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Abstract

Background: Periodontitis is an inflammatory disease affecting the tissues supporting teeth (periodontium).
Integrative analysis of metagenomic samples from multiple periodontitis studies is a powerful way to examine
microbiota diversity and interactions within host oral cavity.

Methods: A total of 43 subjects were recruited to participate in two previous studies profiling the microbial
community of human subgingival plaque samples using shotgun metagenomic sequencing. We integrated
metagenomic sequence data from those two studies, including six healthy controls, 14 sites representative of stable
periodontitis, 16 sites representative of progressing periodontitis, and seven periodontal sites of unknown status.
We applied phylogenetic diversity, differential abundance, and network analyses, as well as clustering, to the
integrated dataset to compare microbiological community profiles among the different disease states.

Results: We found alpha-diversity, i.e, mean species diversity in sites or habitats at a local scale, to be the single
strongest predictor of subjects’ periodontitis status (P < 0.011). More specifically, healthy subjects had the highest
alpha-diversity, while subjects with stable sites had the lowest alpha-diversity. From these results, we developed an
alpha-diversity logistic model-based naive classifier able to perfectly predict the disease status of the seven subjects
with unknown periodontal status (not used in training). Phylogenetic profiling resulted in the discovery of nine
marker microbes, and these species are able to differentiate between stable and progressing periodontitis,
achieving an accuracy of 94.4%. Finally, we found that the reduction of negatively correlated species is a notable
signature of disease progression.

Conclusions: Our results consistently show a strong association between the loss of oral microbiota diversity and
the progression of periodontitis, suggesting that metagenomics sequencing and phylogenetic profiling are
predictive of early periodontitis, leading to potential therapeutic intervention. Our results also support a keystone
pathogen-mediated polymicrobial synergy and dysbiosis (PSD) model to explain the etiology of periodontitis. Apart
from P. gingivalis, we identified three additional keystone species potentially mediating the progression of
periodontitis progression based on pathogenic characteristics similar to those of known keystone pathogens.
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Background

Periodontitis results from the hyperimmune response of
our body toward pathogenic bacteria resident in the oral
cavity, which causes the destruction of periodontal connect-
ive tissue [1]. Periodontitis can increase the risk of such sys-
temic conditions as cardiovascular disease, diabetes and
obesity [2—4]. According to the latest epidemiological data,
more than 47% of U.S. adults suffer from periodontal dis-
eases, including gingivitis and periodontitis [5]. It is gener-
ally accepted that the presence of pathogenic bacterial
species in host oral cavity, contributes to the onset and de-
velopment of periodontal diseases. In fact, more than 700
oral microbial phylotypes have already been identified by
cultivation, traditional cloning and sequencing [6, 7]. None-
theless, the exact etiology of periodontal disease, in particu-
lar, periodontitis, is yet to be determined.

In earlier years, the etiology of periodontitis was attrib-
uted to a few specific plaque species of oral microbiota
[8]. For example, using in vitro culture and checker-
board DNA-DNA hybridization, the “red complex” was
identified. It consisted of Porphyromonas gingivalis,
Treponema denticola and Tannerella forsythia, which
are considered to be the most virulent organisms in-
volved in the etiology of periodontitis [9, 10]. Later,
Kumar et al. [11] used species-specific 16S rRNA se-
quencing to expand the catalogue of periodontal patho-
gens, and the results suggested that periodontitis arises
from nonspecific inflammation with diverse progression
patterns in response to various plaque species [12].
Then, Marsh et al. proposed that periodontitis is caused
by an imbalance of microflora resulting from ecological
stress, in turn, enriching the presence of disease-related
microorganisms [13, 14].

However, culture-based methods have practical limita-
tions and may overestimate the abundance microbes,
resulting in biased estimates. Similarly, species-specific
techniques capture only a small fraction of the extremely
diverse and complex human oral microbiome. Moreover,
neither method can systematically characterize how
dental plaque (biofilm) causes destruction of the tooth-
supporting structures in the inflammatory state. Re-
cently, the advancement of “omics” technologies has en-
abled a more holistic approach to the assessment of host
oral microbiota. Specifically, it is only with the advent of
culture-free, high-throughput sequencing technologies,
such as 16S rRNA and shotgun metagenomic sequen-
cing, that we can now comprehensively characterize and
compare constituents of bacterial communities with un-
precedented resolution. Recent widespread adoption of
next-generation sequencing (NGS) technologies has led
to even more massive, albeit short, metagenomic data-
sets [15, 16].

NGS metagenomic sequencing has produced a rich
abundance of information about microbial communities
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compared to traditional sequencing data because of the
significant increase in read depth. Previous studies using
NGS metagenomic analysis have already advanced our un-
derstanding of periodontitis. Based on 16S rRNA and
shotgun sequencing, studies like Loreto et al. [17] and
Wang et al.[18] have confirmed significant differences in
microbial community structures between healthy and
periodontally compromised subjects. Orth et al. later used
a combination of culture-based methods and high-
throughput sequencing to identify a keystone pathogen,
Porphyromonas gingivalis, which, although prevalent in
subgingival samples, can influence host immune response
to promote the bacteria that cause periodontitis [19].

As noted above, no consensus has thus far been
reached to explain the exact etiology of periodontitis.
Therefore, to gain further insight into the composition
and structure of oral microbial communities in the con-
text of disease onset, this study first integrated metage-
nomic sequence data from two previous studies that
profiled the microbial community of human subgingival
plaque samples, including in total six healthy controls
and 37 periodontally diseased samples (among which 14
represent stable periodontitis, 16 represent progressing
periodontitis, and the remaining seven samples are dis-
eased but without further classified as stable or progres-
sing. Next, phylogenetic diversity, differential abundance,
and network analyses, as well as clustering, were applied
to this integrated dataset to compare microbiological
community profiles among the different disease states.
Accordingly, the paper is organized into three main sec-
tions to (1) describe the procedures and software pipe-
line used for analysis, (2) identify and compare
differentially represented microbial species between
healthy control and periodontitis subjects, both stable
and progressing, using alpha-diversity as the key metric,
and (3) cluster species profiles to identify additional key-
stone species and compare the structure of oral micro-
bial co-occurrence correlation networks using network
analysis.

Methods

Integration of periodontitis metagenomic datasets

In this study, we first curated and integrated datasets
published earlier by Duran-Pinedo et al. and Yost et al.
[20, 21], respectively. These studies analyzed gene
ontology and phylogenetic composition, as well as cata-
logued the relevant activities of bacteria in samples
with and without periodontitis. However, they did not
statistically analyze key factors such as ecological diver-
sity, composition similarity and co-occurrence net-
works that would have otherwise allowed us to
understand the relationship between diversity in the
microbial community and the disease state.
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This type of study could only be accomplished through
the use of a more powerful and integrated comparative
metagenomic analysis combining samples from multiple
datasets. Owing to high cost, metagenomics projects are
typically based on a small number of samples, which
limits the power of statistical analysis. Integrating raw
data from multiple projects with standardized bioinfor-
matics pipeline would allow us to increase the sample
size and boost the statistical power. In this study, by
combining data of 13 and 30 samples from two original
studies, we arrived at a total of 43 samples, a much lar-
ger number and with both healthy and diseased samples.
The integrated analysis also allows us to systemically
identify the marker and keystone species and exam the
co-occurrence networks. Such results were not present
in the original studies.

More specifically, we collected all whole genome shot-
gun sequenced (Illumina sequencing) metagenomic
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samples from those two studies, which include six con-
trols of metagenomic samples taken from subgingival
plaques of healthy individuals, and 37 cases from peri-
odontitis patients. Among the 37 periodontitis metage-
nomic datasets, 14 samples were from subjects in stable
status, as determined by Clinical Attachment Loss
(CAL) of <2 mm compared to their last visit. Sixteen
samples were in progressing status, having CAL > 2 mm.
Seven samples were from subjects with periodontitis,
but their status was unknown. To clarify the terms we
used, the disease “state” is either healthy or periodontitis,
while the disease “status” can be stable, progressing or
unknown.

Bioinformatics pipeline for integrated metagenomics
analysis

We constructed a bioinformatics pipeline (Fig. 1) con-
sisting of six steps, as follows: (1) Quality Control and

Metagenomic Data Set 1

Quality Control and Preprocessing

Metagenomic Data Set 2

etagenomic Data Setn

Preprocessed Data

Expanded Phylogenetic Analysis

[ Marker Genes Catalog }—»[ MetaPhlAn ]

|

Refined Phylogenetic Analysis

Detected Species Refs

BWA-MEM

GRAMM;

Fig. 1 Data preprocessing and bioinformatics pipeline for integrated metagenomics analysis
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Preprocessing, in which TagCleaner, PRINSEQ, Decon-
seq and FLASH [22-25] were used to remove low qual-
ity reads and contamination from the human genome;
(2) Expanded Phylogenetic Analysis, in which MetaPh-
lAn [26] was used to sensitively detect the presence of
microbial species inoral samples; (3) Refined Phylogen-
etic Analysis, in which GRAMMy [27] was used to ac-
curately estimate the relative abundance of the detected
microbial species; (4) Statistical Analysis, in which the
Dunn test was applied to compare the relative abun-
dance of species and alpha-diversity of microbial com-
munities based on different periodontitis states; (5)
Clustering Analysis, in which individual oral samples
were clustered based on the similarity of marker species
abundance profiles; and (6) Network Analysis, in which
co-occurrence correlation networks based on different
periodontitis states were inferred and compared.

Quality control and preprocessing of metagenomic reads
TagCleaner [22] was used to remove sequencing tags.
Tags were predicted by TagCleaner with coverage over
50%. Read sequences at either end representing tags
without mismatches were removed. PRINSEQ [23] was
then used to remove low-quality reads. Those reads with
mean quality score lower than 15, or with a read length
out of the range of 30 from the mean read length, or
with more than 1% missing base pairs (bp), were filtered
out. Duplicate sequences were also removed. DeconSeq
[24] was next used to remove contaminated reads ori-
ginating from the human genome, i.e., those reads
mapped to the human genome with over 98% identity
and over 98% base pairs aligned. Finally, FLASH [25]
was employed to merge pair-ended reads where paired
reads were removed if their overlaps were over 65 bp.

Expanded phylogenetic analysis

A total of 43 metagenomes sampled from healthy and
periodontitis subgingival plaques were analyzed using
MetaPhlAn [26], which mapped metagenomic reads to a
marker gene catalogue and identified oral microbiota
species inhabiting sample environments based on all
available reference genomes from the Integrated Micro-
bial Genomes (IMG) system [28]. Expanded phylogen-
etic analysis allows us to explore the tens of thousands
reference species and narrow them down to specific spe-
cies that are most relevant to our metagenomic samples.

Refined phylogenetic analysis

GRAMMy [27] was used to estimate the relative abun-
dance of microbes present in the oral sample as identified
in the expanded phylogenetic analysis. The complete ge-
nomes of present archaea and bacteria, as detected by
MetaPhlAn, were downloaded from the Human Oral
Microbiome Database [29] to construct the refined
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reference set for GRAMMy analysis. BWA-MEM [30] was
used to align those metagenomic reads that passed the
quality filtering to the reference sets. The alignment pa-
rameters were set to default, i.e, minimum seed length
was set to 19 and mismatch penalty score was set to four,
and all plausible alignments were output.

We then applied GRAMMYy to the resulting BAM files
to estimate oral microbial composition for subgingival
plaque samples. GRAMMy was set to default parameters
where the e-value threshold was 10e-5, the alignment
length threshold was 75 bp, and the identity threshold
was 75%. We then used the obtained abundance profiles
for the downstream analysis, including, for example,
alpha-diversity calculation, statistical testing, bicluster-
ing, and network analysis.

Differential phylogenetic analysis

To identify microbial species differentially present in
healthy samples, as well as stable and progressing peri-
odontitis, we applied the Dunn test to compare the rela-
tive abundances of detected microbial species (dunn.test
in the stats package of R). We adjusted the Dunn test p-
values by Benjamini-Hochberg (B-H) correction to control
false discovery (p.adjust in the stats package of R) [31].

Alpha diversity analysis

We used the Dunn test, as described above, to compare
samples from healthy control, as well as stable and pro-
gressing periodontitis, relative to differences in microbial
community alpha-diversity. We used Shannon index to
measure the alpha-diversity of host oral community.
Shannon index is defined as,

N
H= Z/:l ajloga;,

where N represents the total number of detected species,
and g; is the relative abundance of the j-th species.

In order to test for the potential association between
oral microbial community diversity and periodontitis, we
performed univariate logistic regression analysis by mod-
eling microbial alpha-diversity as a factor contributing to
the probability of developing periodontitis. The model
was trained on the six healthy control and 30 periodon-
tal samples whose status, e.g. stable or progressing, were
already known. We then used the fitted logistic model as
a naive classifier to predict the potential of developing
periodontitis among those remained seven periodontal
metagenomic samples whose status was originally un-
known and, hence, not part of the fitting data. To run
the logistic regression analysis, we used the glm function
in the stats package of R.



The Author(s) BMC Genomics 2017, 18(Suppl 1):1041

Biclustering analysis

We used the heatmap.2 function in the gplots package
of R to bicluster and visually display microbial abun-
dance profiles based on healthy and periodontitis mate-
genomic samples. In order to generate dendrograms for
heatmaps, we applied a chi-square transfromation (deco-
stan function of vegan package in R). The formula is as
follows,

J
ai.\/a.

where a; is the sum over columns (species), which
should be one in relative abundance data matrix, and a. ;
is the sum over rows (samples). By applying chi-square
transformation before ordinary biclustering, we can ob-
tain more reasonable distances among metagenomic
samples when the data are sparse [32].

We then calculated the Spearman correlations between
samples based on differential relative abundances of repre-
sented species, using the cor function in the stats package
of R. We converted the correlations to distances by

’
4 = 4

dist = 1-cor

and generated the hierarchical clusters of the samples
using the hclust function (method="average”) in the
same R package, which were then automatically con-
verted to dendrograms in the heatmap.2 function [33].
The “average” method clusters samples by considering
the average distance of any member of one cluster to
any member of the other cluster.

Co-occurrence correlation network analysis
Co-occurrence correlation networks can reveal multi-
partner microbial interactions [34—38]. To characterize
such networks in healthy control, as well as stable and
progressing periodontitis samples, we calculated the
global Spearman correlations of relative abundances for
all pairs of microbial species detected under different
states of periodontitis. The p-values were adjusted by
Benjamini-Hochberg correction. Positive and negative
links were drawn between pairs of species whose ad-
justed p-values were less than 0.05. We used the igraph
package of R to visualize networks under different states
of periodontitis.

Results

Variability of the most abundant species in periodontitis
samples

After preprocessing, healthy samples included an aver-
age number of 1,480,414 reads with an average length of
145 bp. Stable samples contained 1,502,809 reads with
an average read length of 95 bp, whereas progressing
periodontitis samples consisted of an average 746,776

Page 5 of 15

reads and an average read length of 300 bp. The hetero-
geneity in read length can be attributed to different se-
quencing run configurations such as 2 *150 and 2
*250 cycles used in the original studies [20, 21]. This se-
quencing heterogeneity had no effect on our down-
stream analysis.

From the initial expanded phylogenetic analysis, 135
microbial species were identified by MetaPhlAn. A total
of 396 genomes of those species were downloaded from
HOMD and used as references for refined phylogenetic
analyses. On average, we retrieved three complete ge-
nomes for each oral species in the reference set. We
used BWA-MEM to map metagenomic reads to refer-
ences and then used GRAMMy to estimate the relative
abundances based on BWA mappings. From healthy and
periodontitis metagenomic samples, a total of 70 micro-
bial species were found to have detectable relative abun-
dance by GRAMMy. On average, abundance levels of
47, 31 and 34 microbial species were detected by
GRAMMy in subgingival samples from healthy, stable
and progressing periodontitis sites, respectively.

Figure 2 shows the most abundant microbial species
across healthy, stable and progressing subgingival sam-
ples. The top ten species in healthy control account for
75.8% (with SD =11.1%) of total abundance in healthy
samples, while total abundance for the top ten species is
87.1% (with SD =20.9%) for progressing samples and
80.1% (with SD =18.9%) for stable samples. The propor-
tions of the top ten species in these three groups are sig-
nificantly different (P =6.61e-10, the prop.test function
from the stats package in R). That is the species not in
top 10 account for significantly more proportion in
healthy samples. In this figure, it can be seen that spe-
cies from Streptococcus and Rothia are the most abun-
dant microbes across all healthy, stable and progressing
subgingival sites and that they are predominant in the
human oral microbiome under both healthy and peri-
odontitis conditions, as expected.

Among other abundant species, periodontitis samples,
either stable or progressing, share another three genera,
including Atopobium, Lactobacillus and Staphylococcus,
while the samples from healthy control and progressing
periodontitis oral sites share only one other abundant
genus: Gemella. On the other hand, samples from
healthy and stable periodontitis sites share only Strepto-
coccus and Rothia. The remaining abundant species spe-
cific to healthy samples are from Actinomyces, Filifactor,
Haemophilus, and Propionibacterium. Of the remaining
abundant genera, those specific to progressing periodon-
titis samples are Bulleidia and Olsenella, while those
specific to stable samples are Campylobacter and
Eubacterium.

It is notable that the abundance distribution of the top
ten species is more variable in stable (3 species with
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Fig. 2 Top 20 most abundant species of human subgingival plague microbiota. The boxplots of top 20 most averagely abundant microbial
species across samples taken from subgingival plaques under different periodontitis states. The same genus is shown in the same color. a
represents those species in healthy samples, b) represents those in stable samples and ¢) represents progressing samples
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SD > +/-15% and average SD =14.5%) or progressing
samples (4 species with SD > +/-15% and average SD of
=13.6%), when compared to healthy control samples
(only one species with SD > +/-15% and average SD =
7.9%) (see Fig. 2). In addition, more outliers are found
among the top 10 most abundant microbes of stable and
progressing samples compared to healthy control sam-
ples. Importantly, these observations show a significant
reduction of overall ecological diversity in the periodon-
titis samples, as demonstrated by the concentration of
abundance toward only a few dominant species.

Differentially abundant marker species in periodontitis
samples

We found nine marker species whose relative abun-
dances were significantly different among healthy (H),
stable (S) and progressing (P) periodontitis sites, as
shown in Fig. 3b. We found that Lactobacillus gasseri
(Dunn test, (H vs. P), P=0.014), Campylobacter showae
(Dunn test, (H vs. P), P=0.034) and Streptococcus san-
guinis (Dunn test, (H vs. P), P =0.008) were significantly
different in progressing periodontitis samples compared
to healthy samples. Among them, Lactobacillus gasseri
was more abundant in progressing samples, while Cam-
pylobacter showae and Streptococcus sanguinis were
more abundant in healthy samples.

Five more species had significantly higher relative
abundance in healthy samples compared to periodontitis
samples, both stable and progressing. Among them,
Gemella morbillorum (Dunn test, (H vs. S), P =0.010
and (H vs. P), P=0.009) and Veillonella parvula (Dunn
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test, (H vs. S), P =0.028 and (H vs. P), P=0.007) were
found in both healthy and periodontitis samples, while
Haemophilus parainfluenzae (Dunn test, (H vs. S), P<
0.001 and (H vs. P), P<0.001), Corynebacterium matru-
chotii (Dunn test, (H vs. S), P=0.016 and (H vs. P), P=
0.004) and Neisseria flavescens (Dunn test, (H vs. S), P <
0.001 and (H vs. P), P<0.001) were only found in
healthy samples. The statistical significance of Dunn
tests is also shown in Fig. 3b.

The results suggest that they are marker species can
be used in biclustering to differentiate among periodon-
titis states, as discussed later. In addition, Lactobacillus
gasseri (Dunn test, (P vs. S), P=0.049), Osenella uli
(Dunn test, (P vs. S), P =0.002), and Campylobacter sho-
wae (Dunn test, (P vs. S), P<0.001) can differentiate be-
tween stable and progressing periodontitis, where the
first two species were significantly higher in abundance
in progressing periodontitis, and the last species was sig-
nificantly lower.

Microbial community alpha-diversity predicts disease
status

Alpha-diversity measures the biological diversity of a
community, taking both species richness and variance in
species proportion into consideration. Using Shannon
index as the metric for alpha-diversity, we found the
average to be 2.313 for healthy samples, 1.672 for pro-
gressing samples, and 1.329 for stable samples. The
alpha-diversity of healthy samples is higher than that of
progressing samples (Dunn test, P=0.012) and stable
samples (Dunn test, P <0.001). However, alpha-diversity

~
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Fig. 3 Microbial diversity and abundance difference between healthy and periodontitis samples. The statistical test results of the alpha-diversities
and the significantly differentially represented microbial species under different periodontal states. a represents box plot and the test results of
alpha-diversity, b) represents those of the differentially abundant species. As for the box color coding in both subplots, the color of green repre-
sents healthy samples, yellow represents stable samples and red represents progressing samples. Statistical significance is coded as: n.s. (P> 0.05),
*(P<=0.05), **(P<0.01), **(P < 0.001) and is labeled above the corresponding boxes
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of progressing samples is not significantly higher than
that of stable samples (Dunn test, P = 0.066), which had
the lowest alpha-diversity (Fig. 3a).

In order to see if alpha-diversity could be used as a
predictor of periodontitis, we fitted a univariate logistic
regression model with alpha-diversity as the independent
variable and the probability of disease status as the re-
sponse variable. The fitted values are in Table 1, and the
final model is

log <L> = -4.343d + 10.212,
1-p

where p represents the probability of an individual hav-
ing periodontitis, and d represents the oral microbial
alpha-diversity of the oral microbiome. It can be seen
that the coefficient for alpha-diversity in this logistic
model is negative, which means that the odds ratio is
less than 1. Therefore, the decrease in alpha-diversity of
oral microbiome correlates with a higher probability of
periodontitis.

The fitted model was then used as a naive classifier to
predict the periodontitis state of seven previously un-
classified periodontal samples, which were not used in
the fitting. The prediction results, which are found in
Table 2, show that six out of the seven subjects were
predicted as having periodontitis with high probabilities
over 0.7. The remaining subject also had a greater than
50% chance of having periodontitis. If disease status
were called as the most probable inference from the
model, we would have 100% accuracy.

Biclustering of community profiles and species in health
and periodontitis samples

The abundance profiles of 70 microbial species from all
samples are shown as a heatmap in Fig. 4. Here, rows
are clustered based on Spearman Rank-Order Correla-
tions between the profiles of detected marker species,
and columns are clustered for sample abundance simi-
larity between microbial species. We see that all samples
from healthy sites are perfectly clustered into one group
and that all periodontitis samples are clustered into an-
other group. Moreover, within the periodontitis group,
most stable and progressing samples are clustered into
subgroups. These results suggest that rank transformed
abundance levels are strong predictors of healthy, stable
and progressing periodontitis status.

Table 1 The fitted logistic regression model for periodontitis
status and Alpha-diversity

Estimate Std. Error zvalue Pr>fz))
Intercept 10.212 3.732 2.736 0.00621
Alpha-diversity —4.343 1.694 —2.564 0.01035
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Table 2 Predicted periodontitis probabilities for unknown state
patients using the fitted logistic model

Sample Alpha-diversity Predicted prob.
Patient 1 2326 0528
Patient 2 1277 0.991
Patient 3 1.606 0.962
Patient 4 2.086 0.760
Patient 5 1917 0.869
Patient 6 1375 0.986
Patient 7 1.794 0919

With column clustering, it should be noted that Por-
phyromonas gingivalis, previously known as a keystone
pathogen [39], is clustered into a small group with Hae-
mophilus haemolyticus, Prevotella melaninogenica and
Capnocytophaga ochracea, indicating that these micro-
bial species have an abundance profile similar to that of
Porphyromonas gingivalis, thus further suggesting that
these species may also play a role as keystone pathogens.
The overall distribution by heatmapping intuitively
shows these microbial species to be more diverse, i.e.,
more uniformly distributed, in healthy samples com-
pared to those in stable or progressing samples.

Patterns of community networks in healthy and
periodontitis samples

Finally, we inferred the co-occurrence correlation net-
works of oral microbial communities inhabiting subgin-
gival plaques under different status of periodontitis
based on the Spearman correlations of oral species pairs.
In the network shown in Fig. 5, all the species pairs with
FDR < 0.05 were drawn. They all have a relatively high
correlation (correlation absolute value > 0.8). 21 positive
(red-colored edges) and seven negative correlations
(blue-colored edges) were identified between microbial
species in healthy samples. In contrast, only positive cor-
relations were observed in stable (14) and progressing
samples (21). Additionally, the total number of corre-
lated species in healthy samples (31 species) was more
than that of stable (16 species) and progressing samples
(22 species). Subnetworks consisting of more than five
correlated microbial species are only found in disease
samples, e.g., the subnetwork consisting of five species
in stable samples and that of six species in progressing
periodontitis samples, respectively.

The five species of subnetwork in stable samples are
Escherichia coli, Staphylococcus epidermidis, Campylo-
bacter showae, Lactobacillus gasseri and Capnocyto-
phaga ochracea. The seven species of subnetwork in
progressing samples are Bulleidia extructa, Eubacterium
infirmum, Fusobacterium periodonticum, Filifactor alo-
cis, Gemella morbillorum, Streptococcus constellatus,
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Streptococcus intermedius. Two species from the genus
of Streptococcus are involved in the subnetwork of pro-
gressing samples. The overall network structure showed
a potential loss of the check-and-balance mechanism
through negative feedback in diseased samples.

Discussion

Common core microbial species in subgingival plaques
Overall, bacterial communities were found to be very
specialized in the subgingival plaque samples. After pre-
processing and profiling, an average of 47, 31 and 34 mi-
crobial species were detected in healthy, stable and
progressing samples, respectively. This indicates a rela-
tively small number of species when compared to all oral
microbial phyla. The numbers are consistent with those
of previous reports which found as few as 50 predomin-
ant species in subgingival plaques, irrespective of health
or disease [40, 41]. These results showed that the sub-
gingival plaques sampling procedure was carefully and
conservatively performed to avoid possible contamin-
ation from the general oral environment. Based on the
fact that such number has not substantially changed be-
tween their studies and ours, we conclude that the high-
throughput, culture-independent methodology faithfully
preserves the aboundance structure, even though it is
now much more sensitive to the heterogeneity of micro-
biotas resident in host oral cavity.

Based on phylogenetic analysis (see Fig. 2), we identi-
fied such predominant microbial species as Streptococcus
gordonii, Streptococcuss anguinis and Lactobacillus gas-
seri, which are consistent with those identified by Aas et
al. and Paster et al. in subgingival samples [40, 41]. Since
the oral cavity is the main portal through which most
microorganisms enter human bodies, it is possible to de-
tect many transient microbes in the oral environment
through metagenomic techniques. Nonetheless, only a
few core microbes were consistently found to inhabit
subgingival plaques in both this study and those of A as
et al. and Paster et al. [40, 41]. These results strongly
suggest that periodontitis is induced by inflammatory re-
sponse to bacterial challenge from the core microbes de-
tected in subgingival biofilm [42]. Thus, the catalogue of
these core microbes that persist in subgingival biofilms
appears to represent the repertoire of pathogens respon-
sible for disease onset.

In our analysis, we relied on reference genome and
read mapping for composition and relative abundance
estimation. It is possible that some rare species inhabit-
ing in subgingival plaques were missed out due to low
coverage of sampling procedure, low depth of read se-
quencing, mapping error and other random factors.
However, these species’ abundance should be very low
even if not truly zero. In this particular study, the micro-
bial species with a relatively high abundance are more
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likely to be pathogen, because periodontitis is an inflam-
matory disease that human immune system have active
confront with microbes in subgingival plaques. Since our
statistics are mainly comparing highly differentiated spe-
cies, zero abundance levels due to dropouts should not
have an effect. In addition, we used standardized bio-
informatics pipeline to avoid bias and to estimate the
microbial abundance level as accurate as possible. Al-
most all of the reads got mapped to the provided refer-
ence set and therefore there is not much presence of de
novo species. That is because human oral microbiota
has been extensively studied by clone and culture se-
quencing in decades, which have generated a very com-
prehensive set of reference sequences.

Highly abundant microbial species in subgingival plaques
Among the microbial species discovered in healthy and
periodontitis subgingival samples, the genus of Strepto-
coccus was found in relative abundance. Many species of
Streptococcus, such as Streptococcus gordonii, Streptococ-
cus oligofermentans and Streptococcuss anguinis, were
among the ten most prevalently abundant microbes at
all status of periodontitis. This result suggests that path-
ogens from the genus Streptococcus may be among the
most successful early colonizers to clean tooth surfaces
in the human mouth by their adherence and metabolic
capacities [43]. Based on their predominance in healthy
samples, but decrease in periodontitis samples, their col-
onies might also serve as a source of biofilm adhesion
for other colonizers [44].

Rothia dentocariosa was also found in high abundance
in both healthy and periodontitis samples. In two of the
progressing periodontitis samples, it held top abundance
rank at 70.4% and 16.8%, respectively, as well as in stable
periodontitis samples with relative abundance of 56.2% and
32%, respectively. Although Rothia species are often associ-
ated with oral health, these results are consistent with pre-
vious studies, which found that Rothia spp. can reduce
oxygen levels around biofilm thus promoting the prolifera-
tion of inflammation-triggering anaerobes [17, 45].

Species like Atopobium parvulum, Lactobacillus gas-
seri, and Staphylococcus epidermidis are highly abundant
in stable and progressing subgingival samples, and many
of them have already been associated with periodontitis.
The Atopobium genus, which is high in G + C-content
and gram-positive, has previously been identified as
prevalent in individuals with periodontitis, but not in
healthy subjects. Lactobacillus was also found at high
percentage in severe periodontitis subgingival samples
[46], while Staphylococcus genus have only recently been
identified as pathogens associated with periodontitis
[47]. Our results further strengthen those findings.

Streptococcus mutans was also relatively abundant in
our subgingival samples. This is particularly interesting
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because previous observation has shown that this micro-
bial species can create a lactic acid-rich environment, a
condition conducive to the development of symbiosis,
thus making it possible for other pathogens to thrive [48].

Prevalent keystone species in healthy and periodontitis
subgingival plaques

The keystone species Porphyromonas gingivalis previ-
ously identified by Orth et al. [19] was found in both
healthy and diseased samples, albeit in rather small rela-
tive abundance, again hinting that this species may play
a role as a keystone pathogen. A keystone pathogen typ-
ically remains functional in the background at low abun-
dance, but promotes inflammatory state by altering host
immune response to otherwise commensal microbiota.
Thus, the existence of Porphyromonas gingivalis alone
does not cause periodontitis. Rather, if accompanied by
proper commensal microbiota, such as species from
Lactobacillus, Staphylococcus and Streptococcus genera
[49], in susceptible individuals, Porphyromonas gingivalis
may be able to evade immune surveillance and mediate
the breakdown of normal homeostatic balance in the
oral environment [39].

Interestingly, Fig. 4 shows that Porphyromonas gingivalis
was clustered in a small group with another three species:
Haemophilus haemolyticus, Prevotella melaninogenica
and Capnocytophaga ochracea. They shared similar pat-
terns with Porphyromonas gingivalis, a widely accepted
keystone pathogen, in their abundances in healthy and
periodontitis samples, which indicates that these three
species are likely to play a similar role similar to that of P.
gingivalis in the oral community by significantly altering
the number and community organization of oral com-
mensal bacteria, possibly leading to periodontitis under
specific conditions in susceptible bodies. However, more
evidence and experimentation are needed to confirm this.

Differential representation of marker species between
healthy and periodontitis subgingival plaques

Marker species are highly differentially represented in
healthy and diseased subgingival plaques. As shown in
Fig. 3, nine microbial species represent significant differ-
ence in relative abundance among the samples studied.
In particular, Lactobacillus gasseri and Osenella uli were
found to be significantly more abundant in periodontitis
samples. Campylobacter showae was observed with sig-
nificantly higher relative abundance in stable samples. In
addition, six microbial species had significantly higher
relative abundance in healthy samples compared to peri-
odontitis samples, including Gemella morbillorum,
Streptococcus sanguinis and Veillonella parvula, which
were observed both in healthy and periodontitis samples,
and Haemophilus parainfluenzae, Corynebacterium
matruchotii and Neisseria flavescens, which were only

Page 11 of 15

detected in healthy samples. The p-values of their Dunn
tests are shown in the Results section and Fig. 3.

These differentially represented species in subgingival
plaques most likely compose the core microbiota dir-
ectly associated with the etiology of periodontitis. As
such, they could be considered markers of periodontitis.
As shown in Fig. 4, when we used these nine marker mi-
crobial species as representatives of collected samples
and clustered the samples based on Spearman correla-
tions of their marker species profiles, the clustering re-
sult was nearly the same as their clinical classification
(accuracy = 94.4%). This evidence strongly suggests that
the combination of differentially abundant species is pre-
dictive of periodontitis at different states.

Moreover, unlike pathogen-specific diseases, the eti-
ology of periodontitis is polymicrobial in nature and thus
indicative of characteristics of the whole microbial com-
munity, or, at least, its core microbiota. It should be noted
that the clustering was based on Spearman Rank-Order
Correlation, rather than Euclidian distance, which gave us
results consistent with clinical classification. This, in turn,
means that relative hierarchy of microbial species is highly
correlated with progressing periodontitis. Therefore, fu-
ture studies should look for particular profile patterns of
microbial composition that specifically corresponds to dif-
ferent states of periodontitis progression.

Ecological diversity as a prognostic marker of
periodontitis disease

We then focused on the alpha-diversity of samples and its
association with the progressing periodontitis. Figure 3
shows a number of microbial species with particularly
high outlier abundances in both stable and progressing
periodontitis subgingival samples, indicating ecological
imbalance among host oral communities. When we com-
pared alpha-diversity of samples between periodontitis
and healthy samples, we found that healthy samples had
the highest alpha-diversity, while stable periodontitis sam-
ples had the lowest with significant difference (see Fig. 3).
Furthermore, the fitted univariate logistic model demon-
strates the potential value of oral microbial alpha-diversity
as a predictor of periodontitis.

Polymicrobial synergy and dysbiosis (PSD) model of
periodontitis etiology

Based on recent metagenomics findings, Orth et al. pro-
posed a Keystone-Pathogen Hypothesis which holds that
keystone microbes like P. gingivalis may coordinate the
onset and progress of periodontitis and these microbial
species can alter host-microbial interactions in a manner
that interrupts the homeostasis of microbial colonizers
and results in inflammatory conditions that set the stage
for the development of periodontitis [50]. Our results
support this theory in the following way.
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According to the PSD model, periodontitis is not
caused by a specific microbial species. Instead, inflam-
mation is thought to arise from immune response to the
combined activity of core and keystone pathogens. In
fact, our phylogenetic profile analysis identified core
pathogens and marker species showing significant abun-
dance shifts between healthy and periodontitis samples.
For example, marker species Lactobacillus gasseri, Cam-
pylobacter showae and Olsenella uli was more abundant
in periodontistis samples, while the marker species
Gemella morbillorum, Veillonella parvula, Haemophilus
parainfluenzae, Corynebacterium matruchotii, Neisseria
flavescens, Campylobacter showae and Streptococcus san-
guinis were significantly more abundant in healthy
samples.

We also demonstrated potential keystone species as
mediators of this process (see Fig. 6). Based on the PSD
model, keystone species gain virulence through cooper-
ating with accessory microorganisms to strengthen the
biofilm by creating a powerful synergistic community.
Meanwhile, however, previously commensal biofilm spe-
cies loses homeostasis and drop out from the competi-
tion [39, 49, 51]. Indeed, we identified the keystone
species Porphyromonas gingivalis, Haemophilus haemo-
lyticus, Prevotella melaninogenica and Capnocytophaga
ochracea, all prevalent at relatively low abundance across
all samples and likely acting as mediators of the ob-
served shifts in abundance profiles between periodontitis
states [49].

Thus, while these keystone species gain virulence from
pathogenic associations with, for example, Lactobacillus
gasseri and Osenella uli, which show relative abundance
and thrive in the shifting microenvironment, other species
lose ground and disappear from the oral environment,
such as Haemophilus parainfluenzae, Corynebacterium
matruchotii and Neisseria flavescens. Others may decrease
significantly in relative abundance, such as Gemella
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morbillorum, Streptococcus sanguinis and Veillonella par-
vula. Taken together, we found Shannon diversity for all
but one healthy individual to be > 2, similar to the statis-
tics for 10 healthy individuals reported by Bik et al. using
16S RNA sequencing data [52]. On the contrary, almost
all periodontitis patients have Shannon diversity <2 [49].
Importantly, using alpha-diversity as an indicator of mi-
crobial flux in a state of dysbiosis, we see a decreasing pat-
tern in periodontitis samples in accordance with the PSD
model [51].

The results of our network analysis also support the
PSD model and the effects of decreased diversity. The
microbial species (nodes) in periodontitis samples have
much less interconnectivity (edges), in particular nega-
tive associations (blue dashed edges), representing a loss
of check-and-balance. There are subnetworks consisting
of > 5 correlational microbial species found only in peri-
odontitis samples indicating the pathobionts and key-
stones thriving through synergistic interaction in the
inflammatory state, as suggested in the preceding sec-
tion. The component species in these subnetworks are
different, indicating that the keystones and pathogens
active in different states of periodontitis may be differ-
ent. At this point, the alpha-diversity of subgingival sam-
ples has also reached the lowest level.

Implications of reduced ecological diversity in
periodontitis
Irrespective of specific etiology, this and other studies
have found oral microbial alpha-diversity to be strongly
negatively correlated with periodontitis status [50].
Mutualism and commensalism are hallmarks of diver-
sity among the aggregate of microorganisms resident in
human, and such diversity is generally indicative of
health [53]. This principle has been tested under condi-
tions of dysbiosis in mucosal diseases of the gastrointes-
tinal tract, such as inflammatory bowel disease and
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obesity, both considered to be associated with decreased
diversity of microbial community [54]. Some researchers,
however, have reported that the diversity of oral micro-
biota is higher in periodontitis compared to healthy sub-
jects [55, 56].

We offered evidence in the present metagenomics
study indicating that the principle microbiome diversity
is also applicable to periodontal health. Indeed, a healthy
oral microbiome is generally reflective of bacterial
homeostasis, featuring both synergistic and antagonistic
interactions between microbes and between microbes
and host [14]. From our results, however, it is likely that
polymicrobial synergy eventually leads to dysbiosis by
the breakdown of ecological balance in periodontal mi-
crobial communities and that the disease state follows.

Accordingly, our results could potentially offer a novel
diagnostic and prognostic paradigm based on establish-
ing classification models to distinguish among different
states of periodontitis using alpha-diversity and species
composition as metrics, together with a sufficient data-
base. However, since the results of the present study
cannot pinpoint community diversity as either a cause
or result of periodontitis, further study is required to de-
termine whether alpha-diversity of subgingival plaques
can, indeed, predict incipient periodontitis in individuals
whose clinical symptoms have not yet manifested.

It should be noted that our study was limited in sam-
ple size and that we only used average abundances in
network construction to reflect the general scope of the
oral community in subgingival plaques under different
states of periodontitis. However, if longitudinal metage-
nomics data were to be collected for each periodontitis
subject in a larger cohort study, individual oral networks
could be constructed, and the underlying correlations
among those networks under particular states of peri-
odontitis could be detected. This would provide a better
understanding of the etiology of periodontitis.

Conclusion

This study aimed to discover potential patterns and inter-
actions among microbial communities under three states:
healthy control, stable periodontitis, and progressing peri-
odontitis. We integrated metagenomic sequence data of
subgingival plaque samples collected from 43 subjects in
two previous studies, including Duran-Pinedo et al. [20]
and Yost et al. [21]. We found alpha-diversity to be the
single strongest predictor of subjects’ periodontitis status
(P<0.011) such that healthy subjects had the highest
alpha-diversity, while subjects with stable sites had the
lowest. We also found that the phylogenetic profiles of
nine marker microbes could be applied to differentiate the
states of periodontitis to an accuracy of 94.4%. We showed
the reduction of negatively correlated species to be an-
other notable signature of disease progression.
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Opverall, our results support the polymicrobial synergy
and dysbiosis model of periodontitis etiology by explor-
ing pathogenic factors that impact microbial homeosta-
sis versus homeostatic imbalance in oral microbiota
communities. More importantly, our results consistently
show a strong association between the loss of oral
microbiota diversity and disease status based on evi-
dence from phylogenetic diversity, clustering and net-
work analyses. This reduction of alpha-diversity is an
event distinct from actual etiology. This suggests that
metagenomics sequencing can produce phylogenetic
profiling results predictive of periodontal health status,
possibly leading to novel therapeutic modalities.
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