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Abstract

Background: Addictive disorders are a class of chronic, relapsing mental disorders that are responsible for
increased risk of mental and medical disorders and represent the largest, potentially modifiable cause of death.
Tobacco dependence is associated with increased risk of disease and premature death. While tobacco control
efforts and therapeutic interventions have made good progress in reducing smoking prevalence, challenges remain
in optimizing their effectiveness based on patient characteristics, including genetic variation. In order to maximize
collaborative efforts to advance addiction research, we have developed a genotyping array called Smokescreen. This
custom array builds upon previous work in the analyses of human genetic variation, the genetics of addiction, drug
metabolism, and response to therapy, with an emphasis on smoking and nicotine addiction.

Results: The Smokescreen genotyping array includes 646,247 markers in 23 categories. The array design covers genome-
wide common variation (65.67, 82.37, and 90.72 % in African (YRI), East Asian (ASN), and European (EUR) respectively);
most of the variation with a minor allele frequency≥ 0.01 in 1014 addiction genes (85.16, 89.51, and 90.49 % for YRI, ASN,
and EUR respectively); and nearly all variation from the 1000 Genomes Project Phase 1, NHLBI GO Exome Sequencing
Project and HapMap databases in the regions related to smoking behavior and nicotine metabolism: CHRNA5-CHRNA3-
CHRNB4 and CYP2A6-CYP2B6. Of the 636 pilot DNA samples derived from blood or cell line biospecimens that were
genotyped on the array, 622 (97.80 %) passed quality control. In passing samples, 90.08 % of markers passed quality
control. The genotype reproducibility in 25 replicate pairs was 99.94 %. For 137 samples that overlapped with HapMap2
release 24, the genotype concordance was 99.76 %. In a genome-wide association analysis of the nicotine metabolite
ratio in 315 individuals participating in nicotine metabolism laboratory studies, we identified genome-wide significant
variants in the CYP2A6 region (min p = 9.10E-15).

Conclusions: We developed a comprehensive genotyping array for addiction research and demonstrated its analytic
validity and utility through pilot genotyping of HapMap and study samples. This array allows researchers to perform
genome-wide, candidate gene, and pathway-based association analyses of addiction, tobacco-use, treatment response,
comorbidities, and associated diseases in a standardized, high-throughput platform.

Keywords: Addiction, Nicotine dependence, Nicotine metabolism, Pharmacogenomics, Smoking cessation, Genome-
wide association study, Bioinformatics, Biomarkers

Background
Addictive disorders represent debilitating conditions that
result in productivity loss, and an increased risk for associ-
ated mental disorders as well as infectious, metabolic, pro-
liferative, respiratory, and vascular diseases [1]. Addictions
encompass substance-use disorders and compulsive be-
haviors [2]. The heritabilities of substance-use disorders
are consistently found to be ~50 % [3] with the lowest

heritability for hallucinogen and highest for cocaine use
disorders, respectively [4]. The ~2:1 monozygotic:dizygo-
tic twin concordance ratios for many substance-use disor-
ders support additive genetic effects and multiple loci [4].
Estimates for the influence of genome-wide common vari-
ants on nicotine and alcohol dependence, and illicit drug
use traits are ~30–36 % [5, 6], representing most of the es-
timated heritability. There is evidence for shared genetic
influence across multiple substance-use disorders [6, 7].
Among all substance-use disorders, smoking is the

leading cause of preventable death in the United States
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and is associated with cancer, aerodigestive tract, genito-
urinary tract, and vascular diseases [8]. Nicotine depend-
ence is most often assessed using measures of cigarette
consumption (cigarettes per day, CPD) or dependence
(Fagerström Test for Cigarette Dependence, FTCD) [9, 10].
Genetic influences predominate over environmental influ-
ences in smoking initiation, but shared environment is
important during the adolescent period when the majority
of future smokers initiate smoking [11]. Developmental
analyses suggest that genetic and environmental factors that
influence risk for smoking initiation and consumption are
independent in adolescence, but become correlated in
emerging adults [12]. Genome-wide meta-analyses of
cigarette consumption, dependence, and exposure mea-
sures, including linkage [13, 14] and association [15–22]
studies, have focused attention on multiple regions, includ-
ing specific variants in cholinergic, cytochrome oxidase,
dopaminergic, and hypoxia response genes.
People who quit smoking reduce their risk of disease

and those who quit at an earlier age see the most health
benefits [23]. An estimated 69 % of the approximately 45
million smokers in the United States want to stop smok-
ing [24, 25]. Nonetheless, smoking cessation success rates
remain discouragingly low; in 2010, only 6.2 % of adult
smokers attempting to quit were successful [25]. For those
seeking to quit, there are a variety of counseling methods
and cessation medications available [26, 27].
Genetics plays a role in smokers’ cessation attempts

(heritabilities of ~50 % [28, 29]), and response to cessa-
tion treatments [30]. Pharmacogenetic analyses of smok-
ing cessation clinical trials suggest that prospective
abstinence is affected by loci influencing reward system
responses to nicotine and pharmacotherapeutics, nico-
tine and bupropion metabolism, and varenicline clear-
ance [30]. Analyses of chr15q25.1 SNPs and prospective
abstinence by pharmacotherapy have been mixed: null
[31–33], reduced in participants randomized to placebo
[34], and increased in participants randomized to
multiple therapies [35, 36]. In the largest analysis to date
[37], chr15q25.1 smoking-heaviness risk SNPs were
found to be associated with reduced abstinence in par-
ticipants randomized to placebo, and increased abstin-
ence in participants randomized to nicotine replacement
therapy (NRT). In contrast, studies on functional vari-
ation in the nicotine metabolizing enzyme cytochrome
P450 oxidase 2A6 (CYP2A6) [38, 39] translate robustly
to smoking behaviors [40, 41] and prospective abstin-
ence, using either nicotine metabolite [42–45], or gen-
etic [46–48] analyses. In brief, recent findings suggest
that slow nicotine metabolizers are less nicotine
dependent and have similar quit rates across therapies,
while fast nicotine metabolizers are more nicotine
dependent and may benefit from combined treatments
with NRT, bupropion, or varenicline.

Despite these successes, attempts to individualize
therapies using genetics have been limited by incon-
sistent results. Existing evidence suggests that smok-
ing cessation prediction is influenced by not just
genetics, but also by patient characteristics (gender,
age of onset, nicotine dependence, and race/ethnicity)
and treatment protocol (clinician interaction; type,
number and length of counseling sessions; and pharmaco-
therapy). Biomarkers, specifically the nicotine metabolite
ratio (NMR, the ratio of 3’-trans-hydroxycotinine/cotin-
ine), have also been shown to influence pharmacological
therapies success [42, 43, 45]. Advancing the understand-
ing of complex relationships among multiple genetic and
environmental factors, smoking behavior, nicotine de-
pendence, and treatment outcomes requires large sample
sizes. Current clinical studies are challenged by relatively
small sample sizes in treatment arms; thus, pooling data
across clinical trials and observational studies is essential,
but complicated by heterogeneity in trial study designs,
genotyping technologies, and genetic marker content.
Motivated by these obstacles, we developed the Smoke-

screen genotyping array, a research tool for significantly
advancing the understanding of addiction and the devel-
opment of predictive models that can potentially be used
to personalize treatment strategies for addiction, including
nicotine- and tobacco-related outcomes.

Results
Array design and coverage estimates
The final array design included 646,247 markers: 296,038
genome-wide association markers; 255,862 tag SNPs and
17,632 exonic markers in addiction-related gene regions;
11,099 fine-mapping markers in loci related to nicotine
metabolism and smoking behavior; and the remaining
markers in other categories (Table 1; markers in categories
have some overlap). Coverage estimates are provided
using the number of variants available through genotype
imputation in the 1000 Genomes Project Phase 1 [49]
Yoruba in Ibadan, Nigeria (YRI), East Asian (ASN), and
European (EUR) populations (Table 2).

Genome-wide association markers
The array includes 296,038 markers for genome-wide
coverage of common genetic variations. The relationship
between genome-wide array coverage and the observed
correlation of imputed and actual genotypes (obsRSQ)
in 1000 Genomes Phase 1 YRI, ASN, and EUR popula-
tions is shown in Fig. 1 (left panel). As the threshold
on obsRSQ increases (x-axis), fewer variants exceed
the threshold, and the coverage decreases (y-axis).
The array design achieves good coverage of common vari-
ants (MAF ≥ 0.05, obsRSQ > 0.8): 65.67, 82.37, and
90.72 % in YRI, ASN, and EUR populations respectively,
and covers 52.71, 71.68, and 78.17 % respectively of
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variants with MAF ≥ 0.01. The average obsRSQ for vari-
ants with MAF ≥ 0.05 were 0.82, 0.89 and 0.93 for YRI,
ASN, and EUR respectively, and 0.72, 0.80, and 0.85 for
variants with MAF ≥ 0.01. These metrics demonstrate the
array’s suitability for genome-wide analyses and meta ana-
lyses based on genotype imputation using 1000 Genomes
Project Phase 1 data.

Addiction genes
The array contains 273,494 markers for dense coverage
of 1014 genes (±20 kb) across populations. The array
captures 97.47, 98.09, 98.08 % of common variants
(MAF ≥ 0.05) and 63.61 %, 84.02, and 82.55 % of MAF ≥

0.01 variants in YRI, ASN, and EUR populations,
respectively, directly through linkage disequilibrium (pair-
wise r2 ≥ 0.8). The fraction of variants covered by genotype
imputation in these gene regions for YRI, ASN, and EUR
populations is shown in Fig. 1 (right panel). Consequently,
the array has outstanding imputation coverage (98.72,
99.31, and 99.43 %) of common variants and excellent
coverage of MAF ≥ 0.01 variants: 85.16, 89.51, and 90.49 %
for YRI, ASN, and EUR respectively (obsRSQ ≥ 0.8). In the
same order, average obsRSQ of all variants within the ad-
diction gene regions were 0.98, 0.99, and 0.99 for common
variants, and 0.91, 0.92, and 0.94 for MAF ≥ 0.01 variants,
indicating that imputation works well for most variants in
these regions. The list of 1014 genes and each region’s im-
putation metrics are provided in Additional file 1.

Fine-mapping
Eight thousand, nine hundred and fourty-eight SNPs and
indels (average of 1 marker per 62 base pairs) were selected
for the 552 kb LD block encompasing the chr15q25.1 nico-
tinic acetylcholine receptor (nAChR) gene cluster
(CHRNA5, CHRNA3 and CHRNB4). For CYP2A6 (±20 kb),
612 markers were selected with an average of 1 marker
every 75 base pairs. For CYP2B6 (±20 kb), 1628 markers
were selected with 1 marker per 45 base pairs on average.
As expected, the imputed coverage and average obsRSQ
was greater than 99 % in the 1000 Genomes Project Phase
1 YRI, ASN, and EUR populations, regardless of minor
allele frequency. Additional markers were selected to
capture variation in the surrounding region, including
EGLN2, CYP2A7, CYP2G1P, and CYP2B7P1.

Additional content
Additional markers were included in the design for com-
patibility with consortium-developed arrays and most re-
cent findings (Table 1). The array contains: 2271 markers

Table 1 Smokescreen genotyping array content

Category Markersa

1014 addiction-related genes

Tag SNPs (MAF ≥ 0.05) 255862

Exonic markers 17632

Genome-wide association markers

Affymetrix’ Axiom® Biobank GWAS grid 246038

African (YRI) booster panel 50000

Fine-mapping of smoking related loci

CHRNA5-CHRNA3-CHRNB4 (552 kb LD block) 8913

CYP2A6 (±20 kb) 573

CYP2B6 (±20 kb) 1613

High-value addiction markers

NeuroSNP Project 4994

Pharmacogenetics of Nicotine Addiction
Treatment (PNAT) SNP panels

2271

v1.0 Quit Success Score 12058

Literature search 1329

Comorbidity markers

Lung Cancer 3091

Psychiatric disorders 1200

Tobacco smoke constituent update and
metabolic phenotypes

1907

Pulmonary diseases and traits 7945

Cardiovascular diseases and traits 2247

General high-value markers

Pharmacogenomic markers 2030

NHGRI GWAS Catalog 7612

eQTLs 9736

Loss-of-function markers 4680

Ancestry informative markers (AIMs) 5545

HLA/KIR 8894

Mitochondrial 180

Array Total 646247
aMarkers in categories may overlap

Table 2 Counts of imputed SNPs (1000 Genomes Project: Phase
1, March 2012 release)

YRI ASN EUR

Genome-Wide

MAF≥ 0.01 15263433 8091434 9213645

MAF≥ 0.05 9219112 5973609 6505846

Addiction Genes

MAF≥ 0.01 794696 417902 476661

MAF≥ 0.05 474408 303991 333356

CHRNA5, CHRNA3 and CHRNB4

MAF≥ 0.01 3377 2377 1922

MAF≥ 0.05 2121 1862 1519

CYP2A6 and CYP2B6

MAF≥ 0.01 2886 2679 2696

MAF≥ 0.05 2157 2043 2136

Baurley et al. BMC Genomics  (2016) 17:145 Page 3 of 12



from the candidate gene/pathway arrays developed and
used by the Pharmacogenetics of Nicotine Addiction
Treatment (PNAT) research program [31, 37]; 3091
markers from a lung cancer meta-GWAS [50]; 1200
markers related to psychiatric comorbidities from the Psy-
chiatric Genetics Consortium [51]; and 7956 and 2247
markers for pulmonary and cardiovascular phenotypes re-
spectively from the UK Biobank Axiom Array [52].
The array also includes: 1329 markers related to addiction

identified in recent literature from NIDA Genetics Consor-
tium investigators; 12,058 markers used in the smoking ces-
sation v1.0 Quit Success Score biomarker [53]; 2030
pharmacogenomic markers related to absorption, distribu-
tion, metabolism, and excretion (ADME); and 7612 markers
identified in previous genome-wide association studies or
addiction and related diseases [54]. The array includes a
panel of 5525 ancestry informative markers (AIMs) for an-
cestry estimation and evaluation of population substructure.

Genotyping quality
From 636 samples derived from blood or cell line, 622
(97.80 %) passed quality control based on recommended
best practices for Axiom arrays by Affymetrix [55]. Sev-
eral samples were excluded from subsequent analyses;
one sample failed to scan, eight had Dish QC < 0.82 due
to a sample processing issue, and five had stage one
genotype call rates < 97 %. In addition, seven negative
controls were processed across the genotyping plates,
and all exhibited low separation from the background
signal as expected. In passing samples, 582,143 (90.08 %)
of the markers on the array passed quality control, using
Affymetrix recommended best practices. With default
settings of Affymetrix SNPolisher classifications, we re-
moved: 48,083 markers classified as “Other”; 7014 classi-
fied as “CallRateBelowThreshold”; 1765 classified as

“Off-target variant (OTV)”; 181 classified as “Hemizy-
gous”; and 7061 classified as “MonoHighResolution” that
also had previously failed Affymetrix’s internal validation
process (see Table 3).
The average genotype reproducibility in 25 replicate

pairs across all passing SNPs was 99.94 %. Of the passing
markers, 40,745 (7.00 %) were monomorphic, 17,099
(2.94 %) had minor allele frequency (MAF) greater than 0
and less than 0.01; 125,359 (21.53 %) had MAF between
0.01 and 0.05; 398,940 (68.53 %) had MAF greater than or
equal to 0.05. For 137 HapMap samples [56] (45 JPT, 32
CEU, 60 YRI) and 226,511 passing markers that overlapped
with HapMap2 release 24 (marker call rate ≥95 % in
HapMap2), the average genotype concordance was 99.76 %.

Smokescreen application to nicotine metabolism analysis
in multiple populations
Unrelated African American (N = 52), Asian American
(N = 55), and European American ancestry individuals
(N = 239) from three existing laboratory-based nicotine
metabolism studies were selected for genotyping on the
Smokescreen array [57]. For all samples, the NMR is de-
fined as the trans-3’-hydroxycotinine to cotinine ratio.
In these three studies, biospecimens were collected, and
creatinine-adjusted cotinine and trans-3’-hydroxycoti-
nine levels were estimated via mass spectrometry using
an established method [57].
In the Pharmacokinetics in Twins (“PKTWIN”) [58]

study, participants were recruited from the Northern Cali-
fornia Twin Registry in a multiple stage protocol to coord-
inate ascertainment of twins to investigate heritability and
genetic components of nicotine metabolism. Participants
consented to a 30-min venous administration of nicotine
and cotinine, followed by an 8-hour hospital stay for blood
and urine biosample collection. In the Pharmacogenetic

Fig. 1 Smokescreen coverage estimates by increasing observed imputation r2 thresholds: genome-wide and addiction genes. Left panel: Genome-wide
coverage. Right panel: Addiction genes coverage. Solid line: MAF≥ 0.05. Dashed line: MAF≥ 0.01. Red: EUR. Blue: YRI. Green: ASN. Observed imputation r2

(obsRSQ) is the correlation between imputed (continuous) genotype dosage and the measured genotype from the 1000 Genomes Project. The proportion
of 1000 Genome Project Phase 1 variants with an obsRSQ above the threshold on the x-axis is represented on the y-axis. The average obsRSQ differs by
race/ethnicity and by array content categories (e.g., genome-wide versus addiction genes). The coverage (fraction of variants with obsRSQ above the
threshold) decreases as the obsRSQ threshold increases. A typical threshold used in evaluating array coverage is 0.80
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Study of Nicotine Metabolism (“588”) [57], recruiting by
smoking status and gender of European, African, and
Asian Americans was performed through multi-media ad-
vertisements for a nicotine and cotinine metabolism study.
Participants consented to morning oral administration of
nicotine, and either labeled (smokers) or unlabeled (non-
smokers) cotinine. The following biospecimens were col-
lected: saliva up to 60 h after dosing; blood up to 480 min;
urine up to 8 h. In the Smoking in Families (SMOFAM)
study [59], individuals from 61 pedigrees with at least
three ever-smokers individuals per pedigree originally re-
cruited to assess the relations among genetic factors, en-
vironmental factors, and tobacco use, consented to oral
administration of a fixed dose of nicotine and cotinine at
home monitored by a nurse, followed by salivary sample
collection at multiple time points as well as a blood sam-
ple for DNA analysis [57].
Three hundred fifteen samples passed quality control

with complete data and were included in the analyses
(from 49 African, 51 Asian, and 215 European American
participants). Multiple factors including population
structure principal components, age, sex, BMI, and
smoking status were incorporated to model NMR in a
genome-wide, multi-ethnic meta-analysis. Adequate
Type I error control was observed with genome-wide
significant results at CYP2A6 (min p = 9.10E-15). The
top SNP accounts for 12 %, 27 %, and 19 % of the NMR
variation in European Americans, African Americans,
and Asian Americans, respectively. The minimum p-
value in the nearby CYP2B6 region was 1.85E-5 with
association patterns differing by ancestry (Fig. 2). Associ-
ation patterns with the NMR remained intact for
CYP2B6 in an analysis adjusting for CYP2A6’s top SNP;
other CYP2A6 SNPs showed evidence of independent
association after this adjustment (min p = 1.71E-7).

Discussion
Until recently, manufacturing a genotyping array, especially
with primarily custom-content, was prohibitively expensive.
The Smokescreen array represents the next generation of
targeted arrays, providing both baseline genome-wide con-
tent, and enhanced coverage of important regions and
pathways specific to a phenotype or group of related phe-
notypes. The popularity of these similarly-sized arrays can
be seen in the Psychiatric Genetics Consortium Infinium
PsychArray [60] with 571,054 SNPs (271,406 genome-wide
tag SNPs, 276,701 exonic markers, and ~50,000 markers
associated with common psychiatric disorders) and the
OncoArray Consortium OncoArray-500 K [61] with
499,170 SNPs (275,691 genome-wide tag SNPs and 223,479
cancer specific SNPs). These three arrays offer a core set of
markers that provide similar imputation-based genome-
wide coverage. Used a procedure similar to Nelson et al.
[62], we estimated that the Smokescreen design covers
66 %, 82 %, and 91 % of common variants (MAF ≥ 0.05) in
YRI, ASN, and EUR, respectively. The Smokescreen array
includes extensive custom content (350,209 markers),
focusing on enhancing coverage of gene regions and path-
ways related to addiction (dependence, drug metabolism,
and treatment response), and attributable disease (prolifera-
tive, psychiatric and pulmonary outcomes) in multiple pop-
ulations. Consortia developed arrays have similar goals: to
provide content of value to researchers studying related
phenotypes and to provide data for large meta-analyses and
replication studies.
Genome-wide arrays, such as Smokescreen, allow

for imputation of common and rare genotypes using
haplotype reference panels. Recent haplotype projects
(e.g., the Haplotype Reference Consortium, which
combines multiple cohorts including the 1000 Ge-
nomes Project) allow for more accurate imputation of

Table 3 SNP classifications and recommendations using 622 passing samples derived from blood or cell line

SNPolisher
ConversionType

Previously validated
markers

Previously failed-validation
markers

De novo
markers

Total SNPs Recommendation
to keep for analysis

PolyHighResolution 441120 (68.26 %) 17595 (2.72 %) 7547 (1.17 %) 466262
(72.15 %)

yes

NoMinorHom 62639 (9.69 %) 6360 (0.98 %) 6173 (0.96 %) 75172
(11.63 %)

yes

MonoHighResolution 12095 (1.87 %) 7061 (1.09 %) 28614 (4.43 %) 47770 (7.39 %) yes if previously
validated or de novo

Other 6031 (0.93 %) 14515 (2.24 %) 27537 (4.26 %) 48083 (7.44 %) no

CallRateBelowThreshold 3078 (0.48 %) 2856 (0.42 %) 1080 (0.17 %) 7014 (1.09 %) no

OTV 370 (0.06 %) 535 (0.08 %) 860 (0.13 %) 1765 (0.27 %) yes if off-target variant
genotyped

Hemizygous 180 (0.03 %) 1 (<0.01 %) 0 (0.00 %) 181 (0.03 %) yes if visually inspected

TOTAL 525513 (81.32 %) 48923 (7.57 %) 71811 (11.11 %) 646247

‘Previously validated’ or ‘Previously failed-validation’ are markers tested by the manufacturer. ‘De novo’ are markers on the array but not validated by the
manufacturer. ‘PolyHighResolution’ and ‘NoMinorHom’ are markers with good cluster resolution. ‘MonoHighResolution’ indicates that fewer than two examples of the
minor allele was present. ‘CallRateBelowThreshold’ indicated that the SNP call rate is below the threshold while other properties are above the threshold. ‘Other’
are markers where one or more cluster properties falls below its threshold
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less common and rare variants [63, 64]. The ability to
genotype large numbers of study samples and impute
more variants accurately, enables powerful meta-GWAS
studies [65]. Additionally, genome-wide imputation allows
for discovery of associations in regions not directly
enriched for in the array design. This is important as
meta-analysis consortia and multiple methods [51] iden-
tify additional addiction-related regions.
There are some limitations in the estimation of

Smokescreen array performance. It should be noted that
the coverage is an estimate based on the design of the
array. The realized coverage is not yet computable as the
validation of markers is ongoing. Approximately 12 % of
SNPs on the array are too rare to be observed with the
current sample size. Additional samples will improve
genotype clustering of rare SNPs or SNPs with low qual-
ity metrics. Some pilot samples derived from saliva were
genotyped, but the sample size was not sufficient for es-
timating performances on these samples separately. In
general, we recommend saliva samples to be collected
using kits with preservatives. Laboratories familiar with
Axiom Arrays should assess the quality of salivary sam-
ples with suspect collection or storage method prior to
genotyping.
Ascertainment biases in the markers selected on the

array or the reference population used in imputation
may lead to lower coverage, as commonly observed in
African ancestry populations. However, increasing cover-
age on the array (as we did with the African (YRI) booster
panel) and diverse reference panels for imputation, helps
mitigate this issue. Another limitation of these approaches
over sequencing, is the identification of de novo muta-
tions. These mutations, however, account for a small frac-
tion of both rare and common neurodevelopmental
diseases and require pedigrees for analysis [66].
We envision the Smokescreen array driving translational

research by facilitating the development of algorithms,

derived from multiple genetic and clinical factors for risk
prediction and treatment approach assignments. Previ-
ously, genome-wide allelotyping analyses of smoking ces-
sation trials revealed associations of common variants
with prospective abstinence [67]. This research lead to the
design of a clinical trial analysis model incorporating a
“quit-success” genetic score, which retrospectively pre-
dicted abstinence in a randomized trial stratifying smokers
by nicotine replacement therapy dose and dependence
[53]. This model used both genetic (“quit-success” score)
and clinical (FTCD score) information. We re-envision
this model based on a Smokescreen analysis platform that
incorporates individual level genotype data, additional
clinical factors, and the multi-stage process of validation
and utility assessment in large sample sizes derived from
meta-analysis of multiple trials [68]. For example, geno-
typing samples with multiple addiction-related phenotypes
will permit genome-wide correlation [69–71] and esti-
mation of the extent of shared variance and polygeni-
city among dependence, attributable disease, and
treatment response; the proportion of shared variance
among dependencies using genome-wide correlation is
substantial [6].
The addiction-related gene content of Smokescreen

is designed to be helpful in pharmacogenetic analyses
of current or future addiction gene targets. In an ana-
lysis of the Psychiatric Genetic Consortium schizo-
phrenia findings [72], 40 of the 341 protein-coding
genes linked to GWAS hits were identified as targets
of existing drugs or drugs undergoing Phase III trials
[73]. Lencz and Malhotra conclude that six protein-
coding genes (CACNA1C, CACNB2, CACNA1I,
DRD2, GRIN2A, HCN1) are of greatest neuropsychi-
atric and genetic interest. Three of these six genes
(DRD2, CACNA1I, GRIN2A) are included in Smokesc-
reen’s group of addiction-related genes; overall, 10 of the
40 target genes are included in Smokescreen’s gene list

Fig. 2 CYP2A6 - CYP2B6 regional association with the nicotine metabolism ratio. Blue triangle: African-American. Green circle: Asian-American. Red
square: European-American. Black star: Meta-analysis
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with increased coverage, suggesting Smokescreen’s useful-
ness for addiction-related drug development studies.
Coverage of the nicotine metabolizing enzyme genes
CYP2A6 and CYP2B6, the opportunity to incorporate
NMR measures in larger studies, and novel analytical
methods may improve nicotine metabolism models, which
currently predict between 50 and 70 % of variance in Euro-
pean ancestry populations [39].

Conclusions
The Smokescreen array achieves robust genome-wide
coverage of common variants, and exceptional coverage
of 1014 genes relevant to addiction and known nicotine
metabolism and smoking behavior regions in African
(YRI), Asian, and European populations. These, paired
with content from recent findings and related work in
pharmacogenomics, comorbidities, and attributable
diseases create a comprehensive genotyping array for
addiction research. Analytical validity and utility were
demonstrated through pilot genotyping of HapMap and
study samples. For HapMap samples, the genotype con-
cordance for overlapping content was > 99 %. Based on
samples from nicotine metabolism laboratory studies, we
identified variants at genome-wide significance in a re-
gion known to be highly influential on nicotine metabol-
ism, serving as a positive confirmation of the array’s
design. These attributes enable researchers to perform
genome-wide, candidate gene, and pathway-based asso-
ciation analyses on various addictions, including those
related to smoking and tobacco use.

Methods
Array design objectives
The array design was driven by the need for a common
panel of markers for both hypothesis-driven and genome-
wide studies of addiction. This project was funded by
the Small Business Innovative Research (SBIR) pro-
gram with the National Institute on Drug Abuse
(NIDA). Specific requirements included capturing
prioritized markers identified by NIDA; selecting fo-
cused content for a wide variety of research purposes
and multiple ethnicities; selecting a platform for
accurate and reproducible data across studies, and
providing a screening tool for development of risk
assessments and personalized approaches to addiction
treatment.
The ability to customize the array was important to

cover common and rare variation across populations
genome-wide, with enhanced coverage in genes and
regions related to addiction. Manufacturing reproduci-
bility was also critical for translational and clinical use-
cases that may be developed based on the array. Given
these objectives, Affymetrix Axiom was selected as a
platform for the array.

Content targeted for coverage
Content was selected for inclusion on the array in a
modular fashion and then prioritized to create the final
specifications for manufacturing. The content was com-
piled from multiple sources, including pathway and
functional databases, NIDA, NIH-funded investigators,
prior genotyping and sequencing projects, Affymetrix,
and scientific publications.

Genome-wide association markers
A catalog panel was provided by Affymetrix to provide
baseline genome-wide coverage across AFR, ASN, and
EUR ancestry groups for discovery as well as meta-
analysis across studies. 246,038 of the catalog markers
overlap with the Affymetrix Axiom Biobank array. We
included an additional panel of 50,000 markers provided
by Affymetrix to increase genome-wide coverage in Afri-
can ancestry populations, thereby maximizing genotype
imputation efficiency to a larger variant set [74, 75].

Addiction-related genes
One thousand fourteen genes were identified as related to
addiction through expert nomination, and recent bioinfor-
matics projects and knowledge-bases. Table 4 presents the
source, annotation, and gene count. Sources include the
NIDA Genetics Consortium [76, 77], Gene Ontology [78],
QIAGEN’s Ingenuity Pathway Analysis [79], and Pharma-
cogenetics of Nicotine Addiction Treatment [31, 37].

Fine mapping of smoking-related loci
We aimed for the densest coverage of any genotyping array
for the chr15q25.1 nicotinic acetylcholine receptor
(nAChR) gene cluster (CHRNA5, CHRNA3 and CHRNB4),
and the chr19q13.2 nicotine metabolizing enzyme genes
(CYP2A6 and CYP2B6). The CYP2A6 gene plays a major
role in the nicotine metabolism pathway [80, 81] while
genes encoding for CYP isozymes, such as the CYP2B6
gene, may play a smaller role in influencing nicotine metab-
olism [82, 83]. An individual’s nicotine metabolism affects
the level of circulating and sequestered nicotine and thus,
nicotine intake [40, 84]. Nicotine binds to nAChRs, trigger-
ing neurotransmitter release and leads over time to nicotine
dependence. nAChR activity, and thus nicotine depend-
ence, is regulated by the cholinergic genes on chromosomes
8p11.21, 15q25.1 and 20q13.33 [16, 17, 21, 85–88].

Filtering and tagging of selected markers
Each content category was submitted to Affymetrix as a list
of markers or genomic regions. Affymetrix used proprietary
software and a Axiom-validated marker database to select
the best-performing markers (one or more probesets per
marker) that covered the targeted content, either through
direct inclusion or through efficient pairwise tagging.
Multiple probesets were selected for markers that are either
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non-validated or deemed high priority (e.g., markers with
known associations with addiction, smoking behavior, or
nicotine metabolism), in order to minimize genotyping
failures of these markers.
Using genotype data from the 1000 Genomes Project

(Phase 1, March 2012 release), in African (YRI), East
Asian (CHB +CHS + JPT) and European (CEU + FIN +
GBR + IBS + TSI) populations, tagging the 1014 addiction-
related genes (±20 kb) was performed in three rounds: (1)
all markers with an MAF ≥ 0.05 were tagged at r2 ≥ 0.9
using Axiom-validated markers only; (2) remaining
untagged markers were tagged at r2 ≥ 0.8 using Axiom-
validated markers only; (3) any remaining untagged markers
were tagged at r2 ≥ 0.9 using non-validated markers.
Both the range encompassing the entirety of CYP2A6

and CYP2B6 genes (±20 kb) and the range defined by
the largest linkage disequilibrium (LD) block encom-
passing the nAChR gene cluster were defined. All known
variants were selected from multiple databases, including
1000 Genomes Project Phase 1, HapMap, and the
NHLBI GO Exome Sequencing Project [89].

Imputed coverage estimation
Imputation coverage was estimated for the Smokescreen
array using an approach similar to that described by Nel-
son et al. [62]. 1000 Genomes Project Phase 1 data
(March 2012 release) were extracted for the Smoke-
screen content as an imputation inference set. All 1000
Genomes Project Phase 1 SNPs were used as the refer-
ence set. For each population (EUR, ASN, YRI), groups
of 10 samples were created. For each group, the samples
were kept in the inference set and excluded from the ref-
erence set, and imputed separately from other groups.
Samples with known or cryptic relatedness with other
samples in the 1000 Genomes Project were excluded
both from the inference set groups and reference sets.
Beagle version v4.0 release 1230 was used for phasing
and imputation of chromosomes 1 to 22 with default
settings [90]. Imputation was broken up by chromosome
and results were then combined for all SNPs and groups
of samples. For each SNP, we computed the correlation

Table 4 Smokescreen addiction genes: source, categories, and
counts*

Source Category Genes

Gene Ontology dopamine_receptor_
binding

8

Gene Ontology dopamine_binding 9

Gene Ontology serotonin_uptake 4

Gene Ontology serotonin_metabolic_
process

8

Gene Ontology serotonin_transport 12

Gene Ontology response_to_nicotine 31

Gene Ontology dopamine_secretion 15

Gene Ontology dopamine_uptake 8

Gene Ontology dopamine_receptor_
signaling_pathway

30

Gene Ontology dopamine_transport 23

Gene Ontology serotonin_secretion 8

Gene Ontology dopamine_metabolic_
process

26

Gene Ontology regulation_of_dopamine_
secretion

15

IPA cigarette_habituation_
susceptibility_syndrome

6

IPA nicotine 14

IPA susceptibility_to_drug_
addiction

1

IPA addiction_behavior 24

IPA tobacco 27

IPA addiction 131

IPA withdrawal 11

IPA smoking 12

IPA naltrexone 4

IPA clonidine 7

IPA nortripyline 3

IPA varenicline 3

IPA nicotine 19

IPA bupropion 3

NIDA Genetics Consortium The Nicotine System 20

NIDA Genetics Consortium The Dopamine System 10

NIDA Genetics Consortium Mouse QTL 423

NIDA Genetics Consortium The Alcohol System 32

NIDA Genetics Consortium The Cholinergic System 9

NIDA Genetics Consortium The Adrenergic System 16

NIDA Genetics Consortium Tyrosine 3

NIDA Genetics Consortium Other 263

NIDA Genetics Consortium The GABA System 31

NIDA Genetics Consortium Neurotransmitter
Transporters

13

NIDA Genetics Consortium 11

Table 4 Smokescreen addiction genes: source, categories, and
counts* (Continued)

The Nicotine Metabolism
System

NIDA Genetics Consortium The Serotonergic System 20

NIDA Genetics Consortium The Endocannabinoid System 2

NIDA Genetics Consortium Dopamine Synthesis 2

NIDA Genetics Consortium The Glutamatergic System 42

NIDA Genetics Consortium The Opioid System 12

PNAT 134

*Genes in categories may overlap
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between the imputed dosages and measured genotypes
from the 1000 Genomes Project (obsRSQ). The obsRSQ
were then summarized overall (genome-wide), for the
addiction-genes and the fine-mapping regions for each
population.

Smokescreen genotyping pilot
DNA samples from 188 Hapmap and 1000 Genomes
Project participants from CEPH/Utah, Yoruba in Ibadan,
Nigeria, and Japanese in Tokyo, Japan populations were
obtained from Coriell Institute for Medical Research
(Camden, NJ); 442 study samples from NIDA-funded In-
vestigators, and six positive controls provided by the
genotyping lab, were obtained for the genotyping pilot
(see Table 5).

Ethics approval and consent to participate
All individuals provided written informed consent. The
Collaborative Genetic Study of Nicotine Dependence
(COGEND) study was approved by the Washington Uni-
versity Institutional Review Board. The Early Metham-
phetamine Abstinence: fMRI and Cognition (MA fMRI);
Neural Systems, Inhibitory Control, and Methamphetamine
Dependence (Modafinil); Neural Systems and Risk for Ado-
lescent Smoking (ASCC2); and Neural Correlates of Cogni-
tion, Craving and Reward Delay in Adolescent Smokers
(ASCC Neural Systems) studies were approved by the Uni-
versity of California, Los Angeles Institutional Review
Board. The Total Exposure Study (TES) was approved by
the SRI International Human Subjects Committee. The
Pharmacokinetics in Twins (PKTWIN), Pharmacogenetic
Study of Nicotine Metabolism (588), and Smoking in Fam-
ilies (SMOFAM) studies were approved by the committee
on Human Research at the University of California San
Francisco and the Human Subjects Committee at SRI
International.
A total of 636 purified DNA samples (including 27

replicates) derived from blood or cell line were proc-
essed on the Smokescreen Genotyping Array at RUCDR
Infinite Biologics (Piscataway, NJ) according to manufac-
turer instructions. Raw data consisted of one CEL file
per sample (except for one sample that failed to scan).

Following best practices guidelines set forth by the manu-
facturer [55], the Affymetrix Power Tools (APT) v1.17.0
software was used to process raw data. Dish QC (DQC)
values were generated and used to remove samples with
DQC < 0.82. As part of stage 1 genotyping, 20,000 probe-
sets previously validated by the manufacturer were used
to cluster genotypes and remove samples with stage 1 call
rate <97 %. Plate pass rate and average stage 1 call rate per
plate were calculated and reviewed to determine if any
plates should be excluded from further analysis.
Remaining samples were genotyped for all probesets
(stage 2 genotyping), using APT. The Affymetrix SNPol-
isher v1.5.2 software was used to classify probeset quality
and determine the best probeset for each marker. Markers
whose best probeset classified as “Other”, “CallRate-
BelowThreshold”, “Off-target variant (OTV)”, “Hemi-
zygous”, or “MonoHighResolution” (or had previously
failed Affymetrix’ internal validation process) were re-
moved. A smaller number of DNA samples derived
from saliva were also genotyped and clustered separ-
ately but are excluded here. Prior to statistical ana-
lysis, samples with sex discrepancies (reported versus
expected), unexpected relatedness (half-sib or greater),
and replicate samples with the lowest call rate were
excluded. All statistical analyses were performed in
[R] [91].

Additional file

Additional file 1: Smokescreen addiction regions and estimated
imputed coverage. This file contains the addiction-related gene regions
(chr 1–22) represented on the Smokescreen array and the estimated
imputation-based coverage for each region in European (EUR), Asian
(ASN), and African (YRI) populations. (XLSX 338 kb)
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Table 5 Smokescreen pilot genotyping sample characteristics - blood or cell line

Study Description Samples Individuals DNA Source %Male

Hapmap and 1000 Genomes CEPH/Utah; Yoruba in Ibadan, Nigeria;
Japanese in Tokyo, Japan samples

188 188 cell line 50.00 %

PKTWIN, “588”, SMOFAM Nicotine metabolism laboratory studies 343 326 blood 45.71 %

Total Exposure Study Cross sectional study of tobacco exposures 33 32 blood 56.25 %

MA fMRI, Modafinil, ASCC2, ASCC Neural Systems Genetics and brain structure in smokers 35 34 blood 58.82 %

COGEND Report of genetic results in smokers 31 30 blood 33.33 %

Positive lab controls 6 1 cell line

Baurley et al. BMC Genomics  (2016) 17:145 Page 9 of 12

dx.doi.org/10.1186/s12864-016-2495-7


Abuse; NMR: Nicotine Metabolite Ratio; NRT: Nicotine Replacement Therapy;
OTV: Off-target variant; PNAT: Pharmacogenetics of Nicotine Addiction
Treatment; SBIR: Small Business Innovative Research; SNP: Single nucleotide
polymorphism; TSI: Toscani in Italia; YRI: Yoruba in Ibadan, Nigeria.

Competing interests
BioRealm LLC intends to commercialize the Smokescreen array.

Authors’ contributions
JWB, CKE co-first authors, project leaders, developed the array. JWB, CKE,
AWB, DVC contributed to the design of the array. JWB, CKE, CIP ran the
analysis. JWB, CKE, CIP, DVC, AWB wrote the paper. All authors read and
approved the final manuscript.

Acknowledgements
This project has been funded in whole or in part with Federal funds from
the National Institute on Drug Abuse, National Institutes of Health,
Department of Health and Human Services, under Contract Nos.
HHSN271201200005C and HHSN271201300004C, and Grant No. DA033813.
Computing was supported by an AWS in Education Research Grant award.
We would like to acknowledge the NIDA Genetics Consortium, the
Psychiatric Genetics Consortium, and other investigators for suggesting
content; the Affymetrix bioinformatics team and RUCDR Infinite Biologics for
working closely with us in developing the array, QC procedures, and sample
processing; the Investigators contributing pilot samples; and the entire
BioRealm team (http://biorealmresearch.com).

Received: 4 September 2015 Accepted: 17 February 2016

References
1. The Science of Drug Abuse and Addiction: The Basics | National Institute on

Drug Abuse (NIDA). http://www.drugabuse.gov/publications/media-guide/
science-drug-abuse-addiction-basics. Accessed 20 Nov 2015.

2. American Psychiatric Association. Diagnostic and Statistical Manual of
Mental Disorders: DSM-5. 5th ed. Arlington, VA: American Psychiatric
Publishing; 2013.

3. Agrawal A, Verweij KJH, Gillespie NA, Heath AC, Lessov-Schlaggar CN, Martin
NG, et al. The genetics of addiction—a translational perspective. Transl
Psychiatry. 2012;2:e193.

4. Ducci F, Goldman D. The genetic basis of addictive disorders. Psychiatr Clin
North Am. 2012;35:495–519.

5. Vrieze SI, McGue M, Miller MB, Hicks BM, Iacono WG. Three mutually
informative ways to understand the genetic relationships among behavioral
disinhibition, alcohol use, drug use, nicotine use/dependence, and their co-
occurrence: twin biometry, GCTA, and genome-wide scoring. Behav Genet.
2013;43:97–107.

6. Palmer RHC, Brick L, Nugent NR, Bidwell LC, McGeary JE, Knopik VS, et al.
Examining the role of common genetic variants on alcohol, tobacco,
cannabis and illicit drug dependence: genetics of vulnerability to drug
dependence. Addiction. 2015;110:530–7.

7. Kendler KS, Myers J, Prescott CA. Specificity of genetic and environmental
risk factors for symptoms of cannabis, cocaine, alcohol, caffeine, and
nicotine dependence. Arch Gen Psychiatry. 2007;64:1313–20.

8. United States Surgeon General. The Health Consequences of Smoking – 50
Years of progress: A Report of the Surgeon General. PsycEXTRA Dataset. 2014.

9. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström
Test for Nicotine Dependence: a revision of the Fagerström Tolerance
Questionnaire. Br J Addict. 1991;86:1119–27.

10. Fagerström K. Determinants of tobacco use and renaming the FTND to the
Fagerstrom Test for Cigarette Dependence. Nicotine Tob Res. 2012;14:75–8.

11. Sullivan PF, Kendler KS. The genetic epidemiology of smoking. Nicotine Tob
Res. 1999;1 Suppl 2:S51–7. discussion S69–70.

12. Bares CB, Kendler KS, Maes HH. Developmental Changes in Genetic and
Shared Environmental Contributions to Smoking Initiation and Subsequent
Smoking Quantity in Adolescence and Young Adulthood. Twin Res Hum
Genet. 2015;18(5):497–506. doi:10.1017/thg.2015.48.

13. Pergadia ML, Agrawal A, Loukola A, Montgomery GW, Broms U, Saccone SF,
et al. Genetic linkage findings for DSM-IV nicotine withdrawal in two
populations. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:950–9.

14. Han S, Gelernter J, Luo X, Yang B-Z. Meta-analysis of 15 genome-wide
linkage scans of smoking behavior. Biol Psychiatry. 2010;67:12–9.

15. Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, et al. Alpha-5/
alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking.
Mol Psychiatry. 2008;13:368–73.

16. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, et al. A
variant associated with nicotine dependence, lung cancer and peripheral
arterial disease. Nature. 2008;452:638–42.

17. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, et al.
Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking
behavior. Nat Genet. 2010;42:448–53.

18. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify
multiple loci associated with smoking behavior. Nat Genet. 2010;42:441–7.

19. David SP, Hamidovic A, Chen GK, Bergen AW, Wessel J, Kasberger JL, et al.
Genome-wide meta-analyses of smoking behaviors in African Americans.
Transl Psychiatry. 2012;2:e119.

20. Bloom AJ, Hartz SM, Baker TB, Chen L-S, Piper ME, Fox L, et al. Beyond
cigarettes per day. A genome-wide association study of the biomarker
carbon monoxide. Ann Am Thorac Soc. 2014;11:1003–10.

21. Rice JP, Hartz SM, Agrawal A, Almasy L, Bennett S, Breslau N, et al.
Consortium, Geneva: CHRNB3 is more strongly associated with Fagerstrom
test for cigarette dependence-based nicotine dependence than cigarettes
per day: phenotype definition changes genome-wide association studies
results. Addiction. 2012;107:2019–28.

22. Bierut LJ, Madden PAF, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF,
et al. Novel genes identified in a high-density genome wide association
study for nicotine dependence. Hum Mol Genet. 2007;16:24–35.

23. Thun MJ, Carter BD, Feskanich D, Freedman ND, Prentice R, Lopez AD, et al.
50-year trends in smoking-related mortality in the United States. N Engl J
Med. 2013;368:351–64.

24. Centers for Disease Control and Prevention (CDC). Vital signs: current
cigarette smoking among adults aged > or = 18 years — United States,
2009. MMWR Morb Mortal Wkly Rep. 2010;59:1135–40.

25. Centers for Disease Control and Prevention (CDC). Quitting smoking among
adults–United States, 2001–2010. MMWR Morb Mortal Wkly Rep. 2011;60:1513–9.

26. Fiore MC, Bailey WC, Cohen SJ, Dorfman SF, Goldstein MG, Gritz ER, et al.
Treating Tobacco Use and Dependence: A Clinical Practice Guideline.
Rockville, MD: US Dept of Health and Human Services; 2000. AHRQ
publication No. 00–0032.

27. Tobacco TCPGT et al. A clinical practice guideline for treating tobacco use
and dependence: 2008 update: a US public health service report. Am J Prev
Med. 2008;35:158–76.

28. Xian H, Scherrer JF, Madden PAF, Lyons MJ, Tsuang M, True WR, et al. The
heritability of failed smoking cessation and nicotine withdrawal in twins
who smoked and attempted to quit. Nicotine Tob Res. 2003;5:245–54.

29. Broms U, Silventoinen K, Madden PAF, Heath AC, Kaprio J. Genetic
architecture of smoking behavior: a study of Finnish adult twins. Twin Res
Hum Genet. 2006;9:64–72.

30. Mamoun M, Bergen AW, Shieh J, Wiggins A, Brody AL. Biomarkers of
Response to Smoking Cessation Pharmacotherapies: Progress to Date. CNS
Drugs. 2015;29:359–69.

31. Conti DV, Lee W, Li D, Liu J, Van Den Berg D, Thomas PD, et al.
Pharmacogenetics of Nicotine A, Treatment, Consortium: Nicotinic
acetylcholine receptor beta2 subunit gene implicated in a systems-based
candidate gene study of smoking cessation. Hum Mol Genet. 2008;17:2834–48.

32. King DP, Paciga S, Pickering E, Benowitz NL, Bierut LJ, Conti DV, et al. Smoking
cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-
controlled clinical trials. Neuropsychopharmacology. 2012;37:641–50.

33. Tyndale RF, Zhu AZX, George TP, Cinciripini P, Hawk Jr LW, Schnoll RA, et al.
Lack of Associations of CHRNA5-A3-B4 Genetic Variants with Smoking
Cessation Treatment Outcomes in Caucasian Smokers despite Associations
with Baseline Smoking. PLoS One. 2015;10:e0128109.

34. Chen L-S, Baker TB, Piper ME, Breslau N, Cannon DS, Doheny KF, et al.
Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation
treatments in smoking cessation success. Am J Psychiatry. 2012;169:735–42.

35. Baker TB, Weiss RB, Bolt D, von Niederhausern A, Fiore MC, Dunn DM, et al.
Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with
multiple nicotine dependence phenotypes. Nicotine Tob Res. 2009;11:785–96.

36. Munafo MR, Johnstone EC, Walther D, Uhl GR, Murphy MF, Aveyard P.
CHRNA3 rs1051730 Genotype and Short-term Smoking Cessation. Nicotine
Tob Res. 2011;13(10):982–8.

Baurley et al. BMC Genomics  (2016) 17:145 Page 10 of 12

http://biorealmresearch.com/
http://www.drugabuse.gov/publications/media-guide/science-drug-abuse-addiction-basics
http://www.drugabuse.gov/publications/media-guide/science-drug-abuse-addiction-basics
http://dx.doi.org/10.1017/thg.2015.48


37. Bergen AW, Javitz HS, Krasnow R, Nishita D, Michel M, Conti DV, et al.
Nicotinic acetylcholine receptor variation and response to smoking
cessation therapies. Pharmacogenet Genomics. 2013;23:94–103.

38. Benowitz NL, Swan GE, Jacob 3rd P, Lessov-Schlaggar CN, Tyndale RF.
CYP2A6 genotype and the metabolism and disposition kinetics of nicotine.
Clin Pharmacol Ther. 2006;80:457–67.

39. Bloom J, Hinrichs AL, Wang JC, von Weymarn LB, Kharasch ED, Bierut LJ,
et al. The contribution of common CYP2A6 alleles to variation in nicotine
metabolism among European-Americans. Pharmacogenet Genomics. 2011;
21:403–16.

40. Tyndale RF, Sellers EM. Variable CYP2A6-mediated nicotine metabolism
alters smoking behavior and risk. Drug Metab Dispos. 2001;29:548–52.

41. Bloom AJ, Harari O, Martinez M, Madden PA, Martin NG, Montgomery GW,
et al. Use of a predictive model derived from in vivo endophenotype
measurements to demonstrate associations with a complex locus, CYP2A6.
Hum Mol Genet. 2012;21:3050–62.

42. Lerman C, Tyndale R, Patterson F, Wileyto EP, Shields PG, Pinto A, et al.
Nicotine metabolite ratio predicts efficacy of transdermal nicotine for
smoking cessation. Clin Pharmacol Ther. 2006;79:600–8.

43. Patterson F, Schnoll RA, Wileyto EP, Pinto A, Epstein LH, Shields PG, et al.
Toward personalized therapy for smoking cessation: a randomized placebo-
controlled trial of bupropion. Clin Pharmacol Ther. 2008;84:320–5.

44. Schnoll RA, Patterson F, Wileyto EP, Tyndale RF, Benowitz N, Lerman C.
Nicotine metabolic rate predicts successful smoking cessation with
transdermal nicotine: a validation study. Pharmacol Biochem Behav.
2009;92:6–11.

45. Lerman C, Schnoll RA, Hawk Jr LW, Cinciripini P, George TP, Wileyto EP,
et al. Use of the nicotine metabolite ratio as a genetically informed
biomarker of response to nicotine patch or varenicline for smoking
cessation: a randomised, double-blind placebo-controlled trial. Lancet Respir
Med. 2015;3(2):131–8.

46. Ho MK, Mwenifumbo JC, Al Koudsi N, Okuyemi KS, Ahluwalia JS, Benowitz
NL, et al. Association of nicotine metabolite ratio and CYP2A6 genotype
with smoking cessation treatment in African-American light smokers. Clin
Pharmacol Ther. 2009;85:635–43.

47. Lerman C, Jepson C, Wileyto EP, Patterson F, Schnoll R, Mroziewicz M, et al.
Genetic variation in nicotine metabolism predicts the efficacy of extended-
duration transdermal nicotine therapy. Clin Pharmacol Ther. 2010;87:553–7.

48. Chen LS, Bloom AJ, Baker TB, Smith SS, Piper ME, Martinez M, et al.
Pharmacotherapy effects on smoking cessation vary with nicotine
metabolism gene (CYP2A6). Addiction. 2014;109:128–37.

49. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD,
DePristo MA, Durbin RM, et al. An integrated map of genetic variation from
1,092 human genomes. Nature. 2012;491:56–65.

50. Bahcall O, Orli B. COGS project and design of the iCOGS array. Nat Genet.
2013;45(4):343. doi:10.1038/ng.2592.

51. Sullivan PF. The psychiatric GWAS consortium: big science comes to
psychiatry. Neuron. 2010;68:182–6.

52. Allen N, Sudlow C, Downey P, Peakman T, Danesh J, Elliott P, et al. UK
Biobank: Current status and what it means for epidemiology. Health Policy
Technol. 2012;1:123–6.

53. Rose JE, Behm FM, Drgon T, Johnson C, Uhl GR. Personalized smoking
cessation: interactions between nicotine dose, dependence and quit-
success genotype score. Mol Med. 2010;16:247–53.

54. A Catalog of Published Genome-Wide Association Studies www.genome.
gov/gwastudies. Accessed 20 Nov 2015.

55. Axiom Genotyping Solution Data Analysis Guide. Affymetrix Inc., Santa Clara,
CA, 2015. http://media.affymetrix.com/support/downloads/manuals/axiom_
genotyping_solution_analysis_guide.pdf. Accessed 20 Nov 2015.

56. International HapMap Project. http://hapmap.ncbi.nlm.nih.gov/. Accessed 1
Sept 2013.

57. Dempsey D, Tutka P, Jacob 3rd P, Allen F, Schoedel K, Tyndale RF, et al.
Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic
activity. Clin Pharmacol Ther. 2004;76:64–72.

58. Swan GE, Benowitz NL, Jacob 3rd P, Lessov CN, Tyndale RF, Wilhelmsen K,
et al. Pharmacogenetics of nicotine metabolism in twins: methods and
procedures. Twin Res. 2004;7:435–48.

59. Swan GE, Hudmon KS, Jack LM, Hemberger K, Carmelli D, Khroyan TV, et al.
Environmental and genetic determinants of tobacco use: methodology for
a multidisciplinary, longitudinal family-based investigation. Cancer Epidemiol
Biomarkers Prev. 2003;12:994–1005.

60. Infinium PsychArray BeadChips. San Diego, CA: Illumina, Inc.; 2014. http://
www.illumina.com/products/psycharray.html. Accessed 20 Nov 2015.

61. Infinium OncoArray-550 K BeadChips. San Diego, CA: Illumina, Inc.; 2014.
https://support.illumina.com/array/array_kits/infinium-oncoarray-500k-v1-0-
beadchip-kit.html. Accessed 20 Nov 2015.

62. Nelson SC, Doheny KF, Pugh EW, Romm JM, Ling H, Laurie CA, et al.
Imputation-based genomic coverage assessments of current human
genotyping arrays. G3. 2013;3:1795–807.

63. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis:
study designs and statistical tests. Am J Hum Genet. 2014;95:5–23.

64. Haplotype Reference Consortium. http://www.haplotype-reference-
consortium.org. Accessed 20 Nov 2015.

65. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, et al. Genetic
variance estimation with imputed variants finds negligible missing
heritability for human height and body mass index. Nat Genet. 2015;47(10):
1114–20.

66. Ku CS, Polychronakos C, Tan EK, Naidoo N, Pawitan Y, Roukos DH, et al. A
new paradigm emerges from the study of de novo mutations in the
context of neurodevelopmental disease. Mol Psychiatry. 2013;18:141–53.

67. Uhl GR, Liu Q-R, Drgon T, Johnson C, Walther D, Rose JE, et al. Molecular
genetics of successful smoking cessation: convergent genome-wide
association study results. Arch Gen Psychiatry. 2008;65:683–93.

68. Committee on the Review of Omics-Based Tests for Predicting Patient
Outcomes in Clinical Trials, Board on Health Care Services, Board on Health
Sciences Policy, Institute of Medicine. Evolution of Translational Omics:
Lessons Learned and the Path Forward. Washington (DC): National
Academies Press (US); 2014.

69. Yang J, Lee SH, Goddard ME, Visscher PM. Genome-wide complex trait
analysis (GCTA): methods, data analyses, and interpretations. Methods Mol
Biol. 2013;1019:215–36.

70. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide
complex trait analysis. Am J Hum Genet. 2011;88:76–82.

71. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia
Working Group of the Psychiatric Genomics Consortium, et al. LD Score
regression distinguishes confounding from polygenicity in genome-wide
association studies. Nat Genet. 2015;47:291–5.

72. Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci. Nature.
2014;511:421–7.

73. Lencz T, Malhotra AK. Targeting the schizophrenia genome: a fast track
strategy from GWAS to clinic. Mol Psychiatry. 2015;20:820–6.

74. Hoffmann TJ, Zhan Y, Kvale MN, Hesselson SE, Gollub J, Iribarren C, et al.
Design and coverage of high throughput genotyping arrays optimized for
individuals of East Asian, African American, and Latino race/ethnicity using
imputation and a novel hybrid SNP selection algorithm. Genomics. 2011;98:
422–30.

75. Hoffmann TJ, Kvale MN, Hesselson SE, Zhan Y, Aquino C, Cao Y, et al. Next
generation genome-wide association tool: design and coverage of a high-
throughput European-optimized SNP array. Genomics. 2011;98:79–89.

76. Saccone SF, Bierut LJ, Chesler EJ, Kalivas PW, Lerman C, Saccone NL, et al.
Supplementing high-density SNP microarrays for additional coverage of
disease-related genes: addiction as a paradigm. PLoS One. 2009;4:e5225.

77. Saccone SF, Saccone NL, Swan GE, Madden PAF, Goate AM, Rice JP, et al.
Systematic biological prioritization after a genome-wide association study:
an application to nicotine dependence. Bioinformatics. 2008;24:1805–11.

78. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Michael Cherry J, et al.
Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

79. IPA, QIAGEN, Redwood City, CA. http://www.qiagen.com/ingenuity.
Accessed 20 Nov 2015.

80. Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashima K, Inoue K, et al.
Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab
Dispos. 1996;24:1212–7.

81. Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashima K, Inoue K, et al.
Characterization of CYP2A6 involved in 3’-hydroxylation of cotinine in
human liver microsomes. J Pharmacol Exp Ther. 1996;277:1010–5.

82. Bloom AJ, Martinez M, Chen L-S, Bierut LJ, Murphy SE, Goate A. CYP2B6
Non-Coding Variation Associated with Smoking Cessation Is Also Associated
with Differences in Allelic Expression, Splicing, and Nicotine Metabolism
Independent of Common Amino-Acid Changes. PLoS One. 2013;8:e79700.

83. Hukkanen J, Jacob 3rd P, Benowitz NL. Metabolism and disposition kinetics
of nicotine. Pharmacol Rev. 2005;57:79–115.

Baurley et al. BMC Genomics  (2016) 17:145 Page 11 of 12

http://dx.doi.org/10.1038/ng.2592
http://www.genome.gov/gwastudies
http://www.genome.gov/gwastudies
http://media.affymetrix.com/support/downloads/manuals/axiom_genotyping_solution_analysis_guide.pdf
http://media.affymetrix.com/support/downloads/manuals/axiom_genotyping_solution_analysis_guide.pdf
http://hapmap.ncbi.nlm.nih.gov/
http://www.illumina.com/products/psycharray.html
http://www.illumina.com/products/psycharray.html
https://support.illumina.com/array/array_kits/infinium-oncoarray-500k-v1-0-beadchip-kit.html
https://support.illumina.com/array/array_kits/infinium-oncoarray-500k-v1-0-beadchip-kit.html
http://www.haplotype-reference-consortium.org/
http://www.haplotype-reference-consortium.org/
http://www.qiagen.com/ingenuity


84. Jarvik ME, Madsen DC, Olmstead RE, Iwamoto-Schaap PN, Elins JL, Benowitz
NL. Nicotine blood levels and subjective craving for cigarettes. Pharmacol
Biochem Behav. 2000;66:553–8.

85. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA,
et al. Cholinergic nicotinic receptor genes implicated in a nicotine
dependence association study targeting 348 candidate genes with 3713
SNPs. Hum Mol Genet. 2007;16:36–49.

86. Saccone NL, Schwantes-An T-H, Wang JC, Grucza RA, Breslau N, Hatsukami
D, et al. Multiple cholinergic nicotinic receptor genes affect nicotine
dependence risk in African and European Americans. Genes Brain Behav.
2010;9:741–50.

87. Hancock DB, Wang J-C, Gaddis NC, Levy JL, Saccone NL, Stitzel JA, et al. A
multiancestry study identifies novel genetic associations with CHRNA5
methylation in human brain and risk of nicotine dependence. Hum Mol
Genet. 2015;24:5940–54.

88. Hancock DB, Reginsson GW, Gaddis NC, Chen X, Saccone NL, Lutz SM, et al.
Genome-wide meta-analysis reveals common splice site acceptor variant in
CHRNA4 associated with nicotine dependence. Transl Psychiatry. 2015;5:e651.

89. Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle,
WA. http://evs.gs.washington.edu/evs/. Accessed 1 Sept 2013.

90. Browning SR, Browning BL. Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of
localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97.

91. R Core Team. R: A language and environment for statistical computing.
Vienna, Austria; R Foundation for Statistical Computing; 2014. http://www.R-
project.org/. Accessed 20 Nov 2015.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Baurley et al. BMC Genomics  (2016) 17:145 Page 12 of 12

http://evs.gs.washington.edu/evs/
http://www.r-project.org/
http://www.r-project.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Array design and coverage estimates
	Genome-wide association markers
	Addiction genes
	Fine-mapping
	Additional content

	Genotyping quality
	Smokescreen application to nicotine metabolism analysis in multiple populations

	Discussion
	Conclusions
	Methods
	Array design objectives
	Content targeted for coverage
	Genome-wide association markers
	Addiction-related genes
	Fine mapping of smoking-related loci

	Filtering and tagging of selected markers
	Imputed coverage estimation
	Smokescreen genotyping pilot
	Ethics approval and consent to participate


	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References



