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Abstract

Background: Corynebacterium glutamicum is a non-pathogenic bacterium widely used in industrial amino acid
production and metabolic engineering research. Although the genome sequences of some C. glutamicum strains
are available, comprehensive comparative genome analyses of these species have not been done. Six wild type C.
glutamicum strains were sequenced using next-generation sequencing technology in our study. Together with 20
previously reported strains, we present a comprehensive comparative analysis of C. glutamicum genomes.

Results: By average nucleotide identity (ANI) analysis, we show that 10 strains, which were previously classified
either in the genus Brevibacterium, or as some other species within the genus Corynebacterium, should be
reclassified as members of the species C. glutamicum. C. glutamicum has an open pan-genome with 2359 core
genes. An additional NAD+/NADP+ specific glutamate dehydrogenase (GDH) gene (gdh) was identified in the
glutamate synthesis pathway of some C. glutamicum strains. For analyzing variations related to amino acid
production, we have developed an efficient pipeline that includes three major steps: multi locus sequence typing
(MLST), phylogenomic analysis based on single nucleotide polymorphisms (SNPs), and a thorough comparison of all
genomic variation amongst ancestral or closely related wild type strains. This combined approach can provide new
perspectives on the industrial use of C. glutamicum.

Conclusions: This is the first comprehensive comparative analysis of C. glutamicum genomes at the pan-genomic
level. Whole genome comparison provides definitive evidence for classifying the members of this species.
Identifying an aditional gdh gene in some C. glutamicum strains may accelerate further research on glutamate
synthesis. Our proposed pipeline can provide a clear perspective, including the presumed ancestor, the strain
breeding trajectory, and the genomic variations necessary to increase amino acid production in C. glutamicum.
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Background
The non-spore-forming Gram-positive bacterium Coryne-
bacterium glutamicum, a non-pathogenic species in the
Corynebacterium genus, has been widely used for the indus-
trial production of amino acids, because of its numerous
and ideally suited attributes [1].
C. glutamicum was first discovered as a producer of

glutamate. As early as the 1950s, strains accumulating glu-
tamate in culture medium were isolated. One of them,
M534, previously taxonomically named “Micrococcus
glutamicus” and deposited as ATCC 13032 and NCIMB
10025, was designated as the C. glutamicum type strain
[2]. In the 1960s and into the 1970s, several strains accu-
mulating glutamate were isolated independently, including
“Brevibacterium lactofermentum” ATCC 13869, “B. fla-
vum” ATCC 14067, “C. acetoacidophilum” ATCC 13870,
“C. crenatum” AS1.542, “C. pekinense” AS1.299, and “B.
tianjinese” T6-13 [3–6]. According to previous reports
and our recent research, these strains should all be classi-
fied as C. glutamicum species based on sharing roughly
identical 16S rDNA sequences [5, 7].
Much research has been done on modifying C. gluta-

micum in various ways to make it more useful for
humans. Classical strain breeding methods have been
used to introduce mutations into the C. glutamicum
genome since the 1950s. These breeding methods are
based on random mutation and screening/selection
techniques, and can be used to generate glutamate (as
well as other amino acids, such as lysine) hyper-
producing strains [8–12]. Metabolic engineering has
been performed on C. glutamicum since the 1980s.
These studies have focused on not only producing
amino acids, but also on creating biosynthetic pathways
for the production of many more chemicals, including
succinate and 2,3-butanediol [13–16].
The genome sequences of 20 C. glutamicum strains were

available previous to our study. The complete genome se-
quence of two type strain ATCC 13032 variants were ini-
tially published [17, 18]. The genome sequence of C.
glutamicum R, a strain from a laboratory collection isolated
in Japan, was subsequently reported [19]. The complete or
draft genome sequences for many industrial producers,
generated by conventional mutagenesis, have also been
reported, including lysine producer B253 and glutamate pro-
ducer S9114 [20, 21]. However, most of these strains have
not been analyzed on a deep, genomic scale.
Recently, we have established a MLST scheme based

on sequences of seven housekeeping genes of 17 strains
for genotyping of C. glutamicum, which helps to under-
stand the population structure of this bacterium [7].
MLST relies on allelic variants in conserved genes, so it
can not give a comprehensive analysis of strains at the
genomic level. Here, we report the genome sequences of
six wild type C. glutamicum strains. Together with the

20 strains of previously available genome sequences, we
have extended the genetic knowledge of this species, by
performing a comparative analysis of 26 C. glutamicum
strain genome sequences. These data allow for a pan-
genomic description of C. glutamicum at the species
level. We also analyzed the variations most likely related
to amino acid production in several industrial strains.

Methods
Strains and next-generation genome sequencing
We sequenced the genome of six wild type strains for
further research: ATCC 13869, ATCC 13870, B1, AS1.299,
AS1.542 and T6-13. The strains were obtained from the
CGMCC (China General Microbiological Culture Collec-
tion Center), CICC (China Center of Industrial Culture
Collection), or SIIM (Shanghai Institute of Industrial
microbiology) (Table 1 and Additional file 1: Table S1).
Genomic DNA purifications were performed using an

AxyPrep™ Bacterial Genomic DNA Miniprep Kit, ac-
cording to the manufacturer’s manual. At least 2,000,000
read pairs were obtained from each sample, with paired-
end libraries of an average insert size of 500 bp and an
average read length of 100 bp, for a total length
>400 Mb (130-fold coverage of the genome), using Illu-
mina HiSeq2000 or Hiseq 2500 systems (performed by
GBI, Shenzhen, China and/or Berry Genomics, Beijing,
China). The raw sequence reads were sub-sampled to
2,000,000 read pairs, and trimmed to 1,822,466–1,962,257
read pairs (354,168,503–382,827,142 bases) by removing
low quality bases using Trimmomatic 0.35 [22] with the
parameters “LEADING:15 TRAILING:15 SLIDINGWIN-
DOW:4:10 MINLEN:50” (Additional file 1: Table S1).
Genome assembly was performed with SPAdes 3.5.0

[23, 24], at an average coverage of 110–130 fold. The as-
sembled contig sequences were evaluated using the
QUAST Web interface [25]. Gene prediction and anno-
tation were performed using Prokka 1.11 [26]. The C.
glutamicum Type Strain ATCC 13032 (NC_003450.1)
genome sequence was used to build a specific database
for annotation. Unless otherwise specified, default pa-
rameters were used for these programs.
The genome sequences of other strains were downloaded

from GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and
other databases (see Table 1). As the previously published
genome sequences were initially annotated with different
tools, cut-offs, and over a time frame of 12 years, the se-
quences were all re-annotated using Prokka 1.11, as above.

16S rDNA, average nucleotide identity (ANI) and analysis
Primers 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and
1492R (5′-TACGGYTACCTTGTTACGACTT-3′) were
used to identify 16S rDNA sequences before performing
genome sequencing. Also, the 16S rDNA sequences were in
silico extracted from the genome sequences.
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Whole-genome ANI analysis was performed using the
software Jspecies based on MUMmer with default pa-
rameters [27, 28]. Genome-to-genome distance and in-
silico DDH (DNA-DNA hybridization) was calculated
using GGDC 2.1 (http://ggdc.dsmz.de/) [29].

Pan-genome analysis
Pan-genome analysis, including a cluster analysis of
functional genes, an estimation of the pan-genome pro-
file, and a prediction of the number of dispensable genes
when adding new genomes, was performed by the pan-
genome analysis pipeline (PGAP) 1.12 [30]. The pan-
genome profile image was drawn by PanGP 1.0.1 [31].

Phylogeny and MLST (Multi Locus Sequence Typing) study
Phylogenetic study was based on whole genome se-
quences, and was performed by the CVTree Web inter-
face using a composition vector (CV) approach [32].
Alternatively, phylogenetic study was also performed
using the genome-to-genome distance data with FastME
2.0 (http://atgc.lirmm.fr/fastme/) [33].
The MLST analysis was performed as in our previous

report [7]. Seven housekeeping genes, including atpA,
dnaE, dnaK, fusA, rpoB, leuA, and odhA, were selected
for analysis according to our previous report[7] and re-
ferring to the genotyping scheme in C. diphtheriae, an-
other species belonging to the same genus [34].

Comparative genome analysis
Comparative analysis was performed using BWA 0.7.10
[35–38] for mapping reads, Samtools 0.1.19 [36] for data
interaction, and Tablet 1.14.4.10 [39] for assembly/map-
ping visualization. SnpEff 4.1e [40] was used for genetic
variant annotation and effect prediction. Wombac 2.0
[41] was used to finds genome single nucleotide poly-
morphisms (SNPs) and build a phylogenomic tree for
highly related strains. Whole-genome alignments were
calculated using MUMmer 3.0 [28].

Nucleotide sequence accession numbers
This Whole Genome Shotgun sequences have been depos-
ited at DDBJ/EMBL/GenBank under the accession numbers
LOQS00000000, LOQT00000000, LOQU00000000, LOQV
00000000, LOQW00000000, and LOQY00000000. The ver-
sion described in this paper is version LOQS01000000,
LOQT01000000, LOQU01000000, LOQV01000000, LOQ
W01000000 and LOQY01000000.

Results
16S rDNA sequence and average nucleotide identity (ANI)
indicate that all 26 strains should be classified as C.
glutamicum species
The 16S rRNA gene has become a common and trust-
worthy genetic marker for the study of bacterial

taxonomy. All of the 26 strains listed in Table 1 harbor
nearly identical 16S rDNA sequences, with a similarity
>99%, which argues that all of the strains should be clas-
sified as C. glutamicum species [42].
Average nucleotide identity (ANI) based on entire ge-

nomes provides another appropriate gauge of bacterial
species delineation. The strains listed in Table 1, including
the type strain ATCC 13032, all show ANI values >97%
(Additional file 2: Table S2) and estimated DDH >70%
(Additional file 2: Table S3) to each other, providing add-
itional and robust evidence that all of the strains should
be classified as C. glutamicum. An ANI threshold range of
95–96% of and a DDH threshold of 70% for species de-
marcation has previously been suggested [27, 29, 42].

Overview of C. glutamicum genomes
The C. glutamicum genome ranges in size from 3.08 to
3.36 Mb. The GC content varies slightly, from 53.81 to
54.26%. Some of the strains harbor native plasmids,
varying in size from 4.5 to 22 Kb (Table 1).
We found all finished C. glutamicum chromosome se-

quences to exhibit good synteny using MUMmer [28],
although transposons and prophages are dispersed
throughout the genomes (Additional file 3: Figure S1).

Phylogenetics shows the strains classified into nine
groups
A phylogenetic tree constructed by CVTree [32] and the
Genome Blast Distance Phylogeny approach (Additional
file 2: Table S4) [29] shows the strains classified into
nine separate groups (Fig. 1, Additional file 4: Figure S2).
This classification is consistent with the dendrogram
generated by the MLST method (13 sequence types, 9
groups, Table 1). In our previous report using the MLST
method, eight groups were classified, based on 17 strains
[7]. We have established a new group in the present
study, which includes two additional strains, ATCC
21831 (AR0) and AR1, the genome sequences of which
have been reported recently [43].
Typically, each group contains one wild-type strain and

several derived (or presumably derived) strains. For ex-
ample, ATCC 14067 [44] and its derived strains ATCC
21493, ATCC 15168 are in the same group (Group 4, “B.
flavum”). Two L-serine overproducers, SYPS-062 and
SYPS-062-33a, also fall into this group, all potentially de-
rived from the same ancestor, which would be closely re-
lated to ATCC 14067. Several groups contain only a single
wild-type strain, as until now none of these derived strain
genome sequences have been reported.
Group 8 and Group 9 are two exceptions. Group 8

contains two wild type strains (T6-13 and AS1.542) and
their derived strains. Although T6-13 and AS1.542 have
been considered as independent strains for a very long
time, they have very similar genome sequences. Group 9
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(ATCC 21831 and AR1) is another exception, containing
two arginine-producing strains. We presume they derive
from a corresponding wild type strain, the genome se-
quence of which has not yet been reported.

Pan/core -genome calculations
Based on the genome sequences of eight wild-type strains
(ATCC 13032, ATCC 14067, ATCC 13869, ATCC 13870, R,
AS1.299, AS1.542, and T6-13) C. glutamicum pan-genome
parameters were calculated. A microbial pan-genome is de-
fined as the full complement of genes in a bacterial species,
and comprises the “core genome” containing genes present
in all isolates of a species, and the “dispensable genome”
containing genes present only in a subset of genomes. As
shown in Fig. 2, the size of a species’ pan-genome can grow
with the number of sequenced strains, indicating that the C.
glutamicum has an “open” pan-genome. The pan-genome

has a set of 2359 core genes. This gene number may be ad-
justed in the future, as draft genomes are finished and new
genomes are added to the analyses.
We exclusively considered the eight wild-type strains

in our pan-genome calculations, and did not include
other 18 strain genomes. We made this decision because
some genes, especially genes related to by-products, as
in some of the amino acid overproducing strains, might
be artificially or naturally mutated, which may lead to
miscalculated pan-genome results.

Dispensable genes: glutamate dehydrogenase (gdh)
genes and the PS2 surface (S)-layer gene (cspB)
We will illustrate with two dispensable genes of notice
that have been thoroughly analyzed in C. glutamicum,
those encoding glutamate dehydrogenase (gdh) and the
PS2 S-layer (cspB).

0.1

K51

ATCC13032(NC_003450)

ATCC21300

ATCC13032(NC_006958)

MB001

ATCC21831

AR1

AS1.299

ATCC15168

ATCC14067

ATCC21493

SYPS062

33a

B253

B1

ATCC13869

SCgG2

SCgG1

AS1.542

Z188

S9114

T6 13

MT

SYPA55

R

ATCC13870

YS314

Fig. 1 Phylogenetic trees based on the genome sequence of 26 C. glutamicum strains. YS314 was designated the out-group. The dendrogram
was calculated by the CVTree Web interface using a composition vector (CV) approach. Figtree was used to draw the phylogenetic tree and
produce the figure
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Glutamate dehydrogenase, which catalyzes the revers-
ible NAD (P)+ −linked oxidative deamination of glutam-
ate into alpha-ketoglutarate and ammonia, is an
important branch-point enzyme for glutamate synthesis
[45]. Several C. glutamicum strains only have an NADP+

specific glutamate dehydrogenase gene (EC 1.4.1.4).
However, others not only have a NADP+ specific glu-
tamate dehydrogenase gene, but also have a glutamate
dehydrogenase gene compatible with both NAD+ and
NADP+ (EC 1.4.1.3) (Table 2). The latter is not a
pseudogene, at least in the glutamate-producing strain
S9114, as two glutamate dehydrogenases have been
physically isolated from it [46].
The C. glutamicum PS2 S-layer cspB gene is located

on a 6 Kb genomic island absent from the type strain
ATCC 13032 [47, 48]. According to our comparative
genomic analysis, the genomic island harboring cspB ex-
ists in most strains, and is only absent in ATCC 13032
and ATCC 21831 and their derived strains (Table 2).
These two groups are quite close to each other in our
phylogenetic tree (Fig. 1).

Variations likely related to amino acid production
That genomic variation most likely related to amino acid
production may be the most interesting thing that a C.
glutamicum pan-genomic analysis can offer. The ATCC
13032-derived lysine-producing strain ATCC 21300 has
been analyzed in depth [12]. However, detailed analyses
of many other strains have not been reported. The next
section briefly describes some of these strains.

Lysine-producing strain B253
B253 is an important lysine-producing strain [21]. The
genome consists of a circular chromosome and a plas-
mid. Compared with the genome of C. glutamicum
ATCC 13032, about 46,000 mutations (insertions or
deletions [InDels] and SNPs) are detected (Additional
file 5: Dataset 1), with most of the key genes potentially

Fig. 2 Pan-genome calculation of C. glutamicum using nine strains.
a Core genes and pan genes calculation. The blue line shows the
pan-genome development using, with the asymptotic value of y =
1161× x0.416 + 1821. The green line shows the core genes calculation,
with the asymptotic value of y = 1364 × e(−0.802 × x) + 2359, where
2359 is the number of core genes regardless of how many genomes
are added into the C. glutamicum pan-genome. b New (unique)
genes of the pan-genome. The horizontal dashed line (orange) indicates
the asymptotic value with the function of y = 612 × x-0.68. The figures
were produced by PanGP

Table 2 Glutamate dehydrogenase(GDH) and cspB genes detected in strains

Group Strain Synonym GDH-NADP+

(EC 1.4.1.4)
GDH-NAD+

(EC 1.4.1.3)
cspB

1 ATCC13032 + - -

2 ATCC13869 B. lactofermentum + + +

3 ATCC13870 C. acetoacidophilum + + +

4 ATCC14067 B. flavum + + +

5 R + + +

6 AS1.299 C. pekinense + - +

7 B1(617) + - +

8 T6-13 B. tianjinese + + +

8 AS1.542 C. crenatum + + +

9 ATCC21831 (AR0) + - -
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relevant to lysine synthesis gaining one or more mutations
[21]. According to our MLST analysis, B253 has a profile
very similar to B1’s (profile of B253: 1-2-4-7-9-3-2, profile of
B1: 1-2-4-7-9-3-3, with only a 1 bp difference in the leuA se-
quence), so B253 may be naturally or artificially derived
from B1. By comparing the genome sequence of B253 with
B1, only 432 mutations are detected (Additional file 5: Data-
set 1). Three of these mutations, which are likely relevant to
lysine production, were manually identified and confirmed
by mapping reads to reference genome sequence (Table 3).
(a) The aspartokinase gene lysC harbors an in-frame dele-
tion (Leu329 to Gln330) and a missense mutation

(Gly359Asp) that could be key mutations related to L-lysine
production. (b) The stop gaining nonsense mutation in hom
(homoserine dehydrogenase) could result in cutting off the
metabolic flux toward threonine, methionine, or isoleucine,
accompanied with a spontaneous increase in metabolic flux
toward lysine. Phenotype annotation shows B253 to be a
homoserine auxotroph.
According to previous report, introduction of hom

Val59Ala and lysC Thr311Ile mutations into the wild-
type strain leads to an accumulation of 75 g/L of L-
lysine [49]. We presume that B253 may share the same
mechanism of L-lysine production.

Table 3 SNP and InDel distribution in amino acid biosynthetic pathway

Strains Production Ref. genome SNP and InDel in genes Gene description

ATCC21300 lysine ATCC13032 ppc: upstream -1 A deletion;
……

ppc: phosphoenolpyruvate carboxylase

B253 lysine B1 lysC: p.Leu329_Gln330del
(inframe deletion), p.Gly359Asp;
hom: p.Gln399* stop gained

lysC: Aspartokinase
hom: Homoserine dehydrogenase

ATCC21493 arginine ATCC14067 KIQ_011285: p.Gly159Asp;
KIQ_013990: p.Arg390Cys;
KIQ_009960: Ala701Thr
p.Ala378Thr

KIQ_011285: arginine repressor
KIQ_013990: glutamate_dehydrogenase
odhA(KIQ_009960): 2-oxoglutarate
dehydrogenase E1/E2 component

SYPS-062 serine ATCC14067 KIQ_000725: p.Leu103Phe;
KIQ_012535: p.Glu251Lys,
p.Arg422Gln;
KIQ_009375: p.Asp394Asn;
KIQ_009610: upstream-9 C->T

KIQ_000725: serine acetyltransferase
KIQ_012535: serine dehydratase
KIQ_009375: serine_hydroxymethyltransferase
KIQ_009610: phosphoglycerate mutase
KIQ_014800: pyruvate dehydrogenase E1

SYPS-062-33a serine ATCC14067 KIQ_000725: p.Leu103Phe;
KIQ_012535: p.Glu251Lys,
p.Arg422Gln;
KIQ_009375: p.Asp394Asn;
KIQ_009610: upstream-9 C->T;
KIQ_014800: p.His594Tyr

ATCC15168 isoleucine ATCC14067 KIQ_005265: p.Ser248Phe;
KIQ_012240: p.Gly186Arg

KIQ_005265:2-isopropylmalate synthase;
KIQ_012240: phosphoenolpyruvate
carboxylase

MT arginine AS1.542 argR: p.Gln37*stop gained;
odhA: p.Ala170Thr;
argC; p.Gly134Glu

argR Arginine repressor
argC: N-acetyl-gamma-glutamyl-phosphate
reductase
argG: Argininosuccinate synthase
argF: Ornithine carbamoyltransferase
odhA: 2-oxoglutarate dehydrogenase
E1/E2 component

SYPA5-5 arginine AS1.542 argR: p.Gln37* stop gained;
odhA: p.Ala170Thr;
argC: p.Gly134Glu, p.Asp123Asn;
argG: p.Ile219Thr;
argF: p.Ala191fs

SCgG1 glutamate T6-13 dapA: p.Glu293Lys;
ppc: p.Ala433Thr

dapA: 4-hydroxy-tetrahydrodipicolinate synthase
ppc: phosphoenolpyruvate carboxylase
ykuT(yggB): putative MscS family protein YkuT
aceF: Dihydrolipoyllysine-residue
acetyltransferasecomponent of pyruvate
dehydrogenase complex

SCgG2 glutamate T6-13 dapA: p.Glu293Lys;
ppc: p.Ala433Thr

Z188 glutamate T6-13 dapA: p.Glu293Lys;
ppc: p.Ala433Thr;
ykuT: p.Glu350Lys

S9114 glutamate T6-13 dapA: p.Glu293Lys;
ppc: p.Ala433Thr;
ykuT: p.Glu350Lys;
aceF: p.Glu216Asp,
p.Glu344Gln,
p.Lys365 Pro369del
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ATCC 14067 and related strains
ATCC 21493 is an arginine-producing strain derived from
the wild-type strain “B. flavum” ATCC 14067. A Gly159Asp
mutation in argR (KIQ_011285, arginine repressor, ArgR)
may be a key mutation in the production of arginine, as we
presume this mutation leads to the inactivation or reduction
in the activity of ArgR, with a resulting increase in L-
arginine biosynthetic enzyme activities and L-arginine pro-
duction. Two mutations (Ala701Thr and Ala378Thr) in
odhA (KIQ_009960, E1o subunit of the 2-oxoglutarate de-
hydrogenase complex) may be other key mutations, possibly
altering metabolic flux, increasing it toward glutamate and
arginine (Table 3) [50].
ATCC 15168 is an isoleucine-producing strain derived

from ATCC 14067. We presume two mutations relate to
isoleucine production: (a) Ser248Phe mutation in the 2-
isopropylmalate synthase leuA gene (KIQ_005265) is
likely relevant to branch amino acid synthesis. (b)
Gly186Arg mutation in the phosphoenolpyruvate carb-
oxylase gene ppc (KIQ_012240) may increase metabolic
flux toward the TCA cycle (Table 3).
SYPS-062 is a serine-producing strain obtained from a

mud culture collection [51, 52]. According to our MLST
analysis, SYPS-062 may be naturally derived from an ances-
tor closely related to ATCC 14067. D-3-phosphoglycerate
dehydrogenase (serA) is a key enzyme in serine biosynthesis.
The SYPS-062 serA sequence in GenBank (HQ329183)
shows two mutations compared with ATCC 14067’s genome
sequence. However, the SYPS-062 and SYPS-062-33a gen-
ome sequences show no divergence from ATCC 14047 in
this gene. It is interesting. Furthermore, several other
mutations have been detected in three genes related to
serine metabolism [(a) KIQ_000725: serine acetyltransferase,

(b) KIQ_012535: serine dehydratase, (c) KIQ_009375: seri-
ne_hydroxymethyltransferase]. (d) We have also detected
a C→ T mutation 9 bp upstream of the phosphoglyc-
erate mutase gene (KIQ_009610), which may reduce
metabolic flux to pyruvate, subsequently accumulating
3-phosphoglycerate, which is a direct precursor in
serine biosynthesis (Table 3).
SYPS-062-33a was derived from SYPS-062 by random

mutation [53]. We presume a key mutation for its in-
creased serine production is a His594Tyr mutation in
the pyruvate dehydrogenase E1 component aceE gene,
which may reduce pyruvate to acetyl coenzyme A activ-
ity, and increase the accumulation of pyruvate and other
glycolysis metabolites, including 3-phosphoglycerate.
Reported by-products, alanine and valine, which are de-
rived from pyruvate, increased in the analysis [53]. This
may be the result of pyruvate accumulation (Table 3).

AS1.542, T6-13, and related strains
AS1.542 and T6-13 are the “wild type” strains of “C.
crenatum” and “B. tianjinese”.
Although T6-13 and AS1.542 have been considered as

independent strains since sometime in the 1960–1970s,
they have very similar genome sequences. Comparative
genomic analysis showed that much less SNPs and
InDels were detected between T6-13 and AS1.542 than
comparing them with derivative strains, such as S9114
and MT (Fig. 3).
MT and SYPA5-5 are arginine-producing strains [54].

AS1.542 is the probable ancestral strain. These two strains
share several mutations when comparing with AS1.542, in-
cluding: (a) a stop gaining nonsense mutation (Gln37stop)
in argR, which could be a key mutation for L-arginine
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Fig. 3 Phylogenomic trees of ATCC 14067, AS1.542, T6-13, and related strains. a ATCC 14067 and related strains. b AS1.542, T6-13, and related
strains. The blue lines show the branch from AS1.542 to the arginine-producing strains MT and SYPA5-5; the red lines show the branch from T6-13
to the glutamate-producing strains SCgG1, SCgG2, Z188,and S9114. Wombac was used to finds genome SNPs and build phylogenomic trees for
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production; (b) a missense mutation (Ala170Thr) in odhA,
which may play key roles in altering metabolic flux, increas-
ing the flux toward glutamate and arginine; (c) a missense
mutation (Gly134Glu) in argC, which may result in in-
creased L-arginine production (Table 3). SYPA5-5 has
gained several particular mutations in the arginine synthesis
genes, including (a) Asp123Asn in argC; (b) Ile219Thr in
argG; (c) Ala191framshift in argF (Table 3).
SCgG1, SCgG2, Z188, and S9114 are glutamate-

producing strains. S9114 was derived from T6-13 [11, 20].
SCgG1, SCgG2, and Z188 are all soil isolates from China
(the NCBI BioSample database: http://www.ncbi.nlm.nih.-
gov/biosample). According to our phylogenic study,
SCgG1, SCgG2, and Z188 all cluster together, very close
to S9114 (Fig. 3). It is an interesting result. We
hypothesize that these isolates’ oil samples may have been
contaminated by fermentation broth. Several mutations
could be benefit glutamate production (Table 3), includ-
ing: (a) Ala433Thr in ppc, by increasing the metabolic flux
from PEP toward the TCA; (b) Glu216Asp, Glu344Gln,
and Lys365 to Pro369 deletion in aceF, by decreasing
metabolic flux from pyruvate toward acetyl coenzyme A;
(c) Glu350Lys in ykuT, by increasing glutamate export; (d)
Glu293Lys in dapA, by reducing lysine production.

Discussion
C. glutamicum strains are widely used for the industrial
production of amino acids. Analyses of these strains
have two major objectives: to provide (1) an overview
genomic analysis and pan-genomic study of the species;
and (2) a direct comparison between the amino acid
producing strains to their ancestors, for the study of var-
iations likely related to amino acid production. Analyses
at this level have not been yet reported.
Similarity on 16S rDNA sequences indicated that several

strains previously regarded as Brevibacterium, and as
different Corynebacterium species, should be classified as
C. glutamicum [5, 7]. ANI and DDH results support that
conclusion. All of the strains listed in Table 1 should be
classified as C. glutamicum species. The strains were pri-
marily isolated independently toward the same goal of
selecting for glutamate production. However, it is quite in-
teresting that these strains all fall into the same species, as
they differ significantly in several phenotypic characteris-
tics, and were previously given distinct taxonomic species
and/or genera names.
Pan-genomic analysis of the wild-type C. glutamicum

strains indicate that this species has an “open” pan-
genome with a set of 2359 core genes, which is larger
than the other members of this genus with available
data, C. diphtheriae (1632) and C. pseudotuberculosis
(1504) [55, 56]. Dispensable and strain-specific genes
often relate to strain specific phenotypes, such as sensi-
tivity to specific phages [57].

Pan-genomic analysis can provide useful insights on
genome reduction. A top-down reduction of a bacterial
genome to construct a minimal chassis is an important
concept in synthetic biology [58]. This approach has been
accomplished with many strains including Escherichia coli
and C. glutamicum. A prophage-free variant of C.
glutamicum ATCC 13032 with a 6% reduced genome has
been constructed [59]. Recently, 41 C. glutamicum gene
clusters ranging from 3.7 to 49.7 Kb in length were
determined as target sites for deletion and 36 of them
were successfully deleted. A combinatory deletion of all
irrelevant gene clusters further decreased the size of the
native genome by about 722 Kb (22%) down to 2561 Kb
[60]. Subsequent C. glutamicum top-down reduction re-
search can be guided by pan-genomic analyses.
In particular, we looked at dispensable genes: the NAD

+/NADP+ dependent glutamate dehydrogenase gdh genes
and PS2 S-layer cspB gene, which are absent in the type
strain ATCC 13032. We first noticed that many C.
glutamicum strains possess a functional NAD+/NADP+

dependent glutamate dehydrogenase gene. More attention
should be paid to whether metabolic models based on
ATCC 13032 are fully accurate or not, when researching
the metabolic flux of these strains. Our hypothesis is that
more C. glutamicum strains useful for the industrial pro-
duction of glutamate, arginine, or proline will fall into
those groups with two functional gdh genes. These results
may provide hints regarding the importance of choosing
the most appropriate beginning strain in glutamate pro-
duction selection breeding experiments.
PS2 is a structural protein of the surface (S)-layer, encoded

by the cspB gene, which forms a solid two-dimensional
para-crystalline array surrounding the entire cell. A reconsti-
tuted double mutant (ΔcspBΔpbp1a) showed improved re-
combinant antibody-binding fragments (Fab) secretion [48].
The cspB gene is only absent in ATCC 13032, ATCC 21831
and derivatives of them, suggesting that these strains may
have different protein secretion machinery.
We have built an efficient pipeline for analysis amino-

acid-producing C. glutamicum strains (Fig. 4). Perhaps
the most interesting thing to come out of C. glutamicum
genome analysis may be the identification of those varia-
tions that likely relate to amino acid production. This
pipeline is designed for toward this purpose. First, MLST
is used to determine the presumed ancestor. Both MLST
and whole genome phylogenetics would work for this
purpose. We recommend MLST, as it is simple, and can
be performed using either genome sequences or PCR
fragments. Second, phylogenomic analysis of the strains
using SNPs can give a direct view of the relationship to
other strains and provide trajectories in strain breeding.
Using the corresponding wild-type strain as a reference
genome sequence, the results can provide a clear view of
the relationship between the strains of interest and other
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related strains. Finally, all genetic variation, including SNPs,
InDels, and SVs (structural variations), can be determined
and annotated. This approach should provide a clearer mo-
lecular view of possible amino acid production mechanisms.
We also presume that this pipeline should be useful for
other industrial strains, such as Corynebacterium ammonia-
genes, Bacillus subtilis, and Xanthomonas campestris.
Clear information regarding industrial strains’ ancestry

and breeding processes is occasionally missing after
long-term utilization and preservation. This may hinder
the discovery of amino acid hyper-production mecha-
nisms in these strains. Therefore, the first and the most
important step in the analysis of such strains should be
MLST to determine which group the strain belongs to.
The most closely related wild-type strain is ascertained
to be the presumed ancestor, and performs as a suitable
reference genome sequence for further research.
A deeper, more mechanistic view regarding amino acid

producing strains is available using our pipeline. B253,
for example, is a lysine-producing strain, and its genome,
therefore, contains various mutations relevant to lysine
production [21]. When compared with the type strain
ATCC 13032, most genes for lysine biosynthesis are seen
to have one or more mutations. This conclusion pro-
vides little help in understanding lysine production
mechanisms, however, as it is almost impossible to
recognize which mutations are actually relevant. None-
theless, using our pipeline, B253 falls into the B1 group,
indicating that B253 was most likely derived from B1 or
an ancestor close to B1. When comparing B253 with B1,
two key mutations are identified in lysC and hom. In
fact, most other variation between B253 and ATCC
13032 is just general variation between different groups,
probably unrelated to lysine production. We have re-
ported and submitted to GenBank the genome sequence
of six wild type strains, providing basic data for

subsequent comparative analyses. Phylogenomic analysis
using the SNPs of whole or core genomes from related
strains will provide clear information about the strain
breeding process. SCgG1, SCgG2, and Z188 are
glutamate-producing strains with available genome se-
quences, but without clear genetic information. Accord-
ing to our results, the three should be related to an
intermediate strain in the breeding of S9114 [20].

Conclusions
This is the first comprehensive comparative analysis of
C. glutamicum genomes at the pan-genomic level.
Whole genome comparison provides definitive evidence
for classifying the members of this species. Identifying
an alternative gdh gene in some C. glutamicum strains
may accelerate further research on glutamate synthesis.
Our proposed pipeline can provide a clear perspective,
including the presumed ancestor, the strain breeding tra-
jectory, and the genomic variations necessary to increase
amino acid production in C. glutamicum.
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