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Abstract

Background: Whole-genome genotyping techniques like Genotyping-by-sequencing (GBS) are being used for genetic
studies such as Genome-Wide Association (GWAS) and Genomewide Selection (GS), where different strategies for
imputation have been developed. Nevertheless, imputation error may lead to poor performance (i.e. smaller power or
higher false positive rate) when complete data is not required as it is for GWAS, and each marker is taken at a time. The
aim of this study was to compare the performance of GWAS analysis for Quantitative Trait Loci (QTL) of major and
minor effect using different imputation methods when no reference panel is available in a wheat GBS panel.

Results: In this study, we compared the power and false positive rate of dissecting quantitative traits for imputed and
not-imputed marker score matrices in: (1) a complete molecular marker barley panel array, and (2) a GBS wheat panel
with missing data. We found that there is an ascertainment bias in imputation method comparisons. Simulating over a
complete matrix and creating missing data at random proved that imputation methods have a poorer performance.
Furthermore, we found that when QTL were simulated with imputed data, the imputation methods performed better
than the not-imputed ones. On the other hand, when QTL were simulated with not-imputed data, the not-imputed
method and one of the imputation methods performed better for dissecting quantitative traits. Moreover, larger
differences between imputation methods were detected for QTL of major effect than QTL of minor effect. We also
compared the different marker score matrices for GWAS analysis in a real wheat phenotype dataset, and we found
minimal differences indicating that imputation did not improve the GWAS performance when a reference panel was
not available.

Conclusions: Poorer performance was found in GWAS analysis when an imputed marker score matrix was used, no
reference panel is available, in a wheat GBS panel.
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Background
Genetic markers are nowadays an essential part of plant
and animal breeding programs. Next-generation sequen-
cing (NGS) techniques allow discovering, sequencing, and
genotyping thousands of Single Nucleotide Polymorphism
(SNPs) covering the whole genome [1]. These SNPs are
being used in analyses like transcriptome assembly [2],

generation of high-quality draft genomes even for complex
genomes [3], understanding plant growth [4], evaluating
the effect of epigenetics in plant development [5], isolation
of mutant genes [6],species evolution and economic insight
[7], genetic diversity [8], GWAS [9], and GS [10]. The GBS
technique is one of the most used NGS approaches [8–11].
It was developed originally for barley and maize, and later
extended to other complex genomes species like wheat
[8–11]. GBS that relies on methylation-sensitive restric-
tion enzymes is highly efficient [12]. However, GBS
generates a large proportion of missing data when
alleles are obtained due to the use of short reads and
when low sequencing depth are used [12]. Therefore,
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different strategies to impute missing data have been
developed and used for genetic analyses [9]. Some im-
putation methods use reference panels and are based
on Linkage Disequilibrium (LD), while other methods
do not require reference panels. In the first group,
the most common methods are known as MACH
[13], IMPUTE [14], fastPHASE [15], PLINK [16], and
Beagle [17]. All of them use haplotype segments from
a reference panel densely genotyped to impute missing
markers [18–20]. MACH uses a Markov Chain based
algorithm to infer pairs of haplotypes for each individual’s
genotypes [13]. IMPUTE considers the sequence of pairs
of known haplotypes as hidden states, then models the se-
quence of hidden states based on a recombination map
estimated from the reference data, and finally it predicts
unknown genotypes [14]. The fastPHASE algorithm is a
haplotype clustering algorithm that samples missing geno-
types based on allele frequencies estimated from reference
haplotypes, and then uses an Expectation- Maximization
(EM) algorithm to estimate parameter values to infer
missing genotypes [15]. PLINK predicts missing data by
the local haplotypic background and by the haplotype
formed by the two or more flanking SNPs [16]. Finally,
Beagle is a haplotype clustering based algorithm that uses
the localized haplotype cluster model to group haplotypes
at each marker and then finds the most likely haplotype
pairs based on the individual’s known genotypes [17].
Therefore, strong LD among markers and low minor allele
frequency (MAF) is required for effective LD imputation
methods [21]. Additionally, more markers with an even
genome coverage and therefore smaller distance among
markers, and markers with larger subpopulation differ-
entiation are also desirable to ensure imputation accur-
acy [22]. The second group of methods do not require
a reference panel and include imputation by the mean,
the MVN-EM algorithm, and random forests [10]. In
mean imputation, the most common allele at a particu-
lar marker in the population is used to impute missing
data. MVN-EM, on the other hand, considers the real-
ized additive relationship matrix between the lines and
an EM approach assuming that marker genotypes
follow a multivariate normal distribution designed for
use with GBS. Finally, random forest methods use an
algorithm with multiple decision trees to determine a
prediction value for each missing data point. For an
overview of the imputation methods see [10].
Several studies found that imputation can improve

QTL power detection [23, 24], but other studies found
that large power is accompanied by either larger false
positive rates or an increase in the multiple-testing
penalty [20, 25]. Unless a ‘one-hit’ procedure is used (i.e.
the uncertainty of genotypic probability distributions
due to the imputation is incorporated in the GWAS
analysis), large imputation error can be generated [26].

Other studies found that imputation should be carefully
evaluated because quality control of the data is an im-
portant source of loss of power [27]. To carry on GWAS
analysis, where one marker at a time is being tested,
marker-trait associations can be estimated without marker
imputation using the available information at each marker.
The aim of this study was to compare the performance

of imputation methods for GWAS analysis when no
reference panel is available in a wheat GBS panel. Specif-
ically, our objectives were: (1) to evaluate the effect of
imputation using a golden standard (i.e. simulation over
a complete marker score matrix), to determine whether
ascertainment bias is responsible for imputation success;
(2) to evaluate whether the outcome of the imputation
performance is affected by the marker score matrix used
to simulate the QTL; and (3) to compare the effect of
imputation in a real phenotype wheat panel using GBS
data with different missing rates (25 %, 35 % and 50 %)
and four phenotypic traits.

Results
The strategies we pursued are explained in the Methods
section, and the general procedure presented in Fig. 1.
We used different number of QTL and heritabilities to
simulate the QTL, along with different thresholds for
calling the QTL. We summarized the results with power
(PO) and false positive rate (FPR).

Ascertainment bias in imputation performance
comparison (golden standard)
When we used a golden standard matrix of barley for
simulating the QTL (i.e. a complete dataset, for general
approach see Fig. 1A1), we found that for major QTL
effects, larger power was obtained without imputing the
genotypic matrix. Furthermore, for minor QTL effects,
larger power was detected without imputing the geno-
typic matrix or imputing it with the MVN-EM method
(GNImp, GMVN-EM Fig. 2). The smallest false positive rate
was obtained for the genotypic matrix imputed by the RF
method (GRF), and the largest false positive rate was ob-
tained with the MVN-EM imputation method (GMVN-EM).
False positive rates were still really small (i.e. 0.015, Fig. 2).
Power was also small in general (i.e. 0.3, Fig. 2). The same
pattern was found when using different threshold levels
for the dissection of quantitative traits (i.e. Bonferroni cor-
rected by the effective number of independent markers,
Fig. 2; Bonferroni correction, Additional file 1; and an
arbitrary threshold set at α = 0.01, Additional file 2).
When we simulated QTL over an imputed matrix (for

the general approach see Fig. 1A.2), we found that larger
power was obtained with the imputed genotypic matrices
(GMean, GMVN-EM or GRF), while the largest false positive
rate was obtained with the MVN-EM imputation method
(GMVN-EM) (Fig. 3). However, when QTL were simulated
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Fig. 1 (See legend on next page.)
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over a not-imputed matrix, the largest power was obtained
when a not-imputed or imputed by the MVN-EM geno-
typic matrices were used (GMVN-EM or GNImp). This
pattern was consistent across number of QTL (i.e. 25 and
50, data not shown) and heritabilities (i.e. 0.2, 0.4, 0.6, 0.7,
0.9, Fig. 3). The same pattern was found when using
different threshold levels for the dissection of quantitative
traits (i.e. Bonferroni corrected by the effective num-
ber of independent markers, Fig. 3; Bonferroni correc-
tion, Additional file 3; and an arbitrary threshold set
at α = 0.01, Additional file 4).

Imputation effect for real GBS data with 25 %, 35 % or
50 % missing information
By using naturally sparse genotypic matrices like GBS in
wheat with 25 %, 35 % or 50 % missing data information
(for the general approach see Fig. 1b), we detected that
larger power was obtained when a not-imputed or

imputed by the MVN-EM genotypic matrices were
used (Fig. 4, Additional files 5 and 6). However, when
simulating over a matrix with imputed data, larger
power was obtained by recover QTL with an imputed
matrix (Fig. 4, Additional files 5 and 6). This was true
for the different number of QTL (i.e. 25 and 50, data
not shown) and heritabilities (i.e. 0.2, 0.4, 0.6, 0.7, 0.9,
Fig. 4, Additional files 5 and 6). Differences between
power were more evident for major QTL, resulting in
a reasonable increase of power for high heritabilities
(Fig. 4). The largest values of false positive rate were found
when simulating with the Ysim-NImp and GMVN-EM or the
Ysim-RF and GMVN-EM (Fig. 4, Additional files 5 and 6).
Additionally, the same pattern was found using different
threshold levels (i.e. Bonferroni corrected by the effective
number of independent markers, Fig. 4; Bonferroni cor-
rection, Additional file 7; and an arbitrary threshold set at
α = 0.01, Additional file 8).

(See figure on previous page.)
Fig. 1 General scheme of the procedures we followed for each component. a Procedures for golden standard (A.1) and ascertainment bias (A.2);
b Procedure for GWAS performance based on simulated matrix; c Procedure for comparison of the effect of imputation in a real phenotypic
dataset. Each procedure details the germplasm, genotypic and phenotypic dataset used, as well as simulation approach to obtain each
phenotypic vector and GWAS analysis marker score matrices used. Procedures that used wheat data are in green and procedures that used
barley data are in purple. DH, Days to Heading; GBS, Genotype-by-sequencing; MVN-EM, Multivariate Normal Expectation Maximization;
Not-imputed marker score matrix; NoNA, No missing data marker score matrix; PH, Plant Height; QTL, Quantitative Trait Loci; RF: Random Forest
marker score matrix; SNPs, Single-Nucleotide Polymorphism; SPM, Spikes Per Square Meter; TKW, Thousands Kernel Weight

Fig. 2 Power (PO) and false positives rate (FPR) for major and minor QTL with 25 QTL, for the golden standard from barley with a Bonferroni threshold
corrected by the effective number of independent markers. Each parameter was calculated for the combinations of: heritabilties (h2), a marker score
matrix to simulate the QTL (i.e. Ysim-NoNA), and marker score matrices to perform the GWAS analysis (i.e. GNImp, GMVN-EM, GMean and GRF)
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Imputation effect on GWAS for real phenotypes
We compared the QTL obtained for GWAS analysis
using real phenotypic data from wheat, between the not-
imputed matrix (GNImp) with different missing rates
(25 %, 35 % and 50 % of missing data), and the genotypic
data imputed with the mean, MVN-EM or RF method
(GMean, GMVN-EM or GRF). The performance of GWAS
analysis was similar across imputation methods (Fig. 5,
Additional files 9 and 10), but not all QTL were detected
across methods. For the 4 traits, plant height (PH, cm),
days to heading (DH, days), thousand kernel weight
(TKW, g) and spikes per square meter (SPM, number,
Fig. 6, Additional files 11 and 12), we detected different pu-
tative QTL when using imputed or not-imputed matrices.
In general, the MVN-EM imputation method performed
similarly to non imputation, having some QTL being de-
tected by both methods (Fig. 6, Additional files 11 and 12).
However, each approach found also unique QTL (Fig. 6,
Additional files 11 and 12).

Differences between methods for false positive rate
When we performed FPR boxplots with the replications
for analyzing if the differences between the methods
are significantly different or due to random errors
(Additional files 13, 14, 15, 16, 17), we found that FPR

rates were larger for: (i) the imputed genotypic matrices by
the MVN-EM method for the golden standard, (ii) the im-
puted genotypic matrix by the MVN-EM method (GMVN-

EM) for the ascertainment bias, (iii) the imputed genotypic
matrices by the MVN-EM or RF methods (GMVN-EM, GRF)
for the GBS data with 35 % or 50 % missing data, (iv) and
the imputed genotypic matrices by the RF method (GRF)
for the GBS data with 25 % missing data.

Discussion
New whole-genome genotyping techniques are constantly
being developed and used for genetic analyses like GWAS
[9]. Although GBS is a powerful tool for genotyping
hundreds of individuals with thousands of SNPs, it gener-
ates large amounts of missing information, and therefore,
researchers have applied several strategies to impute these
missing [14–17]. However, when retained a considerable
amount of missing information using GBS data in wheat
or artificially removing genotypic data from complete
panels in barley, we found that imputation does not
improve the dissection of quantitative traits performance
in several situations. Our results should be restricted to
our panels that have a specific LD (barley and wheat) and
SNP quality, due to the continuous improvement of the
sequencing technologies that allows the decrease of costs

Fig. 3 Power (PO) and false positives rate (FPR) with 25 QTL, for major and minor QTL for ascertainment bias in imputation performance
comparison in barley, with a Bonferroni threshold corrected by the effective number of independent markers. Each parameter was calculated for
the combinations of: heritabilties (h2), marker score matrices to simulate the QTL (i.e. Ysim-NImp, Ysim-MVN-EM, Ysim-Mean and Ysim-RF), and marker score
matrices to perform the GWAS analysis (i.e. GNImp, GMVN-EM, GMean and GRF)
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and therefore the increase of sequencing depth and quality,
leading to a lower missing rate.

Ascertainment bias in imputation performance
comparison (golden standard)
When we used the “golden standard” marker score
matrix, the not-imputed marker score matrix outper-
formed the imputation methods for all the combinations
of parameters (Fig. 2, Additional files 1 and 2). The
higher values of false positive rate found with the MVN-
EM matrix and lower values of power found with the RF
matrix for all thresholds could be a consequence of an
imputation error affecting the signal of the QTL.
The fact that we also found that the not-imputed

marker score matrix outperformed the imputation
methods comparing both, power and false positive rate
simultaneously, when we used real GBS data (i.e. data
with missing points, Fig. 4), suggests that using an
imputed matrix for GWAS analysis could introduce an
ascertainment bias. This could be caused when there is
no reference panel, and the uncertainty of genotypic
probability distributions due to the imputation is not
considered, as methods based on LD have found that if
some restrictions are taken into account (i.e. strong LD
among markers, low minor MAF, short distances
between not-imputed markers, and markers with higher

subpopulation differentiation), the imputation accuracy
and then the GWAS is improved [22, 28].
Although the low power found to detect QTL for the

barley marker score matrix could theoretically be due to
low LD between markers in the same LD blocks, we do
not expect this to be the reason of low power in our
study. When there are unlinked QTL controlling a trait,
the power is moderate even with large populations and
high heritabilities [29]. However, we do not expect
unlinked QTL within the LD blocks due to the cluster of
markers within those blocks [30], and because the
genome coverage of the markers was very high, having
50 % of its SNPs, at a distance smaller than 0.625 cM
(Table 1). The small population (122 lines) used for
barley dataset could be the reason affecting the low
values of power detected, as the power is a function of
the population size [31]. However, this should not differ-
ently affect the imputation methods. Additionally, the
great differences found in power and false positive rate
between major and minor QTL, could indicate that
major QTL are the QTL mostly detected by any of the
imputation methods. Other LD structures in different
populations could make our results to vary, therefore,
this results are restricted to the populations used in this
analysis. Further analyses considering different popula-
tion structure should be tested.

Fig. 4 Power (PO) and false positives rate (FPR) with 25 QTL and 50 % missing rate, for major and minor QTL to evaluate the GWAS performance
based on simulated matrix with a Bonferroni threshold corrected by the effective number of independent markers. Each parameter was calculated for
the combinations of: heritabilties (h2), marker score matrices to simulate the QTL (i.e. Ysim-NImp, Ysim-MVN-EM, Ysim-Mean and Ysim-RF), and marker score
matrices to perform the GWAS analysis (i.e. GNImp, GMVN-EM, GMean and GRF)
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Imputation effect for real GBS data with 25 %, 35 % or
50 % missing information
The differences found when we simulated QTL on top
of imputed or not-imputed marker score matrices (Fig. 4,
Additional files 5 and 6) were probably due to the im-
putation method used and the simulation. Therefore, we
found that not-imputing was the best option for evaluat-
ing one marker at a time in GWAS analysis using GBS
data with 25 %, 35 % or 50 % missing information, espe-
cially for detecting major QTL.

Imputation effect on GWAS for real phenotypes
As no significant differences were detected in the real
wheat datasets in terms of the type 1 error inflation
imputation (Fig. 5, Additional files 9 and 10), we consider
that imputation does not improved the GWAS perform-
ance and therefore is not needed.
The traits evaluated in this paper were selected for

having high heritability values and being related or a
component of grain yield. The high heritability values
may have reduced the differences between the QTL
found with GNImp or GMVN-EM.
We found QTL where previous QTL were reported.

The QTL found for TKW (chromosome 1B, bin 224 and
242) with the GNImp, GMVN-EM and GMean matrices for
50 % missing data, and with the GMean matrix for 25 %
and 35 % missing data, are partially coincident with a

QTL reported for green leaf area [32], a QTL reported for
Near Differential Vegetative Index [33] and a QTL re-
ported for yield, anthesis and plant height [34]. A QTL
found for TKW (chromosome 1D, bin 205) with the
GNImp, GMVN-EM and GMean matrices for 25 %, 35 % and
50 % missing data, is coincident with a QTL reported for
grain yield and plant height [34]. The QTL found for
TKW (chromosome 2D, bin 167) with 3 marker score
matrices (GNImp, GMVN-EM and GMean) for 25 %, 35 % and
50 % missing data, SPM (chromosome 2D, bin 167) with
the GNImp matrix for 25 % and 50 % missing data, and
with 3 marker score matrices (GNImp, GMVN-EM and
GMean) for 35 % missing data, are coincident with a QTL
reported for kernel weight, Near Differential Vegetative
Index and flag leaf [33]. A QTL found for DH (chromo-
some 3B, bin 282) with GNImp and GMVN-EM for 50 %
missing data is coincident with a QTL reported for grain
filling duration [32]. A QTL found for SPM (chromosome
4A, bin 179) with the GNImp and GMVN-EM matrices for
25 %, 35 % and 50 % missing data, is coincident with a
QTL reported for anthesis and plant height [34]. The
QTL found for DH (chromosome 4B, bin 106) with the
GNImp matrix for 50 % missing data, is coincident with a
QTL reported for yield and plant height [34]. A QTL
found for DH (chromosome 6B, bin 116) with the GNImp

matrix for 35 % and 50 % missing data, and with the
GNImp and GMean matrices for the 25 % missing data, is

Fig. 5 QQ plots of the p-values resulted from the GWAS analysis from real phenotype wheat data with 50 % missing rate and a Bonferroni threshold
corrected by the effective number of independent markers. For each trait measured and each marker score matrix evaluated, a qq-plot of the p-values
from the GWAS analysis is presented. The marker score matrices were: NImp (not imputed) in turquoise, Mean (mean imputed) in green, MVN-EM
(Multivariate Normal Expectation Maximization method) in coral and RF (Random Forest method) in orchid. The phenotype traits are: DH, days to
heading; PH, Plant Height; SPM, Spikes Per Square Meter; TKW, Thousands Kernel Weight
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coincident with a QTL for yield and plant height [28]. A
QTL found for PH (chromosome 7A, bin 225) with
the GNImp and GMean matrices for 50 % missing data,
is coincident with yield and anthesis [34]. These posi-
tions are based on bins and should be regarded as an
approximation. These could be improved after the
draft of the genome is available [35].
As we found that QTL detected by the GNImp and

GMVN-EM matrices were similar, we believe that imput-
ation do not improve GWAS analysis.

Conclusions
Imputation can introduce an ascertainment bias to GWAS
analysis using GBS within crops when a reference panel is
not available. Comparing the GWAS performance by the
power and false positive rate with imputed or not-imputed
marker score matrices, poorer performance was found when
an imputed marker score matrix was used. Additionally, the
power and false positive rate changed in a clear way between
major and minor QTL, showing that differences among im-
putation methods were more evident for major QTL and

Fig. 6 Manhattan plots of the GWAS analysis for real phenotype wheat data with 50 % missing rate and a Bonferroni threshold corrected by
the effective number of independent markers. For each trait measured and each marker score matrix evaluated, a manhattan plot of the GWAS
analysis is presented. The phenotypic traits are: DH, Days to Heading; PH, Plant Height; SPM, Spikes Per Square Meter; TKW, Thousands Kernel
Weight. The marker score matrices were: NImp (not imputed), Mean (mean imputed), MVN-EM (Multivariate Normal Expectation Maximization
method) and RF (Random Forest method). QTL detected by the NImp matrix are in turquoise, QTL detected exclusively by the MVN-EM matrix
are in coral, QTL detected exclusively by the Mean matrix are in green, and QTL detected exclusively by the RF matrix are in orchid
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that the detection of minor QTL is negligible. Our results
are restricted to the wheat panel used, as with different LD
they could vary, and as well with different GBS quality data,
which is affected by different SNP identification algorithms.

Methods
Dataset
We used two datasets: (1) a complete SNPs barley panel
array (i.e. 99 % coverage), and (2) a GBS wheat marker score
matrix with an average of 25 %, 35 % or 50 % missing points
and phenotypic data (for general approach see Fig. 1).
The complete barley SNP marker score array dataset

(Additional file 18), consisted in a panel of 122 barley
advanced inbred lines from a population of 360 described
in [36]. Briefly, 1,096 SNPs from the Barley Oligonucleotide
Pool Assay-1 (BOPA 1, Additional file 19) were selected
[37, 38]. A total of 122 lines were chosen to form 2
complete datasets without missing information (Table 1).
The wheat GBS dataset (Additional file 20), consisted

on a panel of 384 advanced inbred lines from breeding
programs: 186 genotypes from the National Wheat Breed-
ing Program from Uruguay (INIA-Uruguay, National
Institute of Agricultural Research), 55 genotypes from the
National Wheat Breeding Program from Chile (INIA-
Chile), and 143 genotypes from the International Breeding
Center of Maize and Wheat (CIMMYT, International
Maize and Wheat Improvement Center), published in
[39]. The CIMMYT genotypes share common ancestors
with the INIA-Chile genotypes (see [39] for more details).
DNA was extracted by the DNeasy Plant Maxi Kit (QIA-
GEN). Library construction was conducted at Kansas
State University (Manhattan, Kansas) using a PstI-MspI
GBS protocol [10]. The sequencing was performed on an
Illumina Hi-Sequation 2000 at the DNA core facility at
the University of Missouri, Columbia, Missouri, and the
McGill Univesity-Génome Quebec Innovation Centre
(Montreal, Canada) for each set of libraries. SNPs were
obtained using the Tassel-GBS Pipeline [40]. The base
quality and distribution of sequences was studied with the

Galaxy (https://galaxyproject.org/) software. SNPs with
more than 25 %, 35 % or 50 % missing points and with
minor allele frequency (MAF) smaller than 10 % were ex-
cluded. Sequences were blasted to the SyntheticxOpata
map (synop) using the blastn function from NCBI-BLAST
+ package using the number of descriptions and the num-
ber of threads set to one. Therefore, SNPs were placed
into recombination bins [11] (Additional file 21). A final
matrix set of 18,337 SNPs was obtained for 50 % missing
data (Table 2), a final matrix set of 8,227 SNPs was ob-
tained for 25 % missing data (Additional files 22 and 23),
and a final matrix set of 11,858 SNPs was obtained for
35 % missing data (Additional files 24 and 25).
The phenotypic data for the wheat panel was obtained

from an evaluation in a Mediterranean environment in
Santa Rosa-Chile in 2011 (36° 329’ S, 71° 559’ W;
217 m.a.s.l.). The field was irrigated with 50 mm m-2 at
each of four moments: tillering, flag leaf emergence,
heading date, and grain filling (see [33] for further details).
The experimental design was an alpha-lattice with 20
replications and 20 incomplete blocks. The traits evalu-
ated were: plant height (PH, cm) evaluated from the base
of the plant to the flower insertion (Additional file 26),
days to heading (DH, days) was recorded when 50 % of

Table 1 SNPs coverage on the golden standard matrix (i.e.
complete SNP array), indicating for each chromosome
(Chr = chromosome), the number of SNPs, the length (in
cM), the largest gap without markers (cM), the median
distance between pairs of adjacent markers, and the 25 %
and 75 % quantiles of the adjacent marker distances
Chr SNPs number Length (cM) Largest gap (cM) Median (cM)

1 125 139.78 10.74 0.63

2 187 150.27 8.21 0.58

3 178 170.88 6.59 0.58

4 131 121.65 7.50 0.60

5 201 194.03 8.05 0.57

6 147 129.38 8.62 0.47

7 127 166.56 10.53 0.49

Table 2 SNPs coverage on the GBS genotypic matrix with 50 %
coverage, indicating for each chromosome (Chr = chromosome),
the number of SNPs, the length (in cM) and the largest gap
without markers (cM)

Chr SNPs number Length (cM) Largest gap (cM) Median (cM)

1A 821 266 33 0

1B 1282 294 22 0

1D 255 242 25 0

2A 900 242 22 0

2B 1746 266 38 0

2D 327 182 27 0

3A 929 329 28 0

3B 1912 290 30 0

3D 270 287 29 0

4A 907 234 28 0

4B 610 177 31 0

4D 74 130 45 0

5A 1023 232 26 0

5B 1270 316 22 0

5D 197 306 29 0

6A 883 237 34 0

6B 1302 232 25 0

6D 243 276 28 0

7A 1456 323 24 0

7B 1660 263 40 0

7D 270 337 45 0
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the culms showed emerged ears (Additional file 27), thou-
sands kernel weight (TKW, g, Additional file 28), and
spikes per square meter (SPM, number, Additional file
29). We obtained the best linear unbiased predictors
(BLUPs) for each genotype using the following model for
each trait: yijk = µ + ai + βj + δk(j) + εijk where yijk is the value
for the phenotypic trait corresponding to the i-th geno-
type, j-th replication, and k-th incomplete block, μ is the
overall mean, ai is the random effect of the i-th geno-
type with ai ~ N(0, σg

2), βj is the effect of the j-th repli-
cation, δk(j) is the random effect of the k-th incomplete
block within the j-th replication with δk(j) ~ N(0, σB

2), εijk is
the experimental error corresponding to the i-th geno-
type, j-th replication and k-th incomplete block with
εijk ~ N(0, σe

2). The genotypic breeding values were
estimated with the function lmer (lme4 package) in R
statistical software [41]. Broad sense heritabilities were
estimated in R statistical software [35] using the
above model (Table 3).

Imputation methods
For the barley SNP array panel, we started with a geno-
type by marker score matrix with 122 genotypes (rows)
and 1,096 markers (columns) without missing values
Markers were scored as {1, -1}. Then, we randomly gen-
erated missing values in order to have the same coverage
as the GBS panel (50 %). Finally, three methods were used
to fill in those missing values, MVN-EM, which considers
the realized additive relationship matrix between the lines
and an EM approach assuming that marker genotypes
follow a multivariate normal distribution [10], Random
Forest (RF), which uses an algorithm with multiple deci-
sion trees to predict a value for each missing point, and
the Mean, which uses the average value score per marker
(i.e. the expected allele value at the particular marker).
Imputation was conducted in R statistical software [41]
with the A.mat function (rrBLUP package) [42].
For the wheat GBS panel, we started with: (i) a geno-

type by marker score matrix with 384 genotypes (rows)
and 18,337 markers (columns) with 50 % of missing
values, (ii) a genotype by marker score matrix with 384
genotypes (rows) and 8,227 markers (columns) with
25 % of missing values, and (iii) a genotype by marker
score matrix with 384 genotypes (rows) and 11,858
markers (columns) with 35 % of missing values. Markers

were scored as the number of alleles {NA, 1, -1}. We
used the same methods as the previous sections to
impute by the MVN-EM and the Mean.

Simulation procedure
To evaluate the effect of imputation using a golden stand-
ard with the barley SNP array, we created phenotypic
vectors simulating QTL on top of the complete barley
marker score matrix (Ysim-NoNA). The phenotypic vectors
were the sum of the effects of genotypic and residual
terms, Ysim = g + e. The genotypic effect was calculated as
the sum of the markers (selected as QTL) effects and
markers effects were obtained from a Beta(2, 6) distribu-
tion. Markers selected as QTL were obtained from the LD
blocks defined from a single linkage agglomerative pro-
cedure [30] with euclidean distances between markers and
a minimum of 1.5 cM to consider independent groups.
QTL with major effects were defined as the QTL with ef-
fects larger than the 75 % of the maximum, and QTL with
minor effect were defined as the remaining QTL. The
residual term was obtained by sampling from a normal
distribu tion, N(0, σ2e), where σ

2
e = (1- h2)σ2g/ h

2 and σ2g was
the variance of the realized g. One vector for the combina-
tions of number of QTL (i.e. 25 and 50), different herita-
bilities (i.e. 0.2, 0.4, 0.6, 0.7, 0.9), and for each one of 500
iterations was created. Then, we created missing data at
random, imputed (i.e. GNImp, GMVN-EM, GMean and GRF)
and pursued the GWAS analysis with each combination
of genotypic matrix, evaluating power and false positive
rate (for the general approach see Fig. 1A.1).
For the ascertainment bias evaluation, we first created

the missing data and then simulated the QTL on top of
each matrix: not-imputed marker score (Ysim-NImp),
imputed with MVN-EM [10] marker score (Ysim-MVN-EM),
imputed by the mean marker score (Ysim-Mean) and im-
puted with RF [10] marker score (Ysim-RF). Finally, we per-
formed the GWAS analysis with each genotypic marker
score (i.e. GNImp, GMVN-EM, GMean and GRF) and for each
phenotypic vector (i.e. Ysim-NImp, Ysim-MVN-EM, Ysim-Mean

and Ysim-RF, for the general approach see Fig. 1A.2). We
then compared the power and false positive rate.
For evaluating GWAS performance based on simulated

phenotypes with the wheat GBS panel (Fig 1b) data we
first created vectors of phenotypic values (i.e. Ysim-NImp,
Ysim-MVN-EM, Ysim-Mean and Ysim-RF). Each phenotypic
vector was simulated for different number of QTL (i.e. 25
and 50), different heritabilities (i.e. 0.2, 0.4, 0.6, 0.7, 0.9) as
in the previous section. In order to avoid collinearity, LD
blocks were defined as the bins in each chromosome and
a marker chosen at random within each LD block was
considered a QTL. One vector for each combination of
the parameters and for each one of 500 iterations was
created. We performed the simulations in R statistical
software [41].

Table 3 Broad sense heritability (h2) for the real wheat panel for
all traits in Santa Rosa- Chile 2011

Trait Santa Rosa- Chile 2011

Plant height (cm) 0.78

Days to heading (days) 0.97

Thousand kernel weight (g) 0.93

Spikes per square meter (number) 0.76
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GWAS analysis
For the GWAS analysis, the mixed model described by
[43] was used: y = Xβ +Qv + Zu + e, where y is the pheno-
typic vector (n x 1) with n the total number of lines, X is a
(n x m) SNPs matrix with m the number of SNPs coded as
described before {NA, 1, -1}, β is a (m x 1) vector of allelic
effects to be estimated, Q is a (n x q) incidence matrix with
q origin’s groups, v is a (n x 1) populations fixed effect
vector, Z is the genotypic incidence matrix, u is the vector
of random background polygenic effects, u ~N(0, Aσ2g),
where A is the realized additive relationship matrix
obtained with the A.mat function from package rrBLUP
[36] in R statistical software [35] and e is the residual error,
e ~N(0, σ2e). For each Ysim, we used the 4 genotypic marker
score to recover the QTL (i.e. GNImp, GMVN-EM, GMean and
GRF). We performed the analysis for three different
thresholds (threshold) to define markers as significant: (1)
Bonferroni correction, (2) Bonferroni correction using the
effective number of markers, Li&Ji method [38], and (3) a
liberal threshold of α = 0.01. GWAS analysis was accom-
plished with GWAS function from rrBLUP package [42] in
R statistical software [41–45]. We defined as true positives
(TP) the number of bins with a QTL and at least one
significant marker; false positives (FP) the number of bins
with no QTL and at least one significant marker; true
negatives (TN) the number of bins with no QTL and no
significant markers, and false negatives (FN) the number
of bins with QTL and no significant markers. We evalu-
ated power (PO = TP/(TP + FN)) and false positive rate
(FPR = FP/ (FP + TN)) [39] for QTL detection. We evalu-
ated performance for QTL of major and minor effect.
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Additional file 1: Figure S1. Power (PO) and false positives rate (FPR)
for major and minor QTL with 25 QTL, for the golden standard form
barley, with a Bonferroni threshold. Each parameter was calculated for
the combinations of: heritabilties (h2), a marker score matrix to simulate
the QTL (i.e. Ysim-NoNA), and marker score matrices to perform the GWAS
analysis (i.e. GNImp, GMVN-EM and GMean). (PDF 28 KB)

Additional file 2: Figure S2. Power (PO) and false positives rate (FPR)
for major and minor QTL with 25 QTL, for the golden standard from
barley, with α = 0.01 threshold. Each parameter was calculated for the
combinations of: number of QTL (q), heritabilties (h2), a marker score
matrix to simulate the QTL (i.e. Ysim-NoNA), and marker score matrices to
perform the GWAS analysis (i.e. GNImp, GMVN-EM and GMean). (PDF 28 KB)

Additional file 3: Figure S3. Power (PO) and false positives rate (FPR)
with 25 QTL, for major and minor QTL for ascertainment bias in
imputation performance comparison in barley, with a Bonferroni
threshold. Each parameter was calculated for the combinations of:
heritabilties (h2), marker score matrices to simulate the QTL (i.e. Ysim-NImp,
Ysim-MVN-EM and Ysim-Mean), and marker score matrices to perform the
GWAS analysis (i.e. GNImp, GMVN-EM and GMean). (PDF 34 KB)

Additional file 4: Figure S4. Power (PO) and false positives rate (FPR)
with 25 QTL, for major and minor QTL for ascertainment bias in
imputation performance comparison in barley, with a α = 0.01 threshold.
Each parameter was calculated for the combinations of: heritabilties (h2),
marker score matrices to simulate the QTL (i.e. Ysim-NImp, Ysim-MVN-EM and

Ysim-Mean), and marker score matrices to perform the GWAS analysis
(i.e. GNImp, GMVN-EM and GMean). (PDF 34 KB)

Additional file 5: Figure S5. Power (PO) and false positives rate (FPR)
with 25 QTL and 25 % missing rate, for major and minor QTL to evaluate
the GWAS performance based on simulated matrix with a Bonferroni
threshold corrected by the effective number of independent markers. Each
parameter was calculated for the combinations of: heritabilties (h2), marker
score matrices to simulate the QTL (i.e. Ysim-NImp, Ysim-MVN-EM, Ysim-Mean

and Ysim-RF), and marker score matrices to perform the GWAS analysis
(i.e. GNImp, GMVN-EM, GMean and GRF). (PDF 156 KB)

Additional file 6: Figure S6. Power (PO) and false positives rate (FPR)
with 25 QTL and 35 % missing rate, for major and minor QTL to evaluate
the GWAS performance based on simulated matrix with a Bonferroni
threshold corrected by the effective number of independent markers.
Each parameter was calculated for the combinations of: heritabilties (h2),
marker score matrices to simulate the QTL (i.e. Ysim-NImp, Ysim-MVN-EM,

Ysim-Mean and Ysim-RF), and marker score matrices to perform the
GWAS analysis (i.e. GNImp, GMVN-EM, GMean and GRF). (PDF 156 KB)

Additional file 7: Figure S7. Power (PO) and false positives rate (FPR)
with 25 QTL and 50 % missing rate, for major and minor QTL to evaluate
the GWAS performance based on simulated matrix with a Bonferroni
threshold. Each parameter was calculated for the combinations of:
heritabilties (h2), marker score matrices to simulate the QTL (i.e. Ysim-NImp,
Ysim-MVN-EM and Ysim-Mean), and marker score matrices to perform the
GWAS analysis (i.e. GNImp, GMVN-EM and GMean). (PDF 35 KB)

Additional file 8: Figure S8. Power (PO) and false positives rate (FPR)
with 25 QTL and 50 % missing rate, for major and minor QTL to evaluate
the GWAS performance based on simulated matrix with a α = 0.01
threshold. Each parameter was calculated for the combinations of:
heritabilties (h2), marker score matrices to simulate the QTL (i.e. Ysim-NImp,
Ysim-MVN-EM and Ysim-Mean), and marker score matrices to perform the
GWAS analysis (i.e. GNImp, GMVN-EM and GMean). (PDF 36 KB)

Additional file 9: Figure S9. QQ plots of the p-values from the GWAS
analysis from real phenotype wheat data with 25 % missing rate and a Bon-
ferroni threshold corrected by the effective number of independent
markers. For each trait measured and each marker score matrix evaluated, a
qq-plot of the p-values resulted form the GWAS analysis is presented. The
marker score matrices were: NImp (not imputed) in turquoise, Mean (mean
imputed) in green, MVN-EM (Multivariate Normal Expectation Maximization
method) in coral and RF (Random Forest method) in orchid. The phenotype
traits are: DH, days to heading; PH, Plant Height; SPM, Spikes Per Square
Meter; TKW, Thousands Kernel Weight. (PDF 359 KB)

Additional file 10: Figure S10. QQ plots of the p-values from the
GWAS analysis from real phenotype wheat data with 35 % missing rate
and a Bonferroni threshold corrected by the effective number of
independent markers. For each trait measured and each marker score
matrix evaluated, a qq-plot of the p-values resulted form the GWAS analysis is
presented. The marker score matrices were: NImp (not imputed) in turquoise,
Mean (mean imputed) in green, MVN-EM (Multivariate Normal Expectation
Maximization method) in coral and RF (Random Forest method) in orchid. The
phenotype traits are: DH, days to heading; PH, Plant Height; SPM, Spikes Per
Square Meter; TKW, Thousands Kernel Weight. (PDF 418 KB)

Additional file 11: Figure S11. Manhattan plots of the GWAS analysis for
real phenotype wheat data with 25 % missing rate and a Bonferroni threshold
corrected by the effective number of independent markers. For each trait
measured and each marker score matrix evaluated, a manhattan plot of the
GWAS analysis is presented. The phenotype traits are: DH, Days to Heading;
PH, Plant Height; SPM, Spikes Per Square Meter; TKW, Thousands Kernel
Weight. The marker score matrices were: NImp (not imputed), Mean (mean
imputed), MVN-EM (Multivariate Normal Expectation Maximization method)
and RF (Random Forest method). QTL detected by the NImpmatrix are in
turquoise, QTL detected exclusively by the MVN-EM matrix are in coral, QTL
detected exclusively by the Meanmatrix are in green, and QTL detected
exclusively by the RF matrix are in orchid. (PDF 539 KB)

Additional file 12: Figure S12. Manhattan plots of the GWAS analysis
for real phenotype wheat data with 35 % missing rate and a Bonferroni
threshold corrected by the effective number of independent markers.
For each trait measured and each marker score matrix evaluated, a
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manhattan plot of the GWAS analysis is presented. The phenotype traits
are: DH, Days to Heading; PH, Plant Height; SPM, Spikes Per Square Meter;
TKW, Thousands Kernel Weight. The marker score matrices were: NImp
(not imputed), Mean (mean imputed), MVN-EM (Multivariate Normal
Expectation Maximization method) and RF (Random Forest method). QTL
detected by the NImp matrix are in turquoise, QTL detected exclusively
by the MVN-EM matrix are in coral, QTL detected exclusively by the Mean
matrix are in green, and QTL detected exclusively by the RF matrix are in
orchid. (PDF 745 KB)

Additional file 13: Figure S13. Boxplots of false positives rate (FPR) for
major and minor QTL with 25 QTL, for the golden standard form barley,
with a Bonferroni threshold corrected by the effective number of
independent markers. Each parameter was calculated for the
combinations of: heritabilties (h2), a marker score matrix to simulate the
QTL (i.e. Ysim-NoNA), and marker score matrices to perform the GWAS
analysis (i.e. GNImp, GMVN-EM, GMean and GRF). (PDF 110 KB)

Additional file 14: Figure S14. Boxplots of false positives rate (FPR)
with 25 QTL, for major and minor QTL for ascertainment bias in
imputation performance comparison in barley, with a Bonferroni
threshold corrected by the effective number of independent markers.
Each parameter was calculated for the combinations of: heritabilties (h2),
marker score matrices to simulate the QTL (i.e. Ysim-NImp, Ysim-MVN-EM,

Ysim-Mean and Ysim-RF), and marker score matrices to perform the
GWAS analysis (i.e. GNImp, GMVN-EM, GMean and GRF). (PDF 139 KB)

Additional file 15: Figure S15. Boxplots of false positives rate (FPR)
with 25 QTL and 50 % missing rate, for major and minor QTL to evaluate
the GWAS performance based on simulated matrix with a Bonferroni
threshold corrected by the effective number of independent markers.
Each parameter was calculated for the combinations of: heritabilties (h2),
marker score matrices to simulate the QTL (i.e. Ysim-NImp, Ysim-MVN-EM,

Ysim-Mean and Ysim-RF), and marker score matrices to perform the
GWAS analysis (i.e. GNImp, GMVN-EM, GMean and GRF). (PDF 144 KB )

Additional file 16: Figure S16. Boxplots of false positives rate (FPR)
with 25 QTL and 25 % missing rate, for major and minor QTL to evaluate
the GWAS performance based on simulated matrix with a Bonferroni
threshold corrected by the effective number of independent markers.
Each parameter was calculated for the combinations of: heritabilties (h2),
marker score matrices to simulate the QTL (i.e. Ysim-NImp, Ysim-MVN-EM,

Ysim-Mean and Ysim-RF), and marker score matrices to perform the
GWAS analysis (i.e. GNImp, GMVN-EM, GMean and GRF). (PDF 132 KB)
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with 25 QTL and 35 % missing rate, for major and minor QTL to evaluate
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threshold corrected by the effective number of independent markers.
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marker score matrices to simulate the QTL (i.e. Ysim-NImp, Ysim-MVN-EM,

Ysim-Mean and Ysim-RF), and marker score matrices to perform the
GWAS analysis (i.e. GNImp, GMVN-EM, GMean and GRF). (PDF 143 KB)
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