirms the absence of gDNA contamination. b Out of our 231 novel candidate genes, we chose 21 regions for validation using reverse
transcription polymerase chain reaction (RT-PCR). The top panel shows amplification products using DNase-treated cDNA as a template, while the
bottom panel shows the control reactions using genomic DNA as a template. Of the 21 gene tested, we were able to amplify 20 of the predicted
regions. As a control, we were unable to amplify a fragment of intergenic region that was not predicted to contain any genes (marked as “intergenic”)
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generated polysome-associated mRNA-Seq data set [18],
which provides a snapshot of transcripts that are actively
being translated. Using a cutoff of an average sequence
depth of two reads across the entire predicted gene region,
73 out of 231 putative novel genes were found to be asso-
ciated with polysomes and are thus potentially translated.
For each predicted gene region, the longest open reading
frame (ORF) was identified using ORF Finder with default
values [38]. More putatively protein-coding gene candi-
dates (6 out of 73 [8.2 %]) than putatively non-coding gene
candidates (3 out of 158 [0.2 %]) contain an ORF longer
than 100 amino acids (two-tailed Fisher’s exact test,
P = 0.03). In addition, putatively coding regions tend
to have larger ORFs (average of 55 aa) than putatively
non-coding regions (average of 48 aa, two-tailed Stu-
dent’s t-test, P = 0.07). On the other hand, the fraction
of regions that does not contain an ORF larger than
30 amino acids is similar between both groups of gene
candidates: 10 out of 73 (13.7 %) of putative protein-
coding regions versus 21 out of 158 (13.3 %) of putative
non-protein-coding regions (Additional file 2). However,
135 out of 231 novel genes have multiple non-overlapping

ORFs on the same strand that could be exons belonging
to a single gene. We could not find any evidence for
splicing events in the RNA-seq data, although it should be
mentioned that the sequence coverage in these regions is
relatively low and may not allow the detection of such
events.

Homology search
Comparative genomics is a powerful approach to gather
evidence about putative genes. To find homologs of our
putative novel genes, we aligned the predicted regions with
known protein transcripts from the Uniprot-Trembl data-
base using BLASTX [39–41]. Using stringent search set-
tings (perfect matched length > 30 % and e-value < 1e-5),
no significant hits were found, suggesting that all of our
predicted genes may be parasite-specific. This result is
expected, since more than 50 % of P. falciparum genes are
unique to the parasite and majority of the putative genes
identified in this study may be non-coding genes with low
sequence conservation. Next, we searched against the
reference RNA sequences (refseq_rna) database using the
discontiguous MegaBLAST program of BLASTN that is

Fig. 4 Nucleosome positioning profile around predicted genes. a Average sequence coverage profiles around the start (left panel) and the end
of genes (right panel) for annotated protein-coding genes (red), published lncRNA genes (blue) and predicted novel genes identified in this study
(green) in the nucleosome occupancy data set from Bunnik et al. [22] (data set B1). The average nucleosome occupancy in intergenic regions is
presented as a reference (black). b Similar analysis for the nucleosome occupancy data set from Bartfai et al. [30] (data set B2). In all windows, the
genomic position indicated on the x-axis is relative to the location of the gene start/end, or to the midpoint of intergenic windows
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tailored to more dissimilar sequences [40–42]. A similarity
cutoff of e-value < 1e-5 resulted in two significant matches.
One of the predicted gene regions (Pf3D7_14_v3:38,574-
40,547) showed ~50 % query coverage and more than
70 % identity with approximately twenty of the var
genes, while another putative gene region (Pf3D7_08_v3:
1,288,505-1,289,391) showed more than 40 % query cover-
age and 70 % identity with ribosomal RNA sequences
across protozoan species, including Plasmodium vinckei
vinckei, Theileria orientalis, and Babesia equi. We also
used BLAST to compare the candidate regions with a
database of known expressed sequence tags (EST) and
found 28 matches, the majority of which are derived from
P. falciparum (Additional file 2). These findings provide
independent evidence that our predicted regions might
indeed contain novel genes.

Discussion
In this paper, we have used a machine learning approach
for the detection of genes in the AT-rich genome of the
human malaria parasite, P. falciparum, using exclusively
nucleosome positioning data. Using classifiers trained on
two independent nucleosome occupancy data sets, we
detected a total of 231 putative novel genes. Eighty-eight
of these 231 newly predicted genes exhibited transcrip-
tion signal in RNA-Seq data and twenty out of 21 putative
gene regions were validated by RT-PCR, indicating that
our methodology is highly successful in identifying genes.
Furthermore, of all putative gene regions identified using
the nucleosome occupancy data set from Bunnik et al.
[22], 69 % were confirmed in the nucleosome positioning
data set from Bartfai et al. [30], indicating that the classi-
fiers trained on these two independently generated nu-
cleosome landscapes are in good agreement. Collectively,
our results demonstrate that local chromatin structure
is sufficiently informative for genome annotation. Gene
predictions based on nucleosome positioning datasets
could thus be used to complement and augment sequence-
based methodologies that are currently used for this
purpose.
Based on the evidence we collected, it seems likely that

many of the regions predicted here encode long non-
coding RNAs. First, 108 of the predicted regions have
been previously identified as lncRNA genes [17, 33–36].
Second, the sequence (GC-content) and nucleosome oc-
cupancy characteristics of the predicted regions are more
similar to known lncRNAs than to protein-coding genes.
Third, few of the predicted regions contain large ORFs. In
other eukaryotic organisms, lncRNAs have been shown to
be involved in the regulation of a multitude of cellular
processes, one of which is regulation of gene expression
by targeting general transcription factors and inducing
chromatin remodeling [43–48]. In P. falciparum, identifi-
cation and functional characterization of lncRNAs is

ongoing. Most studies have focused on the identification
of long non-coding telomeric end-associated transcripts
that are similar to telomeric repeat-containing lncRNAs
(TERRA) found in human and that are important for telo-
mere maintenance [13, 34, 49]. Some of these lncRNAs
contain binding sites for PfSIP2, a transcription factor
specific to Plasmodium that is thought to be involved in
regulation of var genes [34, 50]. This gene family is re-
sponsible for pathogenesis and immune evasion and most
of its members are located in subtelomeric regions. These
lncRNAs are likely to play important regulatory roles in
var gene silencing by inducing heterochromatin forma-
tion, thus creating a repressive environment at the telo-
meric and subtelomeric ends [13, 34, 49, 51]. Additionally,
lncRNAs have been implicated in various other processes,
such as metabolic, biosynthetic and regulatory activities
[13, 43, 52–55]. Our experimental results have expanded
the list of putative lncRNAs in P. falciparum, and it will
be of great interest to further validate and characterize
these transcripts to understand their function in parasite
biology.
Unfortunately, we were unable to use nucleosome posi-

tioning as a means to discover novel genes in the telo-
meric regions. Due to aberrant nucleosome positioning in
the telomeric and centromeric regions compared to the
rest of the genome, we had to exclude these regions from
our gene predictions. The number of known lncRNAs
derived from these regions is too small (n = 22) for accur-
ate training of a separate classifier on these atypical parts
of the genome.
In addition to putative lncRNAs, we also distinguished

73 regions that may contain protein-coding genes, based
on the association of their transcripts with polysomes.
The polysome profiling data set used in this study was
obtained by separating polysomes on a sucrose gradient,
followed by isolation and sequencing of mRNA in the
polysome fractions [18]. This methodology provides a
catalogue of transcripts that are actively being translated.
However, it also captures polyadenylated transcripts that
are merely associated with polysomes as regulatory ele-
ments, or that are present in ribonucleoprotein complexes
that co-sediment with polysomes. Based on polysome pro-
filing data alone, it is therefore impossible to determine
whether a gene encodes a protein. Further study will be
necessary to determine the translational status of the puta-
tive protein-coding genes identified in this study.
Beside protein-coding genes and genes encoding lncRNAs,

a third option for regions identified in this study is to con-
tain pseudogenes. For decades, pseudogenes have been
considered non-functional or ‘junk’ DNA; however, the
conserved sequence similarity between pseudogenes and
coding genes suggests a selective maintenance of these
non-coding elements. They may have an important bio-
logical role that has not yet been fully understood. In
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recent mammalian studies, transcripts of pseudogenes
showed regulatory roles, largely through antisense mecha-
nisms [56, 57]. Expressed pseudogenes have also been im-
plicated in mRNA stability in transgene mouse mutants
[58]. Similar regulatory pseudogenes may also be present
in P. falciparum, in particular in predicted gene regions
with homology to annotated genes as identified using
BLAST searches.
As a selection criterion for the identification of regions

containing putative novel genes, we used the presence of
both a gene start and a gene end within the same inter-
genic region. However, we also identified regions with only
a predicted gene start or a gene end, but not both. Often,
the intergenic regions containing these single-end predic-
tions do show sequence coverage in the steady state or
polysomal RNA-Seq data sets. Possible explanations for
such single-end predictions include the presence of genes
coding for small transcripts that are difficult to capture
using a nucleosome positioning dataset. Each nucleosome
covers approximately 146 base pairs of DNA, raising the
possibility that short genes do not show distinct nucleo-
some occupancy features. Alternatively, the nucleosome
features at the other end of the predicted gene region may
be irregular and therefore not meet the quality threshold
for selection.

Conclusion
In this study, we have demonstrated that using a machine
learning approach trained on the nucleosome landscape
around genes, we were able to identify 231 putative genes,
of which the majority showed evidence of expression in
RT-PCR, EST, steady-state RNA-Seq, or polysomal RNA-
Seq data sets in the malaria parasite, P. falciparum. A
similar methodology could be used for predicting the
location of transcription start sites (TSSs), since TSSs are
generally marked by an upstream nucleosome-depleted
region. Therefore, this approach may ultimately be useful
to identify key regulatory elements and to complement
other sequence-based genome annotation efforts, which
will provide further insights into gene regulatory mecha-
nisms in P. falciparum. Furthermore, similar machine
learning approaches may also be applied to other organ-
isms as long as a nucleosome-positioning data set is avail-
able and the nucleosome landscape around genes shows
regular periodic characteristics.

Methods
Nucleosome positioning profiles
Nucleosome positioning profiles of the three main stages
of P. falciparum’s asexual replication cycle were gener-
ated by micrococcal nuclease digestion of formaldehyde-
crosslinked chromatin followed by chromatin immuno-
precipitation using an antibody against histone H3.
Nucleosome-bound DNA fragments were sequenced on

the Illumina HiSeq platform as described in [22, 30]. Two
P. falciparum 3D7 nucleosome positioning profiles were
used in this study. Data set B1 from Bunnik et al. [22]
consists of three asexual cycle time points (SRP026365),
while data set B2 from Bartfai et al. [30] consists of four
asexual cycle time points (SRP003508). Reads were trimmed,
mapped to P. falciparum 3D7 genome version 9.0 and
were converted into coverage profiles by counting the
number of sequence reads mapped at each nucleotide
position as described in [22]. For each dataset, all coverage
profiles were summed to generate a combined nucleo-
some profile G to be used as input data to train the
classifier. The telomere and centromere regions display
aberrant nucleosome coverage compared to the rest of
the genome and were therefore removed from this
data set.
By sliding a window of length w along the combined

genome-wide profile G with a sliding step of h = 1 base
pairs, we converted the input G into a set D of windows.
Each window in D is a vector of length w, and each
coordinate i of the vector represents the total number
of mapped reads at location i. Inside each window,
we defined a central region of length m, called mar-

gin. The total number of windows n is Gj j−wþ1ð Þ
h , the

coordinates of a window Di (i = 1, 2, 3… n) is [ai, bi] =
[(i − 1)h + 1, (i − 1)h +w] and the coordinates of the mar-
gin window Di is aiþ w

2 −
m
2 ; aiþ w

2 þ m
2

� �
.

After extracting the windows, we assigned a label to
each window depending on the presence or absence of a
gene start or end, as defined below. Only the positive
class and negative class windows were used to train the
binary classifier for gene recognition. We defined a nega-
tive class as a window that does not overlap with any
gene (intergenic windows), a positive class as a window
that contains a gene start (or gene end for the detection
of gene ends) inside the margin, and other class as a
window that does not fall into the categories of positive
or negative windows.

Cross validation
The following section refers to the detection of gene
starts. For gene ends, we used the same approach. To
differentiate gene start sites and intergenic regions, a bin-
ary classifier was trained on positive class windows and
negative class windows. Two randomly sampled data sets
of windows were used interchangeably as training set or
test set. One was sampled from windows of odd chromo-
somes, while the other was sampled from windows of
even chromosomes. For each choice of parameter, we ran
ten experiments. Odd chromosome windows were used as
training and even chromosome windows were used for
testing in the first five experiments, and vice versa for the
other five experiments. All data was normalized with zero
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mean and unit variance. To evaluate the classifier’s per-
formance, we computed accuracy, precision and recall as
described below.

Accuracy ¼ TP
TP þ FN

Precision ¼ TP
TP þ FP

¼ specificityð Þ

Recall ¼ TP
TP þ FN

¼ sensitivityð Þ

F−score ¼ 2 � Precision � Recall
Precision þ Recall

Recall and precision often show an inverse relation-
ship, where it is possible to increase one at the cost of
reducing the other. For our purpose of finding putative
genes, the primary goal was to obtain the highest pos-
sible recall for both positive and negative classes.

Support vector machine classifier
Support vector machine (SVM) is a family of binary classi-
fiers than can learn from a training set to discriminate
between positive and negative examples by finding a hy-
perplane that maximizes the margin [59]. To choose the
best kernel for the SVM, we first used principal compo-
nent analysis (PCA) to explore the relationship between
the positive and negative classes, and then investigated
different SVM kernels available from the Scikit-learn
packages [60, 61]. Based on cross-validation experiments,
we selected the RBF kernel and tuned the misclassification
parameter C and the kernel parameter ϒ using a two-
dimensional grid search where C was chosen from the set
{10−5, 10−4, 10−3, …, 106, 107}, and ϒ was chosen from the
set {10−8, 10−7, 10−6, …, 102, 103}. All experiments were
performed with 5-fold cross validation of 6,000 windows
randomly sampled in equal quantities from both positive
and negative class sets.

Training sample size, window size, and margin width
Using the optimized SVM-RBF hyperparameters, we
tested how window size, training sample size, and margin
width affect the performance of this classifier. We tested
window size range from 500 bp to 2,000 bp with 500 base
pair increments (Additional file 1: Figure S2A). We ob-
served that short windows may not be able to capture
enough context around the gene, while long windows
resulted in increased computational cost and were prob-
lematic for the P. falciparum genome, where the average
length of intergenic regions is 1,694 bases [4]. For margin
width, we tested 25 bp, 50 bp and 100 bp (Additional
file 1: Figure S2B). After testing different window sizes
and margin widths in cross-validation experiments, we
observed that the best recall rate is obtained using a

window size of 1,500 bp and a margin width of 50 bp,
which were selected as parameters for the final classifier.
In addition, we used cross-validation experiments to

test the relationship between training sample size and
the performance of the trained classifiers. We ran cross-
validation experiments with training sizes of 2,000, 3,000,
6,000, 9,000, 12,000, and 18,000 windows (Additional file
1: Figure S2C). The results indicated that sample size does
not have significant impact on the performance of the
classifier, as long the sample is sufficiently large. We de-
cided to use a training sample size of 6,000 windows with
equal numbers derived from positive and negative classes,
which achieves a good trade-off between computational
cost and classifier performance. In contrast to this bal-
anced training set, the vast majority of the windows in the
genome are expected to be in the negative class. The
imbalance in the test set should be reflected in the train-
ing set if the objective was to maximize the convex com-
bination of precision and recall with the same weight.
However, instead of optimizing precision, the main pur-
pose of this study is to maximize the recall equally well for
both positive and negative classes. The use of an imbal-
anced training set resulted in little change in recall, and
we therefore used a balanced training set for this study.
With these optimized parameters, we obtained average
total recall rates of 0.94 for gene start classifiers trained on
B1 data set, 0.92 for gene start classifiers trained on B2
data set, 0.94 for gene end classifiers trained on B1 data
set and 0.93 for gene end classifiers trained on B2 data set
(Additional file 1: Table S1). The averaged total recall rate
was 0.93 for all classifiers. The default confidence prob-
ability cutoff value for SVM classifier used here is 0.5. To
increase the confidence of our gene prediction method,
we tested different confidence probability cutoff values
(0.6, 0.7, 0.8, 0.9) and observed that the number of pre-
dicted genes decreases as the cutoff value increases. We
found that cutoff value of 0.7 gave the best trade-off
between a reasonable number of predicted genes and a
sufficiently high confidence in their prediction for both
data sets B1 and B2.

Reverse transcription polymerase chain reaction (RT-PCR)
Twenty-one highly confident gene candidates that were
predicted using both data set B1 and B2 were selected
based on different combinations of RNA-Seq and polyso-
mal RNA-Seq expression profiles (i.e. 3 genes showing
high signals in both RNA-Seq and Poly-seq, 6 genes show-
ing a high signal in only one of the profiles, and 12 genes
showing low signals in both profiles). Total RNA was
isolated from 10 ml of non-synchronous erythrocytic stage
P. falciparum culture. To remove genomic DNA contam-
ination, RNA samples were treated twice with 4 U DNase
I (Life Technologies) per 10 μg of RNA for 30 min at
37 °C. DNase I was inactivated by the addition of
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EDTA to a final concentration of 1 mM. DNase-treated
total RNA was then mixed with 0.1 μg of random hexam-
ers, 0.6 μg of oligo-dT(20), and 2 μl 10 mM dNTP mix
(Life Technologies) in total volume of 10 μl, incubated
for 10 min at 70 °C and then chilled on ice for 5 min.
This mixture was added to a solution containing 4 μl
10X RT buffer, 8 μl 20 mM MgCl2, 4 μl 0.1 M DTT,
2 μl 20 U/μl SuperaseIn and 1 μl 200 U/μl SuperScript
III Reverse Transcriptase (all from Life Technologies).
First-strand cDNA was synthesized by incubating the
sample for 10 min at 25 °C, 50 min at 50 °C, and fi-
nally 5 min at 85 °C. The absence of genomic DNA
contamination was validated using a primer set target-
ing an intergenic region and a primer set targeting
PfAlba3 (PF3D7_1006200) from inside exon 1 to within
exon 2. Amplification of genomic DNA should give a
product with a size of 429 bp including the intronic se-
quence, whereas amplification of cDNA should result in a
fragment with a size of 164 bp. All 21 PCRs testing tran-
scription activity of predicted genes were performed using
3 μl of the first-strand cDNA mixture with approximately
10 pmole of both forward and reverse primers. DNA was
incubated for 5 min at 95 °C, then 30 s at 98 °C, 30 s at
55 °C, 30 s at 62 °C for 35 cycles. 5 μl of each PCR sample
was used for agarose gel electrophoresis. For each primer
set, PCR efficiency was tested using genomic DNA under
the same amplification conditions as described above. All
primer used for PCR validation are listed in Additional
file 3.

Coverage plots and histone variant analysis
Sequence reads for ChIP-Seq experiments of P. falciparum
nucleosome variant H2A.Z [30] (SRP003508) and histone
marks H3K36me3 and H3K4me3 [37] (SRP022761) were
downloaded and mapped to P. falciparum 3D7 genome
version 9 using bowtie with default error rates. Coverage
profiles for each time point were then generated using
BEDtools [32]. For each histone variant, coverage profiles
from different time points were summed to generate a
combined profile. Sequence coverage for regions 750 bp
before and after start and end codons of regions of interest
were extracted from the summed coverage profiles. Aver-
aged values for each relative position were then calculated
and used to generate coverage plots using R.
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