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Abstract

Background: Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the
transcriptome’s limitations in describing higher functional phenotypes and protein events. Perhaps the most important
shortfall with transcriptomic ‘snapshots’ of cell populations is that they risk being descriptive, only cataloging heterogeneity
at one point in time, and without microenvironmental context. Studying the genetic (‘nature’) and environmental (‘nurture’)
modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when
studying highly plastic cells such as macrophages.

Results: We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs
live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we
demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response,
have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell
cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis.
Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors (‘restriction factors’), with no known co-regulation.

Conclusion: As single-cell methods continue to mature, so will the ability to move beyond simple ‘snapshots’ of cell
populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging,
and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences.
It’s these microenvironmental components - ignored by standard single-cell workflows - that likely determine how
macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.
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Background
Macrophages - cells that phagocytose microbes, unhealthy
and cancerous cells - are at the heart of human aging and
pathology from infectious and noninfectious aetiologies.
As immune sentinels, macrophages exhibit a variety of
pro- and anti-inflammatory phenotypes. At the cellular
level these phenotypes are determined not only by
(epi-)genetic lineage but are also highly plastic to
changing tissue environments [1]. The interplay be-
tween these phenotypic drivers underlies many
macrophage-mediated pathologies. For example, the
complex infectious dynamics between HIV-1 and
macrophages within particular tissue niches not only
prevents virus eradication in patients on antiretrovir-
als [2], but is a likely source of low grade neuroin-
flammation leading to neurocognitive decline [3].
Gene-edited macrophages can be used to study genes
with known host-pathogen interactions, but in the ab-
sence of genetically tractable blood derived macrophages,
macrophages derived from genetically modified pluripo-
tent stem cells (PSCs) provide a suitable alternative model
system. These stem cell models have the advantage of
reproducibly producing large numbers of edited cells
under controlled conditions [4, 5]. However, one chal-
lenge with stem cell models is the intersection of
biological and technical (stem cell differentiation) het-
erogeneity that needs to be accounted for, making the
case for single-cell sequencing. In addition, with such
highly plastic cells it is important to be able to study
the context of genetic modifiers, by controlling signal-
ing microenvironments and cell interactions. It’s this
context that is crucially lost with many single-cell se-
quencing approaches, and so a technical goal would
be to be able to include the effects of multiple envir-
onmental, signaling and intervention variables on cell
population phenotypes and dynamics.
To allow for a genotype-by-environment investigation

we cultured over 500 CRISPR-edited macrophages using a
novel microfluidic platform that allows time and dose
control over each individual cell’s microenvironment [6]
(Fig. 1a). A mixture of wild-type and SAMHD1 knockout
monocytes, were generated from HUES-2 human embry-
onic stem cells [4]. These were differentiated into
macrophages that resemble blood monocyte derived
macrophages, both phenotypically (high phagocytic ability,
expression of CD14, HIV-1 infectability) and transcripto-
mically [7], while sharing ontogeny with specific tissue-
resident macrophages such as microglia of the central ner-
vous system [8, 9]. The need for and importance of such
tissue-resident models has recently been reviewed by
Sattentau and Stevenson [10]. As the protein of interest in
these cells, SAMHD1 is a poorly understood dNTPase
that has emerged as a potent HIV-1 restriction factor in
non-cycling cells [11]. Its primary physiological role is

believed to be the maintenance of genome integrity by
limiting the dNTP pool when DNA replication is not re-
quired, which is in keeping with observed SAMHD1
downregulation in several cancers [12, 13]. Of direct rele-
vance to innate immunity is its congenital loss of function
associated with Aicardi-Goutieres syndrome, a neurode-
generative disease linked to dysregulated inflammation
[14]. In order to gain better insights into SAMHD1 biol-
ogy within macrophages, we set out to study the knockout
of this gene in our model. RNA sequencing at a single-cell
resolution was necessary to, at a minimum, rule out tech-
nical contributions from unwanted cell populations that
can occur with imperfect stem cell model differentiation.
Furthermore, as SAMHD1 has a direct association with
inflammation signaling, we sought to do this in a way that
would not only study aspects of inflammatory activation
but also cell autonomous effects separate from the influ-
ences of macrophage paracrine signaling.
Per microfluidic chip, up to 48 individual macrophages

were isolated at random from a mixture of differentially
stained wild-type and knockout cells, and cultured in
isolation under different inflammatory signaling environ-
ments. These culture environments comprised four pos-
sible combinations of exposure or non-exposure to
lipopolysaccharide (LPS, to stimulate inflammatory activa-
tion), and standard or conditioned media. Conditioned
medium was derived from bulk macrophage cultures, to
simulate the intercellular signaling component that is im-
portant in the control of macrophage inflammatory activa-
tion. In total this provided eight cell populations per chip
(each cell having one of two genetic conditions, and one
of four culture environment conditions), with each chip
cultured for either one or eight hours in order to account
for early temporal changes in response. Details of the ex-
perimental work flow are provided in Additional file 1:
Figure S2. Cellular phenotypes such as motility and
morphology were tracked by live-cell imaging, before the
cDNA from cells was harvested for single-cell RNA se-
quencing. All of the aggregate 16-fold combinations of
genotype, environment and time were repeated in at least
nine replicate runs to ensure robustness of conclusions.
Details of the experimental and imaging methods, includ-
ing the sequencing quality control are provided in the
Methods and Additional file 1.

Results
Identifying different macrophage states (phenotypes)
Exploratory RNA-seq data analysis (Fig. 1b) revealed a
clear differentiation between one- and eight-hour cul-
tured cells. It also highlighted a subgroup of cells present
at both time points that enriched for a gene set previ-
ously demonstrated to be differentially expressed in
macrophages treated with the (anti-)inflammatory TGFB
cytokine (Additional file 1). This provided initial
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Fig. 1 (See legend on next page.)
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evidence for the potential biological relevance of the ob-
served heterogeneity among the macrophages. To more
formally study this latent/emergent (i.e. previously un-
known) heterogeneity and the gene expression differences
underlying it, we developed a novel hybrid model-driven
and non-parametric clustering method constrained to re-
port only cell clusters that were well represented across
replicates. We provide further details in the Methods, with
all analysis code and results provided in the Additional
files 1 and 2 respectively. Our more formal clustering ana-
lysis confirmed the existence of the lower-abundance cell
state at both time points (called ‘cluster one’ in Fig. 1c&d)
but also a reproducible third state (called ‘cluster three’)
emerging after eight hours. A search for associations be-
tween proportions of the cell states and culture conditions
revealed a lower abundance of cluster three when in
standard media with LPS (Fisher’s Exact -log10P =5.14,
Fig. 1e&f), suggesting another inflammatory sub-
phenotype in the cells. With these results demonstrating
heterogeneity that would otherwise be missed with trad-
itional sequencing, we then asked if any of these cell types
resembled the tissue-resident phenotype of interest.

Identifying the macrophage phenotype of interest
To better understand these latent cell states, we used
our modification on the Heskes Rank Product method
[15] to estimate upper and lower p-value bounds on dif-
ferential and heterogeneous gene expression. As detailed
in the Methods, we defined differential expression as a
global/overall shift in gene expression, while heteroge-
neous/context-specific expression was defined as highly
variable expression across cell states or culture microen-
vironments. We selected this non-parametric gene rank-
ing approach not only for its focus on result
reproducibility, but for its speed and ease of data fusion
that make it well suited to single-cell analysis.
Compared against one-hour cultures, most cells in

eight-hour cultures (cluster two cells) progressed towards
an anti-inflammatory transcriptional signature consistent
with the tissue-resident macrophage phenotype of interest.
This is evidenced, for example, by the expression of
IL1RN, encoding IL-1 receptor antagonist, which in-
creased 18-fold over time in cluster two (Fig. 2a). Recom-
binant IL1RN is used to treat severe inflammatory
conditions mediated by its ligand, the archetypal pro-

inflammatory cytokine IL-1 [16]. In contrast to other cells,
cluster one cells did not move towards a transcriptional
profile consistent with a tissue-resident phenotype, and
tended to maintain up- or down-regulation of cluster-
specific genes. This pattern included lower expression of
GAPDH and TPI1, genes involved in glycolysis, a pathway
known to vary across macrophage activation phenotypes
[17]. Compared with the other clusters, cluster one
expressed higher levels of FOXP1 across all culture condi-
tions (Fig. 2d, −log10P of 6.03 and 4.85 at one and eight
hours, both globally significant at a 5% FDR). FOXP1 is a
transcription factor involved in maintaining embryonic
stem cell pluripotency that must be turned off for
complete monocyte differentiation into macrophages [18].
Concerned that selective expression of FOXP1 might rep-
resent technical differentiation heterogeneity, we used the
imaging data to search for other contributing factors.
While we did not find evidence for cell motility or morph-
ology associations, we noted that cluster one cells were
more likely to have come into contact with the culture
chamber retention beads used to prevent cells from
escaping (Fig. 1a, Fisher’s Exact -log10P = 4.10). We also
noted that cells cultured towards the edges of the chips
were more likely to touch retention beads (Fisher’s
Exact -log10P = 1.79), but that the chip edge positions were
enriched for in cluster one, seemingly independent of the
bead association (Fisher’s Exact -log10P = 3.19, Additional
file 1: Figure S6). As cell imaging was performed hourly,
this may in part reflect false negatives for detecting bead
contact of cells in a less mature and adherent state. Not-
withstanding the evidence for both differentiation and en-
vironmental factors underlying cluster one, the low
correlation between cluster one and off-chip bulk tissue
samples (Additional file 1: Figure S7) led us to conclude
that it may represent a potentially interesting but low-
abundance phenotype that is unrelated to our main ques-
tion of SAMHD1 biology in tissue-resident macrophages.
A comparison of gene expression in cluster three versus

other cells (Fig. 2b) was consistent with a shift towards
macrophages with a tissue remodelling phenotype. This
was evidenced, for example, by greater expression of
TIMP3, an inhibitor of extracellular matrix degradation,
and CHI3L1, a secreted glycoprotein also thought to drive
tissue remodelling and a known genetic risk factor for
asthma severity [19]. Since cluster three’s transcriptional

(See figure on previous page.)
Fig. 1 Macrophage culture and subtypes. a A single micro-volume culture chamber from the Polaris™ microfluidics chip, containing a macrophage.
The media conditions per chamber can be modified to study microenvironmental perturbations. b Visualization of the major cell differences — such
as with this multi-dimensional scaling of the transcriptomic rank correlations — demonstrated the separation of cells cultured for one hour (light),
eight hours (dark), and a reproducible subcluster present across both time points (arrow). c&d Formal clustering confirmed this subcluster (cluster one)
in addition to a third subcluster emerging after eight hours. The inner 50% of cells in each cluster are shown in colour for dimensions one and three
to better convey relative cluster positions and densities. e&f Cluster three significantly reduced its proportion in the context of LPS and standard media.
95% confidence intervals for change in proportions are shown
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Fig. 2 (See legend on next page.)
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phenotype most closely resembles that of cluster two
(Additional file 1: Figure S18), it seems plausible that this
represents an emerging secondary phenotype that requires
macrophage signaling when cells are exposed to LPS
(Fig. 1e&f). Future studies over longer culture periods will
help clarify the microenvironmental dependence and per-
sistence of this cluster.
We focus the remainder of our observations on the main

body of cells (cluster two), resembling the desired tissue-
resident phenotype. While no cluster two enrichment for
particular motility or morphology imaging features were
found over these short culture periods, we briefly note an
imaging subtype of cells observed to be phagocytosing the
retention beads. Phagocytosing macrophages did not as-
sume a distinct transcriptomic cluster 一 likely due to
short culture times 一 nevertheless they did enrich for oxi-
dative stress and mitochondrial genes, examples being
PRDX1 and MT-CO3 (−log10P of 4.60 and 4.43 respect-
ively, both globally significant at 5% FDR). This unexpected
result suggests an avenue for single-cell studies to explore
the temporal dynamics of phagocytosis [20].

Changes in macrophage behavior (cluster two) with
SAMHD1 knockout
After filtering our data to focus on the cell subtype of
interest (cluster two), we tested for varying knockout
and wild-type differential and heterogeneous expression
over time. The most striking feature of the globally sig-
nificant knockout effects was that they were predomin-
antly microenvironment specific (Fig. 3a). Not only does
this stress the importance of studying gene-environment
interactions in cellular genetics models with known
phenotypic plasticity, but in this work allows us to com-
ment on macrophage signaling contributions. Specific-
ally, we note a highly significant association with SOD1
expression, a gene that encodes the cytosolic isozyme of
superoxide dismutase. SOD1 is a superoxide radical
scavenger that may confer some protection against HIV-
1 neuropathy as part of the oxidative stress response
[21], but which has no described associations with HIV-
1 restriction factors. As with SAMHD1 loss of function,
gain-of-function mutations in SOD1 are associated with
neuroinflammation and degeneration, clinically mani-
festing as amyotrophic lateral sclerosis, which is likely a

result of toxic protein aggregates [22]. Overall, SOD1
transcript levels in this study were similar in wild-type
and SAMHD1 knockout cells. However, whereas SOD1
expression in wild-type cells stimulated with LPS in-
creased over time as expected, expression in knockout
cells increased over time in the absence of LPS activa-
tion. Not only does this point to a qualitative difference
in expression but 一 as can be seen from the barely
detectable expression changes in standard media
(Fig. 3a) 一 the magnitude of the difference is much
greater in conditioned media. This SOD1 oxidative stress
response thus has both a notable genetic and signaling
component, which may be dampened by identifying and
blocking the augmenting signaling factor(s).
Further exploring this oxidative stress response, we

noticed a change in SOD1’s coexpression (i.e. genes cor-
relating with it) in knockouts versus wild-types (Fig. 3c).
Analysing which genes tend to coexpress with SOD1 al-
lows for biological contextualisation of this effect, as
genes are only expressed when required, and so expres-
sion correlation implies coregulation. A key difference
here being the increased coexpression resolution offered
by single-cell analysis to generate gene networks in both
perturbed and unperturbed cells, compared with con-
ventional sequencing that is limited to only studying
average gene correlations with perturbation. We asked
whether there are genes with which SOD1 alters its rank
(Spearman) correlation across cells when SAMHD1 is
knocked out. Fig. 3b lists the globally significant signa-
tures from MSigDB v5.1 [23], consisting of gene sets
more correlated with SOD1 in knockout versus wild-
type cells. In other words, these highlight genes and
pathways coregulating with the altered oxidative stress
response in the knockout macrophages. In addition to
the expected enrichment for reactive oxygen species
(ROS) modulators in this list, we note a striking enrich-
ment for proteasome genes. The proteosome is known
to be activated and dysregulated with SOD1 mutation,
leading to aberrant cellular proteostasis [24]. However, it
is plausible in these cells that the altered proteostasis is
simply a result of the macrophages’ stress response. In
particular we note an enrichment for proteasome genes
involved with the activation of NF-kappaB (NF-kB), a
pro-inflammatory transcription factor on which multiple

(See figure on previous page.)
Fig. 2 Cell cluster gene expression. In each plot, yellow indicates increased and magenta indicates reduced gene expression. a-b Heatmaps of the top 50
gene expression results, ranked by statistical significance, are shown for clusters one and two over time (a) and cluster three versus other cells, broken down
by culture condition (b). The numbers provided in parentheses in this and other heatmaps are -log10 p-values for differential and heterogeneous (context
specific) expression respectively. Results that are globally significant after 5% false discovery rate (FDR) correction are marked with an asterisk. c The differential
expression results for cluster one versus other cells at one and eight hours. d A cumulative proportion plot for FOXP1 expression broken down by cell clusters.
As in other plots, clusters one, two and three are plotted in red, blue and green respectively. Each line plots the cumulative proportion of cells
at or below a certain expression level. Cluster one demonstrates greater expression, with approximately half of cluster two and three cells
having no detectable expression
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macrophage signaling pathways converge [25]. A similar
proteostasis theme is observed for the regulation of orni-
thine decarboxylase, a macrophage anti-inflammatory
enzyme [26] that metabolises a well described marker of
macrophage pro- versus anti-inflammatory phenotype
polarisation. With these pathway associations validating
this approach by supporting known biology of increased
inflammation with SAMHD1 knockout - albeit within
the context of oxidative stress and altered proteostasis -
we asked if other pathways in Fig. 3b point to unex-
pected biological themes.
A striking pathway result was the repeated enrichment

for proteasome genes involved in the degradation of cell
cycle proteins. While the direct causal relationship be-
tween cell cycle and SAMHD1 is considered to be via
its cyclin-dependent kinase phosphorylation and inhib-
ition [27], these results point to an additional reverse

relationship. A tumor suppressor role for SAMHD1 has
been proposed based on its maintenance of genome integ-
rity and cancer associations with downregulation [12, 13].
However, the pathways in Fig. 3b counter-intuitively point
to p53 dependent and independent G1 arrest as part of
the DNA damage response. These results highlight a ne-
cessary fine balance in SAMHD1 activity in terms of cell
cycle control, with too little SAMHD1 arresting cell cycle
progression via other tumour suppressors in response to
DNA damage. This relationship between SAMHD1 and
G1 arrest has been demonstrated in dividing fibroblasts
that turn senescent [28], though an important difference
here is that it suggests the wild-type G0 (post-mitotic)
macrophages shift to a G1 block with SAMHD1 knockout.
Finally, and perhaps most interesting in terms of the HIV-
1 host-pathogen relationship, is the highly significant
pathway enrichment for the degradation of APOBEC3G

Fig. 3 SAMHD1 knockout gene expression (a) Heatmap of the difference between knockout and wild-type expression over time, broken down
by culture condition. Block colours and numbers in parentheses share the same meaning as in the Fig. 2 heatmaps. b Globally significant MSigDB
signatures correlating with knockout SOD1 expression. c The expression of SOD1 and its top co-expressors after eight hours across all cell clusters.
Red, blue and green lines correspond to clusters one, two and three respectively. Widths indicate expression level
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as part of the altered stress response in SAMHD1 knock-
outs. This HIV-1 restriction factor causes proviral DNA
hypermutation via cytidine deamination, and so shares no
known overlap in antiviral activity with SAMHD1 [29].

Discussion and conclusions
As single-cell methods continue to mature, so will the
ability to move beyond simple ‘snapshots’ of cell popula-
tions towards studying the determinants of population
dynamics. We expect that one area of demand for this
type of single-cell functional genomics will be cellular
genetics models, with large-scale efforts already under-
way to generate stem cell banks to support tissue-
specific insights into genetic variants [30, 31]. Even with
the simplest such models, single-cell sequencing will
prove useful to rule out heterogeneity unrelated to the
cell phenotypes of interest. In our macrophage model,
for example, we have seen that while the majority of
cells adopted a tissue-resident phenotype, cells that be-
have quite differently can be present. As the co-culture
and genetic complexity of cellular genetic models in-
creases, so will the demand for methods to confidently
map heterogeneity with high replicability across multiple
culture or laboratory conditions. Automated and stan-
dardized microfluidics present a decided advantage in
this regard. In this proof-of-principle work we have been
able to generate complex experimental designs within
chips over multiple iterations. As all the conditions stud-
ied were replicated at least nine times, we have been able
to develop and implement statistical models that focus
on highly replicated cell behaviors that could easily be
integrated with results from other laboratories.
Perhaps the most distinct advantage of such lab-on-chip

microfluidics is the ability to perform imaging, temporal
and microenvironmental analyses of cell population dy-
namics. In this study these variables allowed us, for ex-
ample, to comment on the altered oxidative stress
response (SOD1 expression) with SAMHD1 knockout and
macrophage signaling. By blocking the signaling compo-
nent we observed a significant reduction in this knockout
effect. Interestingly, SOD1 and SAMHD1 have known
respective gain and loss of function associations with neu-
roinflammation that are in keeping with effects noticed in
this model. We speculate that targeting the observed sig-
naling component may provide an avenue for the treat-
ment of these and other neurodegenerative diseases
influenced by innate immunity. Microglia (central nervous
system macrophages), for example, are not only implicated
in HIV associated neurocognitive disease (HAND), but
also in Alzheimer’s disease via aberrant inflammatory sig-
nalling [32]. Future work with the Polaris™, assaying
single-cell macrophage supernatants, may prove useful in
narrowing down this as yet unidentified signaling factor.
In this study, single-cell SOD1 coexpression pathway

analysis enriched for altered proteostasis. The most widely
observed biological association with this altered proteosta-
sis was a cell cycle (G1) block as part of the DNA damage
response. While an increased dNTP pool with SAMHD1
loss of function is known to reduce genome integrity, the
SOD1 association with these pathways point to an oxida-
tive stress contribution to DNA breaks triggering G1

checkpoint genes. SOD1 may also directly contribute to
this arrest via its anti-apoptotic signaling [33]. Perhaps
most intriguing is how these associations could provide in-
sights into activating latent viruses within therapeutically
intractable reservoirs such as macrophages and resting
CD4+ T cells, where SAMHD1 is highly expressed [34].
Triggering apoptosis signaling has been proposed as one
therapeutic strategy for HIV-1 activation [35], which
would require SOD1 apoptosis inhibition to be minimised.
Our knockout cells strongly suppressed SOD1 expression
when activated in conditioned media, suggesting that pro-
moting macrophage activation in combination with
SAMHD1 inhibition would, at least in vitro, be the most
effective strategy to purge latent viruses. Infection of the
macrophages with HIV-1 in these microfluidic chips to
directly study these effects is one promising approach to
study this. Such HIV-1 infection studies with other macro-
phage knockouts such as the HIV-1 restriction factor
APOBEC3G, may prove particularly enlightening, as re-
sults from this study suggest a previously unappreciated
connection between SAMHD1 loss of function and
APOBEC3G degradation. Understanding the conditions
under which SAMHD1 inhibition also results in reduced
APOBEC3G levels would be of direct relevance to therap-
ies aimed at viral activation. Under these situations,
SAMHD1 inhibition might have the desired activation re-
sponse, but reduced APOBEC3G would enhance the abil-
ity of the activated viruses to reinfect other cells.

Methods
Stem cells, generation of macrophages and experimental
media
The human embryonic stem cell line HUES-2 was ob-
tained from the HUES Facility, University of Harvard [36].
Feeder-free PSC cells were cultured in mTeSRTM-1
medium (Stem Cell Technologies) on Matrigel (Corning)-
coated tissue culture dishes, passaged with TrypLE
(Invitrogen) with the addition of 10 μmol/L Rho-kinase
inhibitor Y-27632 (Abcam). A double-nicking CRISPR-
Cas9 approach was used to generate SAMHD1-knockout
stem cell lines [37]. Plasmid pX462 (gift from Feng Zhang;
Addgene plasmids cat. 48141, [38]), expressing the guide
RNA, D10A-mutated Cas9 and a puromycin-selection
cassette was adapted to target SAMHD1 at exon 4
(GTGTATCAATGATTCGGACGAGG and CGATACAT
CAAACAGCTGGGAGG; PAM underlined) or exon 5
target sites (CGTTCACTTATCTGCAGCTCTGG and
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GGATGTCTAGTTCACGCACTGGG; PAM underlined)
using protocols previously described [38, 39]. PSCs were
transfected with all four plasmids targeting SAMHD1
using the Neon® Transfection system (Invitrogen) accord-
ing to manufacturer’s guidelines (2 × 106 cells electropo-
rated with 15 μg DNA using a 100 μL tip at 1000 V, 40 ms
pulse width, one pulse), cultured without antibiotics for
48 h and then for 48 h with selection in 0.4 μg/mL puro-
mycin (Sigma). Single-cell clones were generated by plating
transfected PSCs at low density onto mitotically-inactivated
mouse embryonic feeder (MEF) cells [40, 41] on gelatin-
coated tissue culture plates in stem cell medium (KO-
DMEM, 2 mmol/L L-Glutamine, 100 mmol/L nonessential
amino acids, 20% serum replacement, and 8 ng/mL FGF2;
Invitrogen). Clones with modifications at the SAMHD1
locus were identified by high resolution melt analysis. Se-
quencing confirmed that clone E2 had an out-of-frame in-
sertion (29 and 49 bp) into each allele of SAMHD1 exon 4
and G9 had an out-of-frame deletion (43 bp) in one allele
and an in-frame deletion (39 bp) that deleted the essential
allosteric GTP binding site (amino acids 135 to 147) and
would alter the catalytic site. Macrophages derived from
these clones were screened for SAMHD1 expression by
western blotting using a mouse anti-SAMHD1 antibody
(clone 2D7, Insight Biotechnology Ltd) and a rabbit anti-
GAPDH antibody (Sigma) (Additional file 1: Figure S1).
Feeder-free PSC cells were cultured in mTeSRTM-1

medium (Stem Cell Technologies) on Matrigel (Corning)-
coated tissue culture dishes, passaged with TrypLE
(Invitrogen) with the addition of 10 μmol/L Rho-kinase
inhibitor Y-27632 (Abcam). A protocol devised in our la-
boratory was used to generate macrophages from PSC
cultures. Briefly, embryoid bodies were formed using the
spin method in AggreWells™800 (Stemcell Technologies)
plates, each of which was split into two monocyte factories
in T175 tissue culture flasks containing ~150 embryoid
bodies. The monocytes released into the supernatant were
harvested regularly and plated into 96-well plates at
5 × 104 cells per well in macrophage differentiation
medium consisting of XVIVO™15 (Lonza) supple-
mented with 100 ng/mL M-CSF (Invitrogen), 2 mM gluta-
max (Invitrogen), 100 U/mL penicillin and 100 μg/mL
streptomycin (Invitrogen). Four days after plating the
media was replaced with fresh macrophage differentiation
media with additional 10% fetal bovine serum (FBS;
Invitrogen) and the cells were used on day 7 of differenti-
ation. We used three batches (A, B, G, each corresponding
to one AggreWells™800 plate) of wild-type cells and two
batches (G9: C, D and E2: E, F) each of the two
SAMHD1-knockout clones for the Polaris macrophage
stimulation experiments.
Four kinds of media (‘conditioned’ and ‘standard’, with

or without LPS) were used in the microfluidic chips. To
generate conditioned media, stem cell-derived monocytes

were plated at 5 × 105 cells/well in a 12-well tissue culture
plate and differentiated for 4 days in macrophage differen-
tiation medium followed by 3 days in the presence of 10%
FBS. The medium was then replaced with fresh macro-
phage medium plus 10% FBS with or without 100 ng/mL
LPS (Sigma). “Standard media” were generated by incuba-
tion of macrophage differentiation medium plus 10% FBS
either with or without 100 ng/ml LPS at 37 °C to simulate
incubation of conditioned media with cells. For each kind
of medium, after 24 h with LPS/mock stimulation, super-
natants were recovered by centrifugation, 0.45 μm-filtered
and stored at −80 °C then thawed and clarified by centri-
fugation at 14,100 rcf for 10 min before use.

Polaris™ protocols
Polaris runs followed the protocol ‘Using Polaris to
Generate Single-Cell cDNA Libraries for mRNA
Sequencing’ (PN 101–0082 A1, Fluidigm). Set-up parame-
ters are shown in Table S1. Polaris integrated fluidic cir-
cuits (IFCs) were prepared for cell capture by a priming
step, during which the capture chambers were also coated
with the extracellular matrix compound fibronectin
(25 ng/μl, cat. F4759, Sigma-Aldrich) for handling adher-
ent cells, and capture beads (prepared to Fluidigm specifi-
cations) were loaded to prevent the release of captured
single cells (Fig. 1). Priming was arranged to finish as
the cell mix became ready for loading (Additional file 1:
Figure S2A).
For each experimental run, one well of cells from a

single batch each of wild-type and knockout cells was
used. One sample was stained with CellTracker™ Orange
CMRA Dye and the other with both CellTracker™
Orange CMRA and CellTracker™ Green CMFDA Dye
(cat. C34551 and C7025, Thermo Fisher Scientific) in
Wash Buffer (Fluidigm). Dye concentrations were ad-
justed upwards between runs during the experiment to
improve sensitivity and resolution: 1 μM for runs 1 and
2; 2 μM for runs 3 to 12; and 3 μM for runs 13 to 20.
Wild-type and knockout cells were dual- or single-
stained in approximately equal numbers of experiments
(Additional file 1: Figure SB). The culture medium was
removed and the cells were washed twice with 250 μl
Wash Buffer (Fluidigm) then stained with 100 μl of
staining solution at 37 °C for 15 min before a further
wash with 150 μl of Wash Buffer. The Wash Buffer was
removed, 100 μl of 0.5 mM EDTA (cat. 15575, Gibco) in
PBS was added and the cells were incubated at 37 °C
for 15 min before the EDTA was removed and the
cells were resuspended gently in 50 μl of Feed Media
(X-VIVO™ 15 cat. BE02-061Q (Lonza), 1% Penicillin-
Streptomycin (10,000 U/mL), cat. 15140–122, (Gibco)).
Cells were counted on a TC-20TM Automated Cell
Counter (Bio-Rad) and samples were adjusted to a final
concentration of 350–400 cells/μl.
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Fluidigm guidelines (Fluidigm Single-Cell Preparation
Guide, PN 100–7697) were used to establish optimal
buoyancy at an 4:1 (cells:cell suspension reagent) ratio for
the Polaris experiment. For each run, 15 μl each of differ-
entially stained wild type and knockout cells were mixed
with 7.5 μl of Cell Suspension Reagent (Fluidigm, PN
101–0434) 25 μl of the resulting suspension, containing
an estimated 7000–8000 cells, was loaded on the Polaris
IFC. On-board imaging settings to control automatic cell
selection were set for each run, with a threshold that var-
ied between 4000 and 6000 for a constant 1.0 s exposure.
After completion of the cell selection step, the IFC was re-
moved from the Polaris system and placed in an incubator
at 37 °C and 5% CO2 for 2 h to allow the cells to settle
prior to dosing. Dosing culture media were centrifuged in
small volumes (500 μl) at 14,100 rcf for 10 min before
27 μl of medium and 200 μl of Feed Media were loaded
into the appropriate wells of the IFC (Additional file 1:
Figure S2C). For 1-h dosing runs, the dosing step was
stopped manually and for 8-h dosing runs, cells were also
dosed at 4 h. Successive runs were scheduled to alternate
between one and eight hour dosing.
The Polaris acquired images of all 48 chambers in all

available fluorescence channels during cell capture, at the
start of dosing and every 1 h thereafter until the end of
the run. IFCs were removed from the Polaris for add-
itional, high-resolution imaging on a Leica TCS SP8 con-
focal microscope (Leica Microsystems) at 3 stages of each
run: after cell capture, after the 2-h incubation and at the
end of the dosing step, just before lysis. (Additional file 1:
Figure S3A). The imaging protocol was designed to ac-
quire bright-field and fluorescence images, for CellTracker
Orange and CellTracker Green: 488 nm and 561 nm exci-
tation and hybrid detectors for emission at 500–550 nm
and 571–630 nm respectively, were used with a 20× ob-
jective and a template to automatically locate the 48 IFC
cell isolation chambers, in an image acquisition process
lasting ~5 min during which the microscope chamber
temperature was maintained at 37 °C. The black vinyl film
on the lower surface of the Polaris chip was removed tem-
porarily for each imaging stage. For each time-point and
channel, the Polaris stored a single image of the IFC’s 48
cell chambers, 5200 × 1000 pixels in size, in which each
pixel had dimensions of approximately 5.5 × 5.5 μm. On
the Leica, one image of 512 × 512 pixels, each 1.39 ×
1.39 pixels, was captured per cell chamber in bright field,
orange and green channels. The initial aims of the image
analysis were to differentiate double- and single-stained
cells (wild-type and knockout or vice-versa, depending on
the run) and to assess cell shape, motility and phagocyt-
osis behaviour. The R package EBImage [42] was used
with a set of bespoke R functions to automatically identify
individual cell chambers and the cells they carried. For-
mally, within the large Polaris image(s), cells were

detected as clusters of 4 or more of the brightest 30 pixels
in the trimmed image corresponding to each cell chamber,
for each fluorescent channel. Motility was assessed by
measuring changes in the cluster positions between im-
aging time-points. To assess cell morphology (circularity,
the proportion of pixels within the smallest circle encom-
passing the cluster that belong to the cluster), the higher-
resolution Leica images were analysed using a re-scaled
version of the same algorithm, requiring clusters of 60 or
more of the brightest 411 pixels. Automated imaging as-
sessments were checked extensively by eye, leading to the
identification of irregularly shaped or unevenly stained
cells. Macrophage phagocytosis of capture beads was
assessed manually.
For each Polaris run, a bulk control sample of the wild-

type and of the knockout cells used in the run was pre-
pared for sequencing. Aliquots containing 2000–4000 of
the stained cells loaded on the Polaris were kept at room
temperature, incubated along with the loaded IFC for the
2-h incubation step, and kept at 37 °C during dosing.
Within 30 min of starting the Polaris lysis step, bulk-cell
samples were lysed and processed using the RNA extrac-
tion kit RNeasy Micro Kit (cat# 74004, Qiagen) and eluted
in 14 μl of RNAse-free water. At the end of the dosing
protocol and after any additional imaging, cells were lysed
for reverse transcription and amplification for cDNA gen-
eration in the Polaris. Master mixes for this procedure
were prepared using the SMARTer Ultra Low RNA Kit
(Clontech), according to the Fluidigm Polaris protocol
with minor modifications. The cell lysis mix (28 μl) con-
tained 8.0 μl Polaris Lysis Reagent, 9.6 μl of a 1/200 dilu-
tion of Polaris Lysis Plus Reagent (in PCR-grade water,
prepared immediately before use), 9.0 μl SMARTer kit 3′
SMART CDS Primer IIA and (for runs 1–11) 1.4 μl of di-
luted ERCC spike-in RNA, prepared by adding 1.0 μl of a
1/10 dilution of ERCC ExFold RNA Spike-In Mixes (cat.
4456739, Ambion) to 96.5 μl Polaris Loading Reagent and
2.5 μl SMARTer Kit RNase Inhibitor (40 U/μl). The re-
verse transcription reaction mix (48 μl) contained 15.5 μl
5× First-Strand Buffer (RNase-free), 1.9 μl DTT, 7.7 μl
dNTP mix, 7.7 μl IIA Oligonucleotide, 1.9 μl RNAse
Inhibitor, 7.7 μl SMARTscribe Reverse Transcriptase (all
SMARTer Kit, Clontech), 2.4 μl Polaris Loading Reagent
and 3.2 μl Polaris RT Plus Reagent. The PCR mix (90 μl)
contained 63.5 μl PCR-grade water, 10.0 μl 10× Advantage
2 PCR Buffer (not SA – Short Amplicon), 4.0 μl 50×
dNTP Mix, 4.0 μl 50× Advantage 2 Polymerase Mix (all
Advantage 2 Kit, Clontech) and 4.0 μl SMARTer IS PCR
primer. The cDNA products were harvested into a 96-
well plate in the arrangement shown in Additional file 1:
Figure S2D. Harvest wells with atypical volumes (some
with no material, others with an excess) were excluded
from further analysis. Bulk control samples comprising
1 μl of RNA extracted from the bulk samples above were
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each mixed with 4.5 μl of cell lysis mix and processed
using the following temperature sequence: 37 °C for
5 min, 72 °C for 3 min, 25 °C for 1 min, then 4 °C (hold),
then reverse transcribed using 9.0 μl of the reaction mix,
at 42 °C for 90 min followed by enzyme inactivation at
70 °C for 10 min, then 4 °C (hold). Bulk-sample PCRs con-
tained 1 μl of cDNA generated in the previous step and
9.3 μl PCR mix. PCR conditions were as follows: 95 °C for
1 min then 5 cycles of {95 °C/20 s, 58 °C/4 min, 68 °C/
6 min}, 9 cycles of {95 °C/20 s, 64 °C/30 s, 68 °C/6 min},
7 cycles of {95 °C/30 s, 64 °C/30 s, 68 °C/7 min},
then 72 °C for 10 min and 4 °C (hold). After Quant-iT™
PicoGreen (Thermo Fisher) normalization of cDNAs to
0.22 ng/μl, Illumina sequencing libraries were prepared to-
gether using Nextera XT DNA Library Preparation Kit
(Illumina), according to the manufacturer’s specifications,
at quarter-scale on a Beckman-Coulter FXp automated li-
quid handling instrument, and pooled as up to 192 multi-
plexed libraries using in-house dual-indexing library tags.
Some samples that had failed because of empty cell cham-
bers or the presence of more than one cell in a chamber
were included, and two bulk-cell samples per run were
included in each pool, which was sequenced as a single
lane of 75 b paired-end reads on an Illumina HiSeq 4000
instrument in 4 different runs.

RNA-Seq data generation and initial quality control
Samples were prepared and paired-end sequenced using
the Illumina HiSeq™4000 Sequencing platform, as de-
scribed above. RNA-seq reads were trimmed for Nextera/
Illumina adapter sequences using skewer-v0.1.125 [43].
Trimmed reads were mapped to a modified reference gen-
ome comprising the human genome, Homo sapiens
GRCh37, and fasta sequences for ERCC spike-ins
(ThermoFisher). Reads in gzipped fastq format were
aligned using Hisat2 version-2.0.0-beta [44] with de-
fault parameters. Duplicate reads were marked using
MarkDuplicates.jar implemented in Picard tools v1.92.
BAM alignments were name sorted with Samtools
version 1.1. Alignment metrics were calculated using
CollectRnaSeqMetrics.jar implemented in Picard tools
v1.92 for full BAM files and with potential PCR duplicates
marked. RNA-SeQC [45] was used to calculate sequencing
bias, as the median estimators in Picard can result in zero
estimates. Reads mapping uniquely to genes annotated in
ENSEMBL release 76 were counted using featureCounts
[46] implemented in subread-v1.5.0 [47]. Read distribution
between various features - assigned reads (mapped
uniquely to exons), multiple mapping, ambiguous map-
ping, No features (mapped uniquely to intronic and inter-
genic regions) – was obtained from featureCounts results.
Read counts were normalized to Transcripts per million
(TPM), and number of detected genes per sample were
calculated by counting genes with at least 1 TPM. Details

of the supplied data and meta-data provided are provided
in Additional file 1, including further QC using the R sca-
ter package [48]. In brief, we excluded culture chambers
with visually confirmed doublets (two cells), numbers of
detected genes more similar to bulk controls, and cells
with very low starting cDNA. FASTQ files for the data
have been uploaded to the Gene Expression Omnibus
(GSE87849).

Clustering the macrophages and gene expression modeling
All modeling and analyses were performed in the R en-
vironment (version 3.2.1, x86_64-pc-linux-gnu 64-bit,
Ubuntu 14.04.2 LTS). Multidimensional scaling (MDS)
on the cell rank correlations - without gene weighting -
was used to reduce one hour and eight hour cells to five
dimensions, as detailed in the provided Additional file 1
code wrapped in the cellStates() function. Inclusion of a
greater number of dimensions did not influence the
clustering. Additional file 1: Figure S16 & S17 demon-
strate the cell densities and individual cells for the five
dimensions in the eight hour cells, where some clusters
of cells can be seen to be unique to individual chips. To
ensure reproducibility, the constraint was added that a
cluster with fewer than three cells in more than half of
the replicates not be considered in the downstream
modelling. While such groups of cells may represent il-
luminating features in the macrophage model’s behav-
iour, these are not reproducible effects.
Extracting major cell states was performed using a hy-

brid of model-driven clustering (Gaussian mixtures) and
non-parametric clustering (partitioning around medoids),
as detailed in the Additional file 1 code wrapped in
the consensusCluster() function. Repeated fitting of
mixtures to the data - with one chip replicate omitted per
iteration - was used to produce a consensus matrix of the
proportion of iterations cells share clusters. This was non-
parametrically re-clustered, selecting the maximum
number of clusters for which experimental replication was
strongly represented in each cluster. We note that al-
though this combination of methods was employed, other
tested approaches such as hierarchically clustering the
consensus matrix produced similar results due to the con-
sensus and reproducibility constraints. The defined clus-
ters are recorded in the cell meta-data (Additional file 2).
The major latent cell states identified with exploratory
data analysis remain the only two identified major states
in the one hour cells, with a third reproducible cluster
emerging at eight hours that shares properties with the
main group of cells (Additional file 1: Figure S18).
Altered gene expression was modelled as the change in

mean conditioned on (i.e. tested per) cell subtype of inter-
est. Overall mean across cell subtypes (μ) was used as a
measure of global shift in gene expression, while mean ab-
solute deviation (MAD) of the subtypes was used as a
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measure of variability and so context/subtype specificity.
For example, for di = change in mean expression over time
for cell subtype i, μ = (d1 + d2 + .. + dn)/n and MAD= (|d1-
μ| + |d2-μ| + .. + |dn-μ|)/n. More robust estimators, such
as the use of quantiles, provided similar top hits, so here
we present μ and MAD estimates, focusing rather on a
rank product framework to determine statistical signifi-
cance of rank reproducibility per sequencing library [15].
A focus on gene ranks has several advantages well suited
to single-cell work: it is non-parametric, robust, com-
ments directly on reproducibility, and allows data fusion
or meta-analysis without the need for complex data nor-
malisations. For computational speed, the Heskes rank
product algorithm was used to assess bounds on the stat-
istical significance. Reported p-values are the geometric
means of the upper and lower bounds provided by the
rankprodbounds() function, with the qvalue package used
to estimate global significance at 5% false discovery
rate [49]. Rank (Spearman) correlations were used to
estimate gene co-expression, followed by testing for
co-expression signature enrichment with Preranked
Gene Set Enrichment Analysis (default settings) [23].

Additional files

Additional file 1: Supplementary Methods, Figures and Tables.
(DOCX 3991 kb)

Additional file 2: Supplementary Data. (XLSX 30285 kb)
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