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Comparative transcriptomics of
elasmobranchs and teleosts highlight
important processes in adaptive immunity
and regional endothermy
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Abstract

Background: Comparative genomic and/or transcriptomic analyses involving elasmobranchs remain limited, with
genome level comparisons of the elasmobranch immune system to that of higher vertebrates, non-existent. This
paper reports a comparative RNA-seq analysis of heart tissue from seven species, including four elasmobranchs and
three teleosts, focusing on immunity, but concomitantly seeking to identify genetic similarities shared by the two
lamnid sharks and the single billfish in our study, which could be linked to convergent evolution of regional
endothermy.

Results: Across seven species, we identified an average of 10,877 Swiss-Prot annotated genes from an average of
32,474 open reading frames within each species’ heart transcriptome. About half of these genes were shared
between all species while the remainder included functional differences between our groups of interest
(elasmobranch vs. teleost and endotherms vs. ectotherms) as revealed by Gene Ontology (GO) and selection
analyses. A repeatedly represented functional category, in both the uniquely expressed elasmobranch genes (total
of 259) and the elasmobranch GO enrichment results, involved antibody-mediated immunity, either in the
recruitment of immune cells (Fc receptors) or in antigen presentation, including such terms as “antigen processing
and presentation of exogenous peptide antigen via MHC class II”, and such genes as MHC class II, HLA-DPB1.
Molecular adaptation analyses identified three genes in elasmobranchs with a history of positive selection, including
legumain (LGMN), a gene with roles in both innate and adaptive immunity including producing antigens for
presentation by MHC class II. Comparisons between the endothermic and ectothermic species revealed an
enrichment of GO terms associated with cardiac muscle contraction in endotherms, with 19 genes expressed solely
in endotherms, several of which have significant roles in lipid and fat metabolism.
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(Continued from previous page)

Conclusions: This collective comparative evidence provides the first multi-taxa transcriptomic-based perspective on
differences between elasmobranchs and teleosts, and suggests various unique features associated with the adaptive
immune system of elasmobranchs, pointing in particular to the potential importance of MHC Class II. This in turn
suggests that expanded comparative work involving additional tissues, as well as genome sequencing of multiple
elasmobranch species would be productive in elucidating the regulatory and genome architectural hallmarks of
elasmobranchs.
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Background
The class Chondrichthyes includes all of the cartilaginous
fishes: the chimaeras, sharks, skates, and rays. The extant
members of the class comprise at least 1,207 species [1],
divided into two major groups: Subclasses Holocephali
(chimaeras) and Elasmobranchii (sharks, skates, and rays).
Recent molecular dating analyses suggest a split between
holocephalans and elasmobranchs at about 420 Mya
[2, 3]. Chondrichthyans as a whole, are thought to
have diverged from bony vertebrates (Osteichthyes:
ray-finned fishes, coelacanths, lungfishes, and tetra-
pods) approximately 450–475 Mya [2–4]; see however
Giles et al. 2015 [5], for evidence of a chondrichthyan/
osteichthyan ancestry of 415 Mya. Because of their
phylogenetic position in vertebrate evolution, chon-
drichthyans provide an important reference for our
understanding of vertebrate genome evolution. In
addition to their ancient history and fundamental pos-
ition in vertebrate systematics, chondrichthyans pos-
sess a wide variety of biological characteristics of note.
Such traits include, but are not limited to, the pres-
ence of a primitive adaptive immune system, efficient
wound healing, and the evolution of regional endo-
thermy in several species.
One of the most rapidly expanding areas of research

in elasmobranch biology is in understanding the func-
tion of the immune system [6]. Cartilaginous fishes are
the most ancient group of vertebrates that possesses an
adaptive immune system based on the same B and T cell
receptor genes that form the foundation of adaptive im-
munity in higher vertebrates [7]. However, adaptive im-
munity in chondrichthyans differs from higher
vertebrates (including teleost fishes) in the lack of bone
marrow (where B cells typically develop), in the types of
immunoglobulins (Ig hereinafter), and in the genomic
organization of the underlying genes [8–11]. Addition-
ally, elasmobranchs contain a novel immunoglobulin, re-
ferred to as new antigen receptor (or IgNAR), which
differs from traditional immunoglobulins in that it lacks
light chain molecules and is comprised entirely of heavy
chain domains [12, 13]. IgNARs have received consider-
able interest recently, in regard to their unique structure
and the possibility of adapting these molecules for future

diagnostic work or drug delivery systems [14–16].
Despite this interest, transcriptomic analyses of the simi-
larities and differences between the elasmobranch
immunome and that of higher vertebrates are not cur-
rently available.
Regional (or partial) endothermy arose independently

in each of the billfishes and tunas (both highly migra-
tory, large bodied teleosts), and the highly migratory,
large-bodied lamnid sharks. All three groups have con-
vergently evolved adaptations for increased aerobic cap-
acity, continuous swimming, elevated cruising speed,
and heat production and/or retention [17–21]. Although
the heart is at ambient temperature in regionally endo-
thermic species, its function is critical to endothermic
physiology because of its role in modulating blood flow
and oxygen delivery to heat producing tissues (i.e. red
muscle) and through the vasculature responsible for the
counter-current heat exchange [18]. However, to date
the genetic loci that might be associated with this re-
markable example of convergent evolution in fishes re-
main obscure and there are few studies that specifically
attempt to investigate this. A recent study of the cyto-
chrome oxidase C subunit (COX) genes found no evi-
dence of molecular convergence across endothermic
fishes in these mitochondrial loci involved in aerobic
metabolism [22]. Another recent study has shown differ-
ences in expression of genes involved in calcium storage
and cycling (serca2 and ryr2) in heart tissue of tuna spe-
cies with different temperature tolerance, with the great-
est expression in Pacific bluefin tuna (Thunnus
orientalis), the species with the greatest cold tolerance of
the three tested [23]. In a comparative study of gene ex-
pression in heart tissue of Pacific bluefin tuna that were
acclimated to cold and warm temperatures, Jayasundara
and colleagues found upregulation of genes associated
with protein turnover, lipid and carbohydrate metabol-
ism, heat shock proteins, and genes involved in protec-
tion against oxidative stress in cold acclimated
individuals [24]. This study also detected elevated levels
of the SERCA enzyme in cold acclimated individuals
[24]. Collectively, this suggests the importance of regu-
lating genes involved in metabolism, control of heart
contraction and function, and cellular protection against
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oxidative stress in heart tissue of an organism with an
endothermic physiology. Our goal here was to use the
heart transcriptome to examine a large repertoire of
genes for possible evidence of convergent evolution in
regional endothermy, in terms of either genes expressed,
or shared genes with a history of molecular adaptation.
Comparative genomics of chondrichthyans remains

limited, with a single genome sequence available for the
holocephalan, Callorhinchus milii [25, 26], and a few
additional genome projects in progress (reviewed in [27],
including the whale shark Rhincodon typus (http://wha-
leshark.georgiaaquarium.org), white shark, Carcharodon
carcharias (our laboratory), catshark, Scyliorhinus cani-
cula (Genoscope: http://www.genoscope.cns.fr), and the
batoid, the little skate, Leucoraja erinacea [28]. There
are a larger number of transcriptomic and RNA-seq
studies, however, these genetic resources are still limited
compared to those of other vertebrate taxa [27]. Tran-
scriptome sequence examples include a heart transcrip-
tome of the white shark [29]; brain, liver, pancreas, and
embryo from the small-spotted catshark, S. canicula,
[30, 31]; an embryo of cloudy catshark, Scyliorhinus tor-
azame [32]; whole embryo from the little skate [28]; and
spleen and thymus from nurse shark, Ginglymostoma
cirratum [26] and spleen, thymus, testis, ovary, liver,
muscle, kidney, intestine, heart, gills, and brain from ele-
phant shark (a holocephalan), C. milii [26]. In addition,
EST (expressed sequence tag) sequences exist for cell
lines derived from L. erinacea and the spiny dogfish,
Squalus acanthias [33].
Interspecific transcriptomic comparisons of many

taxonomic groups, and in particular groups with limited
genetic resources such as elasmobranchs, are con-
founded by both the haphazard sampling of different tis-
sues associated with different studies as well as the
different technologies used to obtain the sequence data.
At present limited comparative data sets of the same tis-
sue type and technology are available across many taxa,
however, this is beginning to change and there exist a
few important exceptions; see for example, [34–36].
To examine transcriptomic differences between elasmo-

branchs vs. teleosts and endothermic vs. ectothermic (i.e.
non-endothermic) species, we sampled heart tissue since
it is a metabolically active tissue, and expression of major
components in innate and adaptive immunity have been
demonstrated in heart and associated blood tissues [37, 38].
Compared to ectothermic fishes, regionally endothermic
fishes such as tunas tend to have an elevated heart rate
and this in part supports the maintenance of elevated
temperature in some tissues [18, 39]. We hypothesize,
therefore, that there are differences in expressed gene
content of heart tissue of endothermic species relative
to ectothermic species, to compensate for this in-
creased heart rate. Our study included the following

seven species: elasmobranchs - white shark (Carcharo-
don carcharias), shortfin mako (Isurus oxyrinchus;
hereinafter termed mako), great hammerhead (Sphyrna
mokarran; hereinafter termed hammerhead), and yellow
stingray (Urobatis jamaicensis); teleosts - swordfish
(Xiphias gladius), hogfish (Lachnolaimus maximus),
and ocean surgeonfish Acanthurus bahianus; herein-
after termed surgeonfish). Both white shark and mako
(Lamnidae, Lamniformes), like other lamnids, display
elevated internal temperatures indicative of regional
endothermy [40]; the great hammerhead (Sphyrnidae,
Carcharhiniformes) and the yellow stingray (hereinafter
referred to as ray) (Urotrygonidae, Myliobatiformes)
represent the two ectothermic elasmobranchs included
in our study. Molecular phylogenetic studies support
rays and skates as the sister group to sharks and sug-
gest that this split was approximately 300 Mya [2, 3,
41]. The swordfish (Xiphiidae, Perciformes) is a repre-
sentative of a regionally endothermic teleost, while both
hogfish (Labridae, Perciformes) and surgeonfish
(Acanthuridae, Perciformes) are ectotherms.
In comparing these seven heart transcriptomes we had

several specific aims. First, we sought to identify differ-
ences in expressed gene content that are a reflection of
evolutionary taxonomy (e.g. elasmobranchs vs. teleosts).
Secondly, we aimed to identify whether there were sig-
nificant differences involving the comparative groups–
i.e., elasmobranchs vs. teleosts and endotherms vs.
ectotherms—in the types of genes (as identified by dif-
ferences in Gene Ontology, or GO) that are expressed,
especially in regards to particular phenomena of interest
(e.g. adaptive immunity and wound healing in elasmo-
branchs, metabolic function in endotherms). Finally, we
sought to identify genes with a history of molecular
adaptation in elasmobranchs and the endothermic taxa
in our data set, through the identification of genes under
positive selection in the respective lineages.

Methods
Tissue and RNA
The shark and swordfish hearts were opportunistically
obtained from freshly deceased animals captured by rec-
reational or commercial fishermen independent of our
study. Dissection was followed by immediate cold stor-
age in order to limit RNA degradation (see below). The
ray heart was opportunistically obtained from independ-
ent researchers conducting a study on its reproductive
organs. Hearts from the hogfish and surgeonfish were
similarly obtained from independent researchers con-
ducting a study on age and growth, and stored in RNA-
later® (ThermoFisher). Heart tissue from all other
species was stored at −80 °C. No ethical approval or per-
mit for animal experimentation was required, as the in-
dividuals were not sacrificed specifically for this study.
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At Cornell University, total RNA was extracted from the
frozen heart tissue for each species using the Agencourt®
RNAdvance™ Tissue Kit. Extractions were conducted ac-
cording to manufacturer instructions. Briefly, as part of
the extraction protocol tissue was homogenized and
digested in lysis buffer containing proteinase K. RNA
from this digested tissue was bound to paramagnetic
beads to remove contaminants prior to treatment with
DNase I and subsequent elution of the extracted RNA in
nuclease free water. Due to the collection of some sam-
ples from fishermen and uncertainty regarding the time
since death, we checked for RNA degradation using an
Agilent 2100 BioAnalyzer or AATI Fragment Analyzer™
and quantified extractions using a Qubit™ spectrofluo-
rometer. Prior to further processing these extractions
were shown to pass internal quality standards for the
Agilent BioAnalyzer and AATI Fragment Analyzer and
had limited evidence of degradation. The total RNA
extracted from each species was then used to prepare
Illumina TruSeq RNA sequencing libraries according to
manufacturer’s instructions at the genomics facility in
the Cornell Biotechnology Resource Center.

Sequencing and assembly
Two lanes of 2x100 bp paired-end sequencing were con-
ducted on an Illumina Hi-Seq 2500 by the Genomics
facility in the Biotechnology Resource Center at Cornell
University. Four species were pooled per lane (including
an eighth species whose library yielded poor sequencing
data and was excluded from further analysis). Following
sequencing, reads were separated by species and the
program FastqMcf within ea-utils [42] was used to re-
move sequencing adaptors, trim poor quality bases, and
remove poor quality reads using a minimum Phred qual-
ity score of 30, minimum trimmed length of 50 bp, and
removing duplicate reads with 35 or more identical
bases. Each species read pool was then used to assemble
a species-specific heart transcriptome using Trinity (de-
fault parameters, version r2013-02-25 [43]). Following
transcriptome assembly, the program TransDecoder
(within the Trinity package) was used to extract the lon-
gest likely open reading frame (ORF) for each Trinity
transcript using default parameters.

Transcriptome assessment and annotation
To get an estimate of the completeness of each tran-
scriptome we analyzed each assembly with the tool
CEGMA (under default parameters) to assess the pres-
ence of 248 Core Eukaryotic Genes (CEGs) [44, 45].
Subsequently, initial annotation for each transcriptome
was done with a BLASTP [46] search (e-value ≤1e-06,
minimum match length ≥ 33 amino acids) against the
Swiss-Prot database. Blast hits were imported into
Blast2GO version 3.1 [47, 48], which was used to assign

Gene Ontology (GO) terms to transcripts for each spe-
cies. Following this BLASTP search, we removed all du-
plicate sequences within each species that shared the
same BLASTP hit in the Swiss-Prot database, retaining
the longest sequence with the greatest sequence similar-
ity to the reference sequence. This was done to remove
sequences that arose from possible assembly errors and
to restrict our analyses to gene level comparisons, rather
than also include comparisons across putative isoforms.
We refer to this as our most conservative data set and
these annotations were used for all analyses unless
otherwise indicated. For most of the species concerned
here it was not possible to collect RNA-seq data from
multiple individuals, which precluded the confirmation
of true isoform sequences from assembly errors, by look-
ing for cases of shared intraspecific isoform expression.

Comparison of expressed gene content
To assess expressed gene content shared among species
we conducted a clustering analysis to identify sequence
clusters between all seven species and an additional
chondrichthyan, the elephant shark, Callorhinchus milii.
This species is a member of the Holocephali, a separate
suborder of the Chondrichthyes; we obtained heart
RNA-seq data for this species from a recently updated
genome assembly of this organism [26]. We subjected
the C. milii read data to the same FastqMcf trimming
and Trinity assembly methods as the RNA-seq data gen-
erated in this study. For the clustering analysis we con-
ducted an all against all BLASTP (e-value ≤ 1e-05)
search of all protein sequences from the eight species.
The results from these BLASTP searches were used in
MCLBlastLINE [49], as implemented in [29, 50], to iden-
tify homologous sequences between species using an
MCL algorithm to cluster protein sequences with an in-
flation parameter of 1.8 and all other parameters set to
defaults. It is possible, using this approach, for paralo-
gues and orthologues to be grouped together in the
same sequence cluster; species were considered to share
sequence clusters if one or more transcripts from each
species were grouped together in the same cluster (here-
inafter referred to as an MCL cluster). We tallied all
pairwise MCL clusters between all species and those
shared between groups of interest (teleost vs. elasmo-
branch and regional endotherms vs. ectotherms).
In addition to this clustering approach, we sought to

identify the enrichment of particular GO terms in elas-
mobranchs vs. teleosts or involving the regional endo-
thermic species vs. ectotherms. Towards this end, we
conducted Fisher’s exact tests through FatiGO (filtering
mode set to FDR adjusted p-value) [51] within
BLAST2GO version 3.1 [47, 48] to test whether particu-
lar GO terms were overrepresented in comparisons of
the four elasmobranch to the three teleost species or in
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comparisons of the three regional endotherms to the
four ectotherm species. Each test was two-tailed and
allowed us to assess which terms were either overrepre-
sented or underrepresented in our focal group, and fil-
tering at p < .05 after FDR correction. Using BLAST2GO,
these results were also filtered to obtain a list of the most
specific GO terms that were significantly enriched. In this
filtering step, if there are multiple GO terms in the same
GO hierarchy and they are significantly enriched, then
only the most specific term will be retained. For example,
the term ‘ion channel complex’ would be a more specific
term than ‘transmembrane transporter complex’ and
‘transmembrane transporter complex’ would be a more
specific term than ‘cellular component’. If ‘ion channel
complex’ and ‘transmembrane transporter complex’ were
both enriched, then the filtering for the most specific
terms would remove the term ‘transmembrane transporter
complex’ from the list and only show the term ‘ion
channel complex’ as enriched.

Identification of candidate immunity genes
To classify genes involved in immunity, we assembled a
master list of candidate genes involved in both adaptive and
innate immune function. This gene list was derived from
numerous large-scale mammalian studies that are curated
on two databases: InnateDB [52] and the Immunome
knowledge base [53]. Using the Swiss-Prot IDs for these
candidate genes, we queried our teleost and elasmobranch
BLAST data for their presence in the annotations of our
most conservative gene set. To ensure that we captured the
genes relevant to chondrichthyans, we cross-referenced the
adaptive immunity list against the genes identified in the
elephant shark genome [26]. Any immunity genes identified
in the elephant shark genome that were not in our list were
subsequently added to the adaptive immunity list before
comparison with our BLAST data.

Positive selection
Positive selection is the fixation of advantageous muta-
tions driven by natural selection, and is one of the fun-
damental processes behind adaptive changes in genes
and genomes, leading to evolutionary innovations and
species differences. We sought to identify cases of posi-
tive selection in elasmobranchs and in regional endo-
therms by conducting the branch sites tests for positive
selection on putative orthologues shared between all
eight species using the codeml package within PAML
version 4.8 [54, 55]. For this analysis, orthologues were
defined using the clustering analysis described above,
with the additional restriction of only considering clus-
ters with a single sequence from each of the eight spe-
cies (the seven sequenced here, plus elephant shark). For
each cluster we aligned the corresponding coding
sequence (cds) using the program Probalign v1.1 [56]

with default settings but removing sites where the pos-
terior probability was < 0.6 and retaining only alignments
with continuous blocks of aligned sites that covered
>50% of the reference protein sequence in the Swiss-
Prot database.
Each alignment was then analyzed with two separate

models: a null model and an alternative model. For the
alternative model, the dn/ds ratio was allowed to vary
across the gene and a proportion of sites were allowed
to have dn/ds > 1 (model = 2, NSsites = 2, fix omega = 0,
initial omega = 1). In the null model, dn/ds was allowed
to vary across the gene but fixed at one for the propor-
tion of sites that are allowed to be >1 in the alternative
model (model = 2, NSsites = 2, fix omega = 1). We identi-
fied selection when the alternative model identified a
proportion of sites with a dn/ds >1 and was significantly
more likely as determined by a Likelihood Ratio Test
(LRT) using the Chi-squared distribution and one degree
of freedom. Sites under selection were identified with
the Bayes empirical Bayes method (BEB) [57]. Separate
runs of each model were conducted, testing for the inci-
dence of positive selection on the branches leading to
endothermic taxa (on the branch leading to swordfish
and to the lamniformes) and for selection on the branch
leading to elasmobranchs. Branch lengths were esti-
mated by PAML for each gene. The program BUSTED
[58] was used to confirm the incidence of positive selec-
tion via an online server (www.datamonkey.org/busted)
using default settings. A multiple sequence alignment is
loaded into the BUSTED server, it generates a tree from
the alignment, and the user selects foreground branches
for assessing positive selection; in each case we selected
the branch leading to the elasmobranch ancestor to test
for positive selection.

Results
RNA quality was similar across both wild caught and la-
boratory collected specimens with little RNA degrad-
ation as indicated by high RIN and RQN scores
(Average of 7.0 across all libraries and above a minimum
of 6.0 for RIN and 5.1 for RQN) on an Agilent 2100
BioAnalyzer or AATI Fragment Analyzer™. The basic
sequencing and assembly statistics for the seven heart
transcriptomes are summarized in Table 1 and the reads
are deposited within the bioproject PRJNA313962. The
values reported here follow stringent filtering, with an
average of 14,737,476 reads retained per species, and
which were subsequently assembled into an average of
121,517 Trinity transcripts per species. To remove non-
coding RNA and bioinformatic artifacts from the Trinity
assembler we assessed the longest open reading frame
(ORF) for each transcript and obtained BLASTP annota-
tions for ORFs from each species, ranging in numbers
from 22,491-50,494, with an average of 32,474. The
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CEGMA analysis (Table 1) indicated that all of our spe-
cies transcriptomes contained the vast majority of CEGs
and these were nearly all “complete” with the possible ex-
ception of mako, which still had >90% total coverage but
with only 80% of the matches judged as “complete”. A
“complete” match represents cases where a transcript has
an alignment length ≥ 70% of the CEG protein length.
The MCLBlastLINE analysis resulted in sets of homolo-

gous clusters of proteins, which were compared across taxa.
Considering first elasmobranchs, more clusters were
uniquely shared between mako and white shark relative to
white shark and hammerhead (493 and 166 respectively;
Fig. 1a). Mako and hammerhead shared many fewer homo-
logues; this combination of similarities and differences of
clusters across the shark species included in our dataset is
both a reflection of the closer evolutionary relationship of
mako and white shark, compared to hammerhead, and of
the lower output associated with the mako sequencing
run. Mako had the largest number of unique clusters
(950) among elasmobranchs (possibly a reflection of the
somewhat poorer quality of the data for this species; see
for example mako n50, Table 1). Despite rays being sepa-
rated from sharks by about 300 million years of evolution
[2, 3, 41], the yellow stingray had a similar number of
unique clusters (199) as white shark (214) and great ham-
merhead (221). The shared set of elasmobranch heart
transcriptome MCL clusters was 4,999 (Fig. 1a), and a
similar sized core set was apparent in the comparison in-
volving the three teleosts (5,113, Fig. 1b). A large number
of these MCL clusters were shared between all seven spe-
cies (4,259, Fig. 2) with a similar number unique to tele-
osts, as well as to elasmobranchs (Fig. 2). The number of
clusters restricted to only elasmobranchs and only tele-
osts, represented 14.8% and 16.7% of the complete elas-
mobranch and teleost clusters, respectively. When looking
at the clusters shared among endothermic species we
found 5,192 core clusters shared between the three species
(white shark, mako, and swordfish). There were 4,259

clusters shared between endotherms and ectotherms (i.e.
all seven taxa) yielding 933 (18% of the total) clusters
unique to endotherms and 473 (10% of the total) unique
to ectotherms (Additional file 1: Figure S1 and Additional
file 2: Figure S2).

GO content and enrichment tests
Additional file 3: Figure S3, Additional file 4: Figure S4,
and Additional file 5: Figure S5 show the top 10 most
prevalent GO terms for the three main GO categories:
Biological Process (BP), Molecular Function (MF), and
Cellular Component (CC) in elasmobranchs and teleosts
(a. and b. in each fig., respectively). On the whole,
teleosts and elasmobranchs share many of the same GO
categories and the same proportions of their transcrip-
tomes are annotated with the most prevalent GO terms.
However, there does appear to be limited variation within
groups (e.g. within elasmobranchs) for the highest fre-
quency GO terms. Enrichment tests did detect statistical
differences (i.e. between both elasmobranchs vs. teleosts
and endotherms vs. ectotherms) in the representation of
GO terms present in lower frequencies within the tran-
scriptomes. A Fisher’s exact test revealed that a total of 93
GO terms were enriched in elasmobranchs (Additional file
6: Table S1) and 97 were enriched in teleosts (Additional
file 6: Table S2) after an FDR correction (<.05 post FDR).
When filtering these for the most specific GO terms, there
were 34 that were enriched in elasmobranchs (four add-
itional terms were removed that were linked to possible
symbionts or contaminants). A total of 29 of these terms
belonged to the BP category, five were in the CC category;
the proportion of genes from elasmobranchs and teleosts
that were annotated with these terms is displayed in Figs. 3a
and b, respectively. There were 30 GO terms that were
enriched in teleosts when filtering for the most specific GO
terms (two additional terms were linked to possible symbi-
onts or contaminants), of these 14 were BP terms, seven
were CC terms, and nine were MF terms (Figs. 4, a, b, c).

Table 1 Descriptive statistics of quality filtered reads and the subsequent assembly/annotation of 7 heart transcriptomes

Species Filtered sequence
reads

Trinity
transcripts

n50 ORFs Annotated
ORFs

Swiss-Prot
Proteins

MCL
Clusters

Complete coverage
of CEGs

Total Coverage
of CEGs

White shark 23,288,212 174,288 2,294 46,825 34,986 11,705 7,021 95.2% 98.0%

Great hammerhead 22,977,042 179,367 2,649 49,992 37,700 10,991 6,535 96.4% 98.4%

Mako 10,802,234 101,534 779 30,354 22,491 11,135 6,980 80.2% 90.7%

Ray 12,921,908 104,957 2,004 31,672 23,265 10,651 6,437 98.0% 99.2%

Swordfish 16,524,630 144,990 2,778 63,771 50,494 11,717 6,788 98.0% 100%

Surgeonfish 8,983,274 81,222 2,864 42,302 34,302 9,530 5,999 91.1% 94.4%

Hogfish 7,665,032 64,264 2,168 28,403 24,077 10,412 6,184 87.9% 94.0%

Trinity transcripts refer to the initial number of transcripts in the Trinity assembly, which were then filtered for those containing the longest open reading frames.
The translation of these transcripts was then annotated with BLASTP against the Swiss-Prot database and the number of hits to unique Swiss-Prot entries was
recorded; if more than one transcript matched the same Swiss-Prot entry then the longest and most significant match was retained. A CEGMA analysis was
conducted to evaluate the coverage of Core Eukaryotic Genes with complete coverage representing the proportion of CEGs with “complete” matches and the total
coverage representing the percentage of CEGs that had complete or partial matches in the transcriptome
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Among the most specific GO terms enriched in tele-
osts, only two are related to innate immunity (“Toll sig-
naling” and “Toll-like receptor 1 signaling”), and an
additional GO is present that may be associated with
pathogen removal (“phagocytosis, engulfment”). In con-
trast, six different GO terms were enriched in elasmo-
branchs that are involved in innate immunity (five of
which are various Toll-like receptor signaling pathways,
and the sixth is “positive regulation of type I interferon
production”). Additionally, three adaptive immunity GO
terms were enriched in elasmobranchs (“Fc-epsilon re-
ceptor signaling pathway”, “Fc-gamma receptor signaling
pathway involved in phagocytosis”, and “antigen process-
ing and presentation of exogenous peptide via MHC
class II”). These terms are all involved in antibody-
mediated immunity; either in recruitment of immune
cells (Fc receptors) or in antigen presentation.
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Fig. 1 a Venn diagram of the MCLBlastLine sequence clusters present in elasmobranchs and how they are distributed among the four elasmobranch
species. b Venn diagram of the MCLBlastLINE sequence clusters present in teleosts and how they are distributed among the three teleost species
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Fig. 2 Venn diagram of the MCLBlastLINE sequence clusters shared
between teleosts and elasmobranchs (intersection of the diagram)
as well as those unique to each of the groups
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The Fisher’s exact test involving the endotherm vs.
ectotherm comparison yielded 15 GO terms that were
enriched in endotherms (five of which were driven by
possible xenobiotics, e.g. bacterial contaminants, path-
ogens, or commensal organisms, and removed; Fig. 5)
and when considering the most specific terms, seven
were enriched in endotherms (one CC, six BP); see
Additional file 6: Table S3). Although relatively few

GO terms were enriched in endotherms, several are
of considerable interest including terms describing
genes involved in regulation of cardiac muscle cell
contraction.

Unique gene content
In addition to characterizing gene content by cluster-
ing analyses and looking at gene ontology information
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Fig. 3 a Histogram of the most specific Biological Process GO terms that were found to be significantly enriched in elasmobranchs. Enrichment
was judged significant by a Fisher’s exact test and a FDR < .05 after filtering for the most specific terms. b Cellular Component GO terms enriched
in elasmobranchs after filtering for the most specific terms
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to determine possible functional differences between the
transcriptomes, we looked at genes whose expression was
restricted to elasmobranchs or to endotherms. We identi-
fied 262 Swiss-Prot annotated genes that were restricted
to elasmobranchs, three of which were from possible xe-
nobiotics (i.e. sequences that resulted from possible mi-
crobial contaminants, pathogens, or symbionts present in
the tissue sample). The 259 remaining Swiss-Prot anno-
tated genes that were present in all elasmobranch tran-
scriptomes are listed in Additional file 6: Table S4.
These genes span a variety of functions, as indicated by
their GO annotations, which included metabolic, gene
regulatory, and immunity related terms, among others.
There were a few genes (19) that were uniquely expressed
in endotherms (listed in Additional file 6: Table S5) with
several playing possible roles in energy metabolism.

Immune genes
We also searched for the presence of candidate genes in-
volved in innate and/or adaptive immunity in elasmo-
branchs and teleosts. In particular, we searched for the
presence of 911 innate immunity genes and 862 adaptive
immunity genes, with 272 of these being present in both
categories. When we cross-referenced our list of candi-
date genes with the annotations of our most conserva-
tive gene lists, we identified 736 innate immunity genes
and 599 adaptive immunity genes present in at least one
of our seven heart transcriptomes (Fig. 6 shows the
distribution of these numbers across all seven species).
This included 404 innate immunity genes and 217 adap-
tive immunity genes present in all four elasmobranch
species. Within these there were 17 innate and seven
adaptive immunity genes whose expression were absent
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Fig. 4 a Histogram of the most specific Biological Process GO terms that were found to be significantly enriched in teleosts by a Fisher’s exact
test at an FDR < .05 and after filtering for the most specific terms. b Cellular Component GO terms enriched in teleosts after filtering for the most
specific terms. c Molecular Function GO terms enriched in teleosts after filtering for the most specific terms
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in heart tissue of teleosts, pointing to a substantial propor-
tion of the heart expressed gene content that is unique to
elasmobranchs, being due to expression of immunity re-
lated genes (24 of 259 unique elasmobranch genes). In
addition to the immunity genes that were expressed in all
four elasmobranchs and none of the teleosts; there were
48 additional innate immunity and 37 additional adaptive
immunity genes whose expression were absent in teleosts
but present in two or more of our elasmobranch species.

Positive selection
After requiring a single sequence to be present for each
species prior to multiple sequence alignment, we were left
with 1,332 MCL clusters as possible input for testing

positive selection. A further 400 MCL clusters were un-
able to produce alignments that contained continuous se-
quence for all eight species, leaving 932 genes that were
used as input for Probalign to build consensus quality
alignments. Probalign does an additional filtering by re-
moving poor quality alignments, and we further required
all alignments to cover > 50% of the sites in the Swiss-Prot
reference sequence. After all of these careful filtering
steps we were left with 472 high quality alignments to test
for the presence of positive selection. All alignments that
yielded evidence of positive selection were individually
inspected for possible alignment errors and those with ob-
vious misalignments (e.g. inappropriate insertions or dele-
tions) were removed from the dataset.
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Analysis of the elasmobranch branch yielded a number
of genes that had significant evidence of positive selec-
tion (34 genes) with three genes remaining significant
after FDR of 0.05, and six at an FDR of 0.10 (Additional
file 7: Table S6). This included (at FDR p-value < 0.05) a
gene of importance to immune function, legumain
(LGMN, image of alignment available in Additional file 8:
Figure S6), which had several sites under selection as iden-
tified by BEB. This gene is of particular interest since it
was one of our candidate genes in both the innate and
adaptive immunity gene lists, and it plays a role in some
of the antigen processing steps that were enriched in the
elasmobranch GO annotations. The other two genes that
displayed strong evidence of positive selection were Tim22
(mitochondrial import inner membrane translocase sub-
unit TIM22, image of alignment available in Additional
file 9: Figure S7) and Bag1 (BAG family molecular
chaperone regulator 1, image of alignment available in
Additional file 10: Figure S8), which are involved in trans-
porting proteins into the mitochondria and in regulating
various cellular signaling pathways such as apoptosis,
respectively.
To provide further confirmatory evidence of positive

selection on legumain in elasmobranchs, we employed
the program BUSTED [58], looking for episodic positive
selection along the branch leading to the elasmobranch
ancestor. This test confirmed the branch-site test results,
finding significant evidence of diversifying selection (p =
0.008) with 11% of sites having a dn/ds of 2.65, indicat-
ing an elevated rate of non-synonymous substitutions
for our selected branch. The Bayes Empirical Bayes
(BEB) analysis conducted during the codeml analysis of
legumain indicated that two sites had > 95% probability
of being under positive selection in elasmobranchs.
These two sites are residues 105 and 261 in the human
legumain protein sequence. Neither amino acid is part
of the active site (which is composed of a cysteine at
residue 189, a histidine at 148, and an asparagine at 42
[59]). However, both sites under selection in elasmo-
branchs reside at the start or end of a possible helix
motif in the secondary structure for the human legu-
main protein as described on its Swiss-Prot entry. The
change at residue 261 is located within the fifth alpha
helix of the protein and is also two amino acids before a
glycosylation site in the protein [59].
The positive selection analyses on endotherms yielded

nine genes where the alternative model was significantly
better than the null model and that had a proportion of
sites with a dn/ds >1 (Additional file 7: Table S7). One of
these genes, catalase (CAT), remained marginally signifi-
cant at a false discovery rate cutoff of 0.10, and is involved
in removing oxidative species from the cell, an important
complementary process to elevated metabolic function
and respiratory rate in an endothermic species [60–63].

Discussion
Our goal here was to characterize transcriptomic differ-
ences between elasmobranchs and teleosts, and more spe-
cifically, to identify expressed gene differences related to
immune system function between these two taxonomic
groups. In addition, by including representative species of
both ectotherms and endotherms from each of the two lin-
eages, we aimed to identify expressed loci that might have
evolved convergent roles linked to endothermy. In so
doing, we conducted transcriptome sequencing and assem-
bly, which provides significant genetic resources for several
taxa, and particularly the elasmobranchs, where transcrip-
tomic/genomic resources were previously lacking.
From our assembly statistics it was apparent that the

species with the greatest number of sequencing reads
yielded many more assembled transcripts, ORFs, and an-
notated ORFs. However, if we consider the n50 statistics,
most species were quite similar with n50 values between
two and three kb (with the exception of mako shark at
779 bp), which are on par with similar recent RNA-seq
experiments in other non-model species [64] and larger
than single tissue RNA-seq assemblies in spotted cat-
shark [31]. The number of unique Swiss-Prot annota-
tions was similar across species (ranging from 9,530 to
11,717, and a mean = 10,877 genes, Table 1) and agrees
with similar estimates in heart transcriptome studies in
non-model species [65]. We identified 5,358 Swiss-Prot
gene annotations that were shared between all seven of
our species, indicating that between 46-56% of gene an-
notations in each species were shared among the rest.
When looking at our MCL clusters, the number of clus-
ters that included all species represented from 61-71% of
the transcriptome for each species.
In terms of shared orthologues, comparisons to other

studies can be difficult to make because large interspe-
cific comparisons are still somewhat nascent, and there
are often differences in sequencing technology, output,
or ortholog retrieval. Furthermore, the physiological and
developmental state from which the animals were sam-
pled will have a significant bearing on the expressed pro-
file of each species [66]. Nonetheless, several studies are
worth comparing to our results. Zhang et al. [67] re-
cently compared interspecific spleen transcriptomes of
house finch and zebra finch (same order, different fam-
ilies) and found that less than half of all genes expressed
in either species were expressed in both species. Simi-
larly, Elmer et al. [68] reported approximately 50%
orthologs in transcriptomes of two congener species of
cichlid fishes. Thus, the proportion of expressed heart
loci that were shared amongst our species is not atypical
compared to other studies, especially considering the
number of species sampled herein.
We observed that although most species shared a core

set of genes (about 50% of gene annotations in each
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species are shared across the seven species) expressed in
heart tissues, there was also a set of genes whose expres-
sion was limited to each species and/or group of species.
It is possible that differences between species and/or
groups could be driven by either (or both) the presence/
absence of these hundreds of genes or by regulatory
mechanisms driving differential expression [69, 70].
Evaluating whether expression differences between taxa
was more of a determining factor than gene presence/
absence would require sampling of multiple individuals
of each taxon and confirmation of expression values
with additional methods such as qPCR. However, and
particularly for this sort of tissue, such sampling is not
feasible given the difficulties of accessing these large-
bodied species in the wild and the conservation status of
the sharks, thus we restricted our analysis to the pres-
ence/absence rather than levels of expression. Nonethe-
less, our characterization of the differences in GO term
representation, genes whose expression was limited to
particular groups, and analysis of positive selection iden-
tified genes and pathways that may be of importance to
biological differences between these taxa.

Genetic differences between elasmobranchs and teleosts
The differences in the genes that are expressed solely in
elasmobranchs, the enriched GO terms, and the genes
under positive selection provide biological insights re-
garding possible distinguishing factors between elasmo-
branch and teleost lineages. In particular, a number of
immunity related genes differed in their presence and se-
quence evolution in elasmobranchs. The number of GO
terms enriched in elasmobranchs and in teleosts are
relatively similar, however, between each of these two
sets of genes there are differences that have a direct link
to adaptive and innate immunity. It is known that elas-
mobranchs have a different genomic organization of
various adaptive immunity genes compared to other ver-
tebrates [8, 10, 11]. Our GO enrichment results indicate
that these genetic differences in adaptive immunity of
elasmobranchs exist not only at the genomic but also at
the transcriptional level. It is important to identify these
differences since it can lead to a better understanding of
both the ancestral mechanisms underlying adaptive im-
munity and those characteristics which have been select-
ively maintained over an evolutionary timescale that far
outstrips that of mammals [6].
The differences in the immunity gene repertoire be-

tween teleosts and elasmobranchs was not only apparent
in GO category differences but was also evident in the
presence of immunity related genes whose expression
was restricted to several and/or all elasmobranchs. Simi-
lar numbers of candidate adaptive and innate immune
genes are present across elasmobranchs and teleosts
(Fig. 6). However, when looking at the genes that were

expressed only in elasmobranchs, several interesting im-
munity genes are apparent. This included genes such as
“MHC class II antigen, DP beta 1 chain”, ‘Ig gamma 2
chain c region’, and ‘Interferon gamma receptor 1’ which
echo the enrichment of GO terms associated with anti-
gen presentation and Fc-receptor signaling in elasmo-
branchs. This also included genes that were not present
in the elephant shark genome. Specifically, five of the
seven adaptive immune genes restricted to the four elas-
mobranchs and 30 of the 37 adaptive immunity genes
expressed in two or more of the elasmobranchs (but ab-
sent from teleosts), were absent in the reported elephant
shark genome. This points to possible differences in im-
mune gene content between elasmobranchs and holoce-
phalans that requires confirmation in a comparison
between whole genome sequences of representative spe-
cies from these two suborders of the Chondrichthyes.
Immunoglobulins in elasmobranchs have received at-

tention in the literature due to differences with higher
vertebrates in genomic arrangement and the presence of
a novel class of immunoglobulins (new antigen receptor,
IgNAR, [7, 8, 10, 11]). We did not detect the presence of
IgNAR in our Swiss-Prot annotations; however, this does
not preclude the presence of the underlying genes in
these species. We did detect three different IgW genes
whose expression was limited to one or more elasmo-
branchs. IgW is similar in form to IgD in mammals but
is largely restricted to cartilaginous fish [71–73]. This in-
cluded a secretory form of the IgW protein that was
present in all elasmobranchs, except ray, suggesting its
consistent expression. Additionally, there are multiple
IgG c-domain genes that have significant matches to se-
quences in the heart transcriptomes of two or more of
our elasmobranch species. Although IgG genes are
thought to have arisen in amphibians [74, 75], a form of
this molecule has been observed in camels [76] that be-
haves similarly to IgNAR. Instead of the classical two
heavy chain, two light chain, formation of most anti-
bodies, both the camelid IgG and the shark IgNAR are
composed of only heavy chains. Given this information
and the paucity of elasmobranch IgNAR sequences in
Swiss-Prot (only one sequence from nurse shark, Gingly-
mostoma cirratum), we suspect that some of these IgG
sequences probably represent Ig molecules typical of
cartilaginous fishes, with IgNAR or IgW domains that
are not well represented in the curated Swiss-Prot data-
base. Indeed, several of these sequences have better
matches to IgNAR or IgW proteins in the NR database.
This highlights the need for further identification of all
of the requisite domains of IgNAR and the need for add-
itional exploration of these genes in elasmobranchs from
a genomic perspective.
Our analyses identified significant evidence of positive

selection on several elasmobranch genes including
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legumain (LGMN), which plays an important role in
various aspects of immunity, including processing anti-
gens for presentation by MHC class II [59, 77, 78]. Not
only is legumain of interest because of its immune func-
tions but it has also been reported to be overexpressed
in several cancers [79] and used as a target to eliminate
tumor associated macrophages [80]. Elasmobranchs are
claimed to have the lowest incidence of malignant neo-
plasia (tumors) of any vertebrate group [81], however,
this remains highly controversial [82], and insufficient
information exists from which to base any firm conclu-
sions. At the same time, it is of some note, that there are
several publications reporting various shark extracts as
having anti-tumorigenic properties [83–85]. Over-
expression of legumain occurs in tumor-associated mac-
rophages and is thought to contribute to the tumor pro-
moting inflammation associated with most malignancies
[80, 86]. In addition to over or under expression of a
gene, altering the structure of the protein, through key
substitutions, driven by the action of natural selection,
could change its overall function or more subtly alter its
role. It is quite possible that the evidence for molecular
adaptation that we detect in legumain reflects a modified
role in elasmobranchs relative to other vertebrates. We
feel it will be important to evaluate the purpose and ef-
fect of adaptive changes in this protein in elasmo-
branchs, providing insight on the impact of these
changes on legumain’s role in immunity and its interplay
with macrophages. Another gene with a potential role in
cancer, which was also under positive selection, and
remained significant after FDR correction, was Bag1
(Bcl2 associated athanogene). Bcl2 is an oncogene that
encodes a membrane protein that blocks a step in a
pathway leading to apoptosis [87]. Bag1 encodes a pro-
tein that binds to Bcl2 and enhances the anti-apoptotic
effects of Bcl2 [88]. Apoptosis, or programmed cell
death, is a process that eliminates dysfunctional cells
and one of the hallmarks of cancer is the ability of ma-
lignant cells to evade apoptosis. One of the proposed
modes of action of epigonal (shark lymphomyeloid tis-
sue) cell medium as an anti-tumorigenic substance is in
inducing apoptosis [85]. This suggests the possible con-
jectural hypothesis that positive selection on Bag1 in
elasmobranchs may have altered its tendency to enhance
the anti-apoptotic effects of Bcl2.
In addition to immunity related functions, annotations

of elasmobranch specific genes included terms related to
various other roles such as cellular responses (e.g. “signal
transduction”), transport (e.g. “intracellular protein
transport”), and control of gene expression (e.g. “positive
regulation of transcription from RNA polymerase II pro-
moter”). This also included genes not only restricted to
elasmobranchs, but genes under positive selection on
the elasmobranch branch. Of the three genes that had

evidence of positive selection, two of these also lacked
an obvious immune function. One of these we already
discussed—Bag1—the other is Tim22, which encodes
part of the identically named TIM22 complex. This
complex is necessary to transport nuclear encoded pro-
teins that are then embedded in the inner mitochondrial
membrane [89]. Differences in the function of this gene
could have impacts on basic cellular functions such as
cellular respiration and energy production.
It is also possible that some of the differences identi-

fied in the elasmobranch transcriptomes, compared to
teleosts, are related to their role in wound healing.
Sharks, rays, and skates are thought to have the ability
to heal wounds relatively quickly, based on various anec-
dotal reports and observational studies [90–94]. How-
ever, the molecular mechanisms of wound healing in
elasmobranchs are unclear. In mammals wound repair
consists of several distinct stages including an inflamma-
tory response during which various innate and adaptive
immune cells such as neutrophils, macrophages, and
lymphocytes are recruited to the wound site [95]. The
proper timing of these stages is necessary for effective
healing, and an important inhibitory factor in the overall
process is the development of infection, which can lead
to further damage or prolonged inflammation [96]. Thus
genes and pathways associated with promoting and con-
trolling inflammation as well as those involved in clear-
ing cellular debris and pathogens are critical to the
wound healing process. Some of the processes that we
have highlighted as enriched GO terms in elasmo-
branchs may play an integral complementary role in pre-
venting infection and perhaps even in direct regulation
of wound repair. Previously, we discussed the enrich-
ment of several GO terms such as those associated with
Fc receptor signaling, and in particular the “Fc-gamma
receptor signaling pathway involved in phagocytosis”.
Fc-gamma receptors are expressed on a variety of im-
mune cells including neutrophils, mast cells, macro-
phages, and dendritic cells. When these receptors bind
to an antibody/antigen complex they can initiate a var-
iety of responses from stimulating inflammation to initi-
ating phagocytosis of foreign cells (reviewed in [97]),
that are important factors in preventing infection and
ensuring proper progression of the wound healing
process. Thus the genes associated with this process
may have roles in wound healing that are complimentary
to and/or work in concert with their function in elasmo-
branch immunity.
Another possible connection between the elasmo-

branch enrichment results and wound healing is with re-
gard to MHC class II. GO processes associated with
antigen presentation by MHC class II were enriched in
elasmobranchs, one MHC class II gene had expression
restricted to elasmobranch species, and LGMN (also
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involved in processing antigens for presentation by
MHC class II) was under selection in elasmobranchs,
serving to highlight the importance of the MHC class II
complex in elasmobranchs. Interestingly, there is experi-
mental evidence in mouse models showing that wound
healing is impaired in the absence of MHC class II.
Schäffer et al. [98] demonstrated the importance of
MHC class II in the healing of wounds to the skin; they
found that wound collagen deposition and wound break-
ing strength were impaired in MHC-class-II-knockout
mice. A study of myocardial infarction in mice found
that the absence of CD4+ T-cells (which interact with
MHC class II) in CD4 knock-outs, resulted in greater
mortality and abnormal collagen formation compared to
wild-type mice, with even greater mortality in mice that
lacked all four MHC class II genes [99]. These studies
indicate the importance of MHC class II to not only
adaptive immunity but also, more specifically, to tissue
repair after injury. To date our understanding of the
MHC in elasmobranchs is limited to a few species, and
the genomic organization of the region is relatively un-
known [100]. Future efforts are needed to understand
the organization and function of the MHC in elasmo-
branchs as part of understanding immune response and
the mechanisms by which elasmobranchs are able to
regulate efficient healing.

Gene content associated with regional endothermy
Our hypothesis is that there should be patterns, either in
terms of gene content/annotation or in terms of positive
selection, that are shared by regionally endothermic
fishes, reflecting the convergent evolution of mechanisms
that raise the temperature of some organs above ambient.
Although the heart is often at ambient temperature in
endothermic fishes such as tunas [18, 19, 101], it is still re-
quired to supply oxygenated blood to the metabolically ac-
tive tissues, with accompanying demands placed on its
function in regionally endothermic fishes, and with associ-
ated impacts on gene expression [24]. Thus we expected
that the heart transcriptomes would contain gene content
and annotation differences in regional endotherms relative
to ectotherms. Indeed, we did identify shared molecular
characteristics in the regional endotherms, in terms of GO
differences compared to ectotherms, and in terms of genes
whose expression were restricted to the endothermic spe-
cies. There were a total of 15 GO terms enriched in the
endothermic taxa involved in our comparison, including a
number of categories of likely biological importance to an
endothermic physiology, such as the terms “cardiac
muscle cell contraction” and “regulation of cardiac muscle
cell contraction”. This coincides with expectations that
endothermic species have increased cardiac function to
accommodate increased metabolism, heart rate, and over-
all activity [18, 39, 63, 102–104].

There were a total of 19 genes whose expression was
restricted to endotherms. The GO terms that describe
these genes included several BP terms linked to metabol-
ism, including for instance, the expression of two genes,
ELOVL6 and TM6SF2, restricted to endotherms in our
dataset and that are involved in lipid metabolism.
ELOVL6 encodes ‘Elongation of very long chain fatty
acids protein 6’, which catalyzes the elongation of fatty
acids [105]. The function of TM6SF2 is not well charac-
terized, but it has recently been shown that in humans
this gene regulates triglyceride secretion and fat metab-
olism in the liver [106] and certain variants have been
associated with lowered risk of myocardial infarction
[107, 108]. In addition to these genes, MGAM2, a gene
annotated with the GO term: “carbohydrate metabolic
process”, was also expressed only in the endotherms.
Though there is little information on this gene, its simi-
larity to its paralogue, MGAM and its structure have led
to its description on Swiss-Prot as being involved in hy-
drolysis of 1,4-alpha-D-glucose. Considering the higher
energy needs and higher metabolic rates of endothermic
fishes relative to ectothermic fish [19], the expression of
these metabolic genes in the endothermic species may
reflect the need for efficient energy storage and metabol-
ism in these species. Elevated expression of genes deal-
ing with lipid and carbohydrate metabolism were also
detected in cold acclimated Pacific bluefin tuna,
highlighting the importance of metabolic genes to heart
function during maintenance of elevated temperature in
other tissues of partially endothermic species [24]. The
increase in expression of lipid metabolism genes in cold
acclimated fish was suggested to lead to an increase in
lipid formation and changes in membrane composition
[24]. It is possible that some of the genes identified here
(e.g. ELOVL6), known for their function in other tissues,
are playing a role in these metabolic and structural pro-
cesses in heart tissue of endothermic fishes.
In addition to this evidence suggesting the importance

of cardiac function and lipid metabolism in the regional
endotherms, we identified limited evidence of positive
selection on the gene that encodes the protein catalase.
This enzyme is responsible for breaking down hydrogen
peroxide and thus preventing damage to the cell from
oxidative species [61]. For a species with increased meta-
bolic rate this would be a key process to prevent damage
to the cell from H2O2 produced following electron
transport at the end of cellular respiration [60, 63]. The
evidence for selection on this gene is, however, marginal
after correction for FDR and would require further val-
idation with full-length sequence from lamnid sharks
(we possessed only a fragment of the sequence for
mako), billfishes, and tunas. Nonetheless, the importance
of this gene for protection against oxidative damage makes
it an excellent candidate for future study. Indeed,
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microarray study of the heart transcriptome of the Pacific
bluefin tuna at various temperatures have identified
changes in the expression of genes dealing with oxidative
stress under cold temperatures [24]. This suggests add-
itional study of the evolution of catalase and other genes
dealing with reactive oxygen species might well prove a
fruitful line of investigation as a secondary adaptation to
the metabolic demands in regionally endothermic species.

Conclusions
In this study we utilized RNA-seq of heart transcrip-
tomes in seven species in order to examine differences
in gene content and patterns of positive selection in
elasmobranchs relative to teleost fishes, as well as in re-
gional endothermic species. We have uncovered several
lines of evidence pointing to differences between elas-
mobranchs and teleosts in genes underlying notable
functional properties. This was particularly highlighted
by differences in the expression and evolution of im-
munity genes in the elasmobranchs, representing the
earliest vertebrate lineage with adaptive immunity. Our
study also identified genes that may have evolved con-
vergent roles in the phenomenon of regional endo-
thermy, characteristic of a select few elasmobranchs and
teleosts. In addition to the biological differences dis-
cussed herein, these transcriptome data provide signifi-
cant genetic resources for future studies in a group
(elasmobranchs) that is severely lacking in genomic
resources.
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