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Abstract

Background: Whole genome resequencing projects may implement variant calling using draft reference genomes
assembled de novo from short-read libraries. Despite lower quality of such assemblies, they allowed researchers to
extend a wide range of population genetic and genome-wide association analyses to non-model species. As the
variant calling pipelines are complex and involve many software packages, it is important to understand inherent
biases and limitations at each step of the analysis.

Results: In this article, we report a positional bias present in variant calling performed against draft reference
assemblies constructed from de Bruijn or string overlap graphs. We assessed how frequently variants appeared at
each position counted from ends of a contig or scaffold sequence, and discovered unexpectedly high number of
variants at the positions related to the length of either k-mers or reads used for the assembly. We detected the bias in
both publicly available draft assemblies from Assemblathon 2 competition as well as in the assemblies we generated
from our simulated short-read data. Simulations confirmed that the bias causing variants are predominantly false
positives induced by reads from spatially distant repeated sequences. The bias is particularly strong in contig
assemblies. Scaffolding does not eliminate the bias but tends to mitigate it because of the changes in variants’ relative
positions and alterations in read alignments. The bias can be effectively reduced by filtering out the variants that
reside in repetitive elements.

Conclusions: Draft genome sequences generated by several popular assemblers appear to be susceptible to the
positional bias potentially affecting many resequencing projects in non-model species. The bias is inherent to the
assembly algorithms and arises from their particular handling of repeated sequences. It is recommended to reduce
the bias by filtering especially if higher-quality genome assembly cannot be achieved. Our findings can help other
researchers to improve the quality of their variant data sets and reduce artefactual findings in downstream analyses.
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Background
Plummeting cost of high-throughput sequencing (HTS)
allowed population geneticists to analyse hundreds of
individuals on the whole genome level (e.g. [1–3]). More-
over, the researchers are no longer limited to the model
species as draft genome sequences can be assembled de
novo from HTS data (e.g. [4, 5]). The quality of these draft
genomes is generally lower than that of the traditionally
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sequenced genomes [6] but they are still considered ade-
quate for various types of analysis in population genetics
as well as genome-wide association studies.
The core algorithm of a modern genome assembler usu-

ally implements either a de Bruijn graph [7] or a string
graph [8]. Both approaches involve constructing a graph
based on sequence overlaps and finding the optimal path
through the graph. Such path would correspond to a con-
tiguous assembled sequence known as contig. In a string
graph, vertices are represented by reads while a suffi-
ciently long overlap between two reads forms an edge.
To construct a de Bruijn graph, each read is split into all
possible sequences of length k (k-mers). The k-mers form
vertices of the graph while overlaps between k-mers that
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are k−1 bases long become edges. Among the assemblers
that implement the string graph approach are SGA [9] and
SAGE [10] while de Bruijn graphs are incorporated into
ABySS [11], Meraculous [12], ALLPATHS-LG [13], and
SOAPdenovo2 [14] among many others.
Pipeline for genome assembly normally includes a rig-

orous error correction of the reads, which can be done
either before the assembly with another tool or during the
assembly by the assembler itself. Contig assembly may be
followed by scaffolding whereby mate-pair reads that map
to two different contigs are used to splice these contigs
together into a scaffold. Finally, some pipelines for genome
assembly involve merging of the overlapping paired-end
reads into longer sequences before the construction of de
Bruijn graphs. In fact, ALLPATHS-LG requires that suffi-
cient number of overlapping paired-end reads are present
in the input data [13]. Such approach allows the selection
of longer k-mer size for the de Bruijn graph construc-
tion, which in turn improves the assembly of repetitive
regions [14].
Here, we report a stark pattern that appears when call-

ing variants against assemblies generated from de Bruijn
or string graphs. If paired-end reads are aligned to the
assembled contigs, an unexpectedly high number of vari-
ants will be called at a certain position from the end of
a contig or scaffold. Depending on the assembler’s imple-
mentation, this position matches either the k-mer length
used for de Bruijn graph construction or the length of
reads used in string overlap graphs. Our analyses suggests
that the bias is caused by repeated sequences that cannot
be successfully resolved by assemblers. While scaffolding
mitigates the bias, it does not remove the bias completely
and variants are still more likely to appear at the same
relative position within contigs incorporated into scaf-
folds. The most effective approach to attenuate the bias
is to remove all variants present in repetitive elements.
Since the bias-causing variants are mostly false positives,
the bias may have serious implications on downstream
analyses performed in resequencing projects [15, 16].

Methods
Whole genome assemblies
A subset of Maylandia zebra (fish) and Boa constrictor
(snake) whole genome assemblies (before and after scaf-
folding) submitted by various teams (Table 1) as entries
to the Assemblathon 2 competition [17] were downloaded
from the official repository. To reduce the extent of post-
processing that could potentially obscure the problem,
only the teams representing the original assembler devel-
opers were chosen. Since the competitive SOAPdenovo2
assembly of the snake genome was generated using mis-
labelled mate-pair libraries, we downloaded the corrected
version that the teammade available after the competition
(See Additional file 3 in Bradnam et al. [17]).

Table 1 List of analysed assemblies

Reads Identifier Assembler Pos k

Bcon abyss_9C ABySS 80 80

Bcon merac_6C Meraculous 71 NA

Bcon phus_5C Phusion 78 NA

Bcon sga_7C SGA 121 NA

Bcon soap* SOAPdenovo2 36 36

Mzeb abyss_7C ABySS 56 56

Mzeb allp_6C ALLPATHS-LG 96 96

Mzeb soap_11E SOAPdenovo2 46 46

Sim allp ALLPATHS-LG 96 96

Sim sga_m75 SGA 100 NA

Sim sga_m77 SGA 100 NA

Sim soap_K69 SOAPdenovo2 70 70

Sim soap_K71 SOAPdenovo2 72 72

This study focused on a subset of the B. constrictor (Bcon) andM. zebra (Mzeb)
genome assemblies submitted by the assembler developers to the Assemblathon 2
competition. In addition, we simulated reads from A. thaliana chromosomes 1 and 2
(Sim) and constructed several assemblies with varying parameters. For SGA, we
varied the minimum string overlap (-m 75 and -m 77 for sga_m75 and sga_m77
respectively). For SOAPdenovo2, we set the -K parameter to 69 and 71, which
corresponded to k = 70 and 72 for soap_K69 and soap_K71 respectively. ‘Pos’
column shows the position (counted from ends of contigs or scaffolds) where
variants occur most frequently. ‘NA’ in the ‘k’ column indicates that the choice of k
was not reported and could not be determined from other sources
*The Bcon assembly by the SOAPdenovo2 team submitted for the competition was
assembled using an incorrectly labelled library. We analysed the corrected version
that was constructed after the competition [17]

For the alignment against these assemblies, we ran-
domly selected a 400 bp insert library for B. constrictor
(ERR234373) and 180 bp insert library for M. zebra
(SRR077290). Each library was aligned only against the
assemblies of its respective species. Both libraries were
downloaded from the NCBI Sequence Read Archive.

Simulated data set
Sequences for chromosomes 1 and 2 of Arabidopsis
thaliana (TAIR10) were downloaded fromThe Arabidopsis
Information Resource website [18].
To simulate the reads we used SimSeq application that

aims to reproduce the biases present in normal Illumina
data sets [19]. We ran the application with default param-
eters to simulate 15 mln 100 bp paired-end reads with the
mean insert size of 180 bp and 5 mln 100 bp mate-pair
reads with the mean insert size of 3 kb. Since the com-
bined size of the chosen chromosomes is about 50 Mb,
the simulated libraries yielded 60× and 20× coverage
respectively.
We assembled the short reads from these libraries

using ALLPATHS-LG v52293 [13] with default parame-
ters. Henceforth, we will refer to this assembly as Sim_allp
where ‘Sim’ indicates simulated libraries and ‘allp’ denotes
the assembler. We also constructed two assemblies
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(Sim_soap_K69 and Sim_soap_K71) with SOAPdenovo2
v2.04 [14] specifying different k-mer lengths. The opti-
mal length (K = 69) was determined by running
KmerGenie [20] for the range of lengths between 39 and
99 with the step of 2. Another length value (K = 71) was
selected as the next best length according to theKmerGenie
output. In both cases, we ran SOAPdenovo-127mer
with the options to resolve repeats (-R) and to drop
low-frequency k-mers (-d 1). Finally, we constructed
two assemblies (Sim_sga_m75 and Sim_sga_m77) using a
string overlap assembler, SGA v0.10.14 [9]. For both SGA
assemblies, we ran error correction with k-mer length set
to 41 (-k 41) and the minimum overlap of 55 (-m 55)
for the overlap command. The minimum overlap in
the assemble command was set to either 75 or 77
(-m 75 or -m 77). Subsequent scaffolding was per-
formed using default parameters as described in the SGA
documentation.
To investigate variant calling for resequencing analy-

sis, we downloaded a short-insert library (SRX144851) of
A. thaliana Bs-1 genotype from DNA Data Bank of Japan
(DDBJ). The reads were sequenced with Illumina HiSeq
2000 and have the insert size of 202 bp with 101 bp read
length [21].

Variant calling
Variants were called with GATK v3.4-0 [22] following
the established best practices [23, 24]. Briefly, the cor-
responding short insert library was aligned against the
assembled sequences using BWA v0.7.12 [25]. After mark-
ing the duplicates, the reads were locally realigned around
insertions/deletions (indels) and variants were called with
HaplotypeCaller. The obtained raw calls were filtered
using the criteria recommended for cases when variant
calibration was not possible (Table 2).

Table 2 SNP statistics reported by GATK and thresholds used for
filtering

Abbreviation Rel Threshold Full name

QD < 2.0 Quality by Depth

MQ < 40.0 Root mean square of Mapping
Quality

MQRankSum < −12.5 Mapping Quality Rank Sum test

FS > 60.0 Fisher’s exact test for Strand
bias

SOR > 4.0 Strand bias Odds Ratio

ReadPosRankSum < −8.0 Read Position Rank Sum test

DP > 200.0 Depth of Coverage

GQ < 20.0 Genotype Quality

SNPs with statistics above or below (Rel) the corresponding threshold were
removed from consideration. For detailed description of these statistics and
justification for the threshold selection, see Van der Auwera et al. [24] and GATK
documentation at https://www.broadinstitute.org/gatk/

To make sure that variants in the regions with exces-
sively high coverage do not affect the results, we separately
applied more restrictive coverage filters to the variants
called in the fish and snake genomes. The thresholds
were set to the expected coverage calculated using the
Lander-Waterman equation C = LN/G [26], where C
is the expected coverage, L is the read length, N is the
number of reads, and G is the estimated haploid genome
length. Based on the reported genome lengths of 1.6 and
1 Gb [17], the expected coverage was 5× and 8× for the
snake and fish genomes respectively.

Alternative read alignment and variant calling tools
To exclude the possibility that the bias was caused by
the tools we used for read alignment and variant call-
ing (BWA and GATK), we also analysed the variants
detected against simulated contig assemblies with alterna-
tive tools. We ran GATK on the alignments produced by
each NextGenMap [27], GSNAP [28], and Bowtie2 [29].
We accepted the default parameters for each of these read
alignment applications. Since we suspected that Bowtie2
might have lower sensitivity than the other aligners, we
also ran Bowtie2 with the default parameters to align Bs-1
reads against the simulated contig assemblies.
We relied on BWA alignments to test the FreeBayes

[30] and Samtools mpileup [31] variant callers. We ran
the multithreaded version of FreeBayes and specified the
same maximum coverage threshold (200) as with GATK.
Following the recommendations from the FreeBayes doc-
umentation, variant calls were subsequently filtered using
a minimum quality threshold (QUAL < 20). We also used
the default parameters for Samtools mpileup except for
the maximum indel coverage, which we set to 200. The
resultant data was processed with bcftools [31] to pro-
duce a VCF file and filter out the variants with low quality
(QUAL < 20) and abnormally high coverage (DP > 200).

Scaffold position transformation (coordinate mapping)
To transform variant scaffold positions to contig positions
in ALLPATHS-LG assemblies, we employed the informa-
tion from the final.summary file that ALLPATHS-LG
generates by default. For each scaffold, the file reports
scaffold length, list of included contigs with their respec-
tive lengths, and gap sizes. Overlapping contigs have neg-
ative gap sizes. We noticed that occasionally a scaffold in
the final assembly extends beyond the length specified in
the summary file. In such cases, we reported the SNPs
located beyond the reported scaffold length as ‘untrans-
formed’ because their coordinates could not be mapped to
any contigs.
For the transformation of scaffold positions in SOAP-

denovo2 assemblies, we parsed the file with the
contigPosInscaff extension. The file is automati-
cally generated by SOAPdenovo2 during scaffolding. For

https://www.broadinstitute.org/gatk/
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each scaffold, the file lists one or more contig entries.
Each entry specifies contig id, starting position within
scaffold (origin 0), contig orientation, and ending position
within scaffold. We also used the contig length infor-
mation from the file with contig extension because
SOAPdenovo2 often inserted gaps between overlapping
contigs in a scaffold. Such a gap would effectively split
one of the contigs into two parts making it impossible
to derive a transformation map exclusively from the
contigPosInscaff file.
Our scaffold coordinate transformation would produce

two contig coordinates if a variant is located in a scaffold
region where two contigs overlap. We chose this approach
because such scaffold variants in principle should have
two corresponding contig variants, one on each of the
overlapping contigs.

Identification and filtering of repetitive elements
We identified repetitive elements and low complexity
sequences in the simulated assemblies using Repeat-
Masker v4.0.5 [32] with the library version 20140131 [33],
NCBI search engine, and ‘viridiplantae’ species filter. To
calculate the number of position k SNPs appearing in
repetitive elements, we checked the SNP coordinates
against the repetitive sequence ranges reported by Repeat-
Masker. If a repetitive element spanned position k at both
ends of a contig and contained two position k SNPs (one
at each end), we counted it as a single occurrence, i.e. for
each repetitive element sequence the count was either 0
or 1. To adjust for family frequency, we divided the num-
ber of position k SNPs appearing within that family by
the total number of the family sequences present in the
assembly. SNP filtering process entailed the removal of
all variants located within any of the identified repetitive
elements or low complexity sequences.

Results
Positional bias in variant distribution within contigs
In our analysis, we used the publicly available data from
the Assemblathon 2 competition [17]. For each of the two
analysed species, we randomly selected a single short-
insert library among those provided to the teams for
assembly and aligned the reads against each of the cho-
sen contig assemblies submitted for the competition. In
each case, both the aligned reads and the assembly came
from the same individual (species). Hence, any variant
calls would be false positives and the distribution of their
positions within contigs should be approximately uniform.
After calling the variants, we calculated how frequently

they appeared at each position counted from both ends
of contigs (Table 1). Frequencies were estimated sepa-
rately for single nucleotide polymorphisms (SNPs) and
insertions/deletions (indels). All of the tested assemblies
showed positional bias in the distribution of variant calls

(Fig. 1; Additional file 1: Figures S1–S3). For some assem-
blies the bias was evident in the distribution of both SNPs
and indels while others exhibited only SNP distribution
bias. Since indels are typically less frequent, more difficult
to call and, therefore, less reliable than SNPs, we will focus
on the SNP distribution bias.
In addition to the Assemblathon 2 entries, we simu-

lated 180 bp paired-end library and 3 kb mate-pair library
using chromosomes 1 and 2 of Arabidopsis thaliana. We
assembled the simulated paired-end library into contigs
separately with several assemblers. We called variants and
analysed the results using the same approach as with
Assemblathon 2 data. The simulated data set provided
several advantages. First, it excluded the possibility that
aligning additional paired-end libraries used for assem-
bly would affect variant calling. Assemblathon 2 teams
had access to several paired-end libraries while we only
aligned a single one to call variants against those assem-
blies. The simulated data set contained only a single short-
insert paired-end library, which was subsequently aligned
to the de novo assemblies. Second, we knew the exact ori-
gin of each simulated read, which helped us explain why
some variants were called. Third, available HTS data for
a different A. thaliana genotype enabled us to explore the
effects on variant calling for resequencing analysis. Finally,
we were able to run more analyses because of the smaller
data set size.
In the literature describing de Bruijn graph approaches

to assembly, k-mer length may refer to either the length
of sequences at graph vertices [11, 34] or the length of
sequence overlaps at graph edges [9, 14]. To avoid the con-
fusion, we will use the first definition and denote such
length as k. The length of sequence overlaps at graph
edges will be denoted as K , i.e. K = k − 1 for de Bruijn
graphs.
Only three teams (ABySS, ALLPATHS-LG, and SOAP-

denovo2) reported k-mer lengths used for assembly (See
Additional file 3 in Bradnam et al. [17]). In all cases, the
position where SNPs occurred most frequently matched
the reported k-mer length (Table 1). This was indepen-
dent of the tool and the actual k value used in the assembly
(ABySS and SOAPdenovo2 teams each specified different
k values for their respective B. constrictor and M. zebra
assemblies). When assembling our simulated paired-end
reads with SOAPdenovo2, we changed the K configu-
ration parameter from -K 69 to -K 71 and the most
frequent SNP position shifted from 70 to 72 (Fig. 2;
Additional file 1: Figure S4).
Among the assemblers we analysed, SGA [9] was based

on string graphs rather than de Bruijn graphs. In this
assembler, the parameter equivalent to the k-mer length
would be the string overlap length used for graph con-
struction. It can be specified as -m parameter for the
assemble command. Changing this parameter did not
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Fig. 1 Distribution of SNP positions at the 5′ end of contigs. The analysis includes a subset of five B. constrictor and threeM. zebra assemblies
submitted to Assemblathon 2 [17]. The description of assembly identifiers is given in Table 1

cause a shift in the peak position (Fig. 2; Additional file 1:
Figure S4). Instead, the peak position was linked to read
lengths. For the Assemblathon 2 entry and the simu-
lated data sets, the read lengths were 121 and 100 bp
respectively. Both values matched the most frequent SNP
position of their respective assembly (Table 1). Hereafter,
we will use the read length to establish the k position in
SGA assemblies.
To make sure that the positional bias is not limited to

the very short contigs with potentially poor quality, we
removed all contigs shorter than 500 bp and repeated
the analysis. The bias was still clearly visible in all cases
(Additional file 1: Figures S5–S6) indicating that such
filtering is not effective for bias reduction.
To remove the variants called in the regions with abnor-

mally high coverage, we used the 200× threshold (DP in

Table 2). The value was higher than the expected cov-
erage calculated with Lander-Waterman equation [26].
However, the bias was still apparent even among the vari-
ants with coverage that did not exceed the expected levels
(Additional file 1: Figures S7–S8).
We also compared the distributions of various quality

statistics reported by GATK (Table 2) for SNPs at position
k to those reported for SNPs at other positions, and found
them very similar (Additional file 1: Figures S9–S16).
While the differences might be statistically significant due
to large sample size, the effect size is minimal and consid-
erable overlap between distributions makes SNP discrimi-
nation unfeasible. The only statistic that could be possibly
used to reduce the bias without substantial effect on other
SNPs is mapping quality (MQ). Even then, the results
would be largely dependent on the assembler choice and
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Fig. 2 Distribution of SNP positions at the 5′ end of contigs in the simulated data set. The description of assembly identifiers is given in Table 1

the underlying data set. In particular, the distribution of
MQ for SNPs in non-k positions had fairly long left tails
in M. zebra (especially Mzeb_allp_6C; Additional file 1:
Figure S10) while the MQ distributions for k and non-k
SNPs in the simulated data set were hardly separable
regardless of the assembler (Additional file 1: Figure S17).

Scaffolding does not eliminate the positional bias
Assembly pipelines generally include a step to concatenate
contigs into longer scaffold sequences based on mate-
pair read alignments. We discovered that the positional
bias was attenuated but still persisted in the B. constric-
tor and M. zebra assemblies after scaffolding (Table 3;
Additional file 1: Figures S18–S19). The only assembly
where the bias appeared less evident was Mzeb_allp_6C
but even there the peaks at the position k were notably
high. Similar results, including the greatest reduction of
the bias appearance in the ALLPATHS-LG assembly, were
observed with the simulated data set (Table 3; Additional
file 1: Figures S20–S21). Removal of the short scaffolds
(less than 500 bp) from the B. constrictor and M. zebra

assemblies did not completely eliminate the bias either
(Additional file 1: Figures S22–S23).
There are two mechanisms that may cause the bias

reduction after scaffolding. First, many contigs will be
placed in the middle of scaffolds. Thus, many SNPs that
were previously present near contig ends would appear in
the middle of scaffold sequences as well. Consequently,
some SNPs that contributed to the bias before would
emerge as SNPs that do not cause the bias because they
would not be in position k relative to scaffold ends. This
mechanism makes the bias less apparent but it does not
actually decrease it because corresponding SNPs still per-
sist in the scaffold assembly (hereafter, we will refer to this
phenomenon as “bias masking”). The second mechanism
is triggered by alterations in read alignments. Scaffold-
ing typically involves concatenation of overlapping contigs
and gap filling between adjacent contigs. Both actionsmay
alter read alignments in the affected regions. In particular,
reads that previously caused SNP calls on individual con-
tigs would not align sufficiently well to the same contigs
or would align better elsewhere after scaffolding. Thus,
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Table 3 SNP counts at position k in the simulated data sets

Reads Assembler Contig Scaffold Transf Untransf Shared Masked

Sim allp 57 7 21 1 18 12

Sim sga_m75 504 463 NA NA NA NA

Sim sga_m77 513 479 NA NA NA NA

Sim soap_K69 1481 698 255 451 137 44

Sim soap_K71 1469 769 NA NA NA NA

Bs-1 allp 66 9 35 0 23 15

Bs-1 sga_m75 899 711 NA NA NA NA

Bs-1 sga_m77 871 687 NA NA NA NA

Bs-1 soap_K69 1916 670 365 429 210 95

Bs-1 soap_K71 1909 692 NA NA NA NA

Reads column indicates the origin of aligned reads: ‘Sim’ refers to the simulated paired-end reads while ‘Bs-1’ denotes the actual A. thaliana Bs-1 short-insert library [21].
Contig and Scaffold columns show the number of SNPs at position k in the respective contig and scaffold assemblies. ‘Transf’ column shows the number of SNPs at position k
called against scaffolds after the scaffold coordinates were transformed to contig coordinates. Only Sim_allp and Sim_soap_K69 scaffold coordinates were transformed.
‘Untransf’ column indicates the number of SNPs that failed to transform because of contig length threshold (Sim_soap_K69) or scaffold being extended beyond the length
specified in the assembler’s scaffold map (Sim_allp). ‘Shared’ column reports the number of SNPs present in both Contig and Tranformed sets. ‘Masked’ column shows the
SNPs that appear in Contig and Transformed but not in Scaffold because of the change in their relative positions. All counts except ‘Untransf’ are for SNPs in position k

the number of SNPs in both k and non-k positions may
diminish. Such bias reduction would be real because it
effectively eliminates the bias causing SNPs.
We can measure the effects of these two mechanisms by

analysing the intersection between SNPs called before and
after scaffolding. To compute the intersection, we have
to transform SNP scaffold coordinates into contig coor-
dinates using a scaffold map reported by the assembler.
Bias masking occurs when a scaffold SNP from a non-
k position appears in the position k after transformation
and there is a contig SNP at the same position. Genuine
bias reduction takes place when a contig SNP in position
k does not have a corresponding scaffold SNP.
We transformed scaffold coordinates into contig coor-

dinates in two assemblies constructed from the simulated
reads. In the Sim_allp assembly, scaffolding reduced the
number of SNPs in position k from 57 to 7 (Table 3).
After transforming scaffold coordinates to contig coor-
dinates, the position bias was clearly visible (Additional
file 1: Figures S24–S25) as the number of scaffold SNPs
in position k increased to 21 (Table 3). Out of those,
18 were also called against the contig assembly (shared
SNPs; panel ‘Both’ in Additional file 1: Figure S26) while
3 were unique to the scaffold assembly (panel ‘Scaffold
Only’ in Additional file 1: Figure S26; Additional file 1:
Figure S27). Coordinates for one SNP could not be trans-
formed because the scaffold was longer than specified
in the assembler’s scaffold map. Out of the 57 contig
SNPs present in position k, 12 (21%) emerged in the
scaffold assembly at non-k positions relative to scaffold
ends (‘Masked’ column in Table 3) while 39 (68%) SNPs
completely disappeared due to altered read alignments.
In the Sim_soap_K69 assembly, scaffolding also reduced

the number of position k SNPs (Table 3; Additional file 1:

Figures S28–S29) but the underlying processes were
different. A large number of SNP coordinates (451 at
position k) were not transformed (‘Untransf ’ column in
Table 3) because they corresponded to locations on con-
tigs shorter than 200 bp. Those contigs were excluded
from the Sim_soap_K69 contig assembly for SNP calling
while the assembler still used them for scaffolding. There-
fore, the ‘untransformed’ scaffold SNPs could not overlap
with the contig SNPs in principle and we ignored them
when calculating the overlap between contig and trans-
formed scaffold SNPs (Additional file 1: Figures S28–S29).
We also noticed that SOAPdenovo2 tends to introduce
gaps within overlapping contigs. A gap is placed between
the end of one contig and the non-overlapping part of
the other contig, which breaks the second contig into
two non-contiguous parts. This leads to considerable
changes in read alignments and consequently yields many
SNPs unique to the contig assembly (Table 3; Additional
file 1: Figures S28–S29). These two reasons also explain
the large difference between the number of contig and
coordinate-transformed scaffold SNPs (‘transf ’ column)
but much smaller difference between contig and scaffold
SNP counts (Table 3). It also explains why the bias mask-
ing level is so low; only 44 (3%) scaffold SNPs in non-k
positions could be matched to contig SNPs in position k.

Positional bias with alternative tools
To make sure that the positional bias was not caused by
one of the selected tools (BWA and GATK), we executed
variant calling pipelines with alternative read alignment
or variant discovery applications on the simulated contig
assemblies. Running GATK with either NextGenMap [27]
or GSNAP [28] still resulted in clearly visible peaks at the
expected locations (Additional file 1: Figures S30–S33).



Briskine and Shimizu BMCGenomics  (2017) 18:263 Page 8 of 13

When using GATK with Bowtie2 [29], the peaks were
much smaller in SGA and SOAPdenovo2 assemblies and
the bias was completely absent in the ALLPATHS-LG
assembly (Additional file 1: Figures S34–S35). However,
the number of variants at other positions was much
smaller as well.
Previous reports indicated that Bowtie2 was less sensi-

tive to sequence mismatches [35, 36] and may have higher
error rates [37]. To check the sensitivity of Bowtie2 on our
simulated data set, we ran the Bowtie2 – GATK pipeline
using resequencing data (see the next section for addi-
tional results). Compared to the BWA – GATK pipeline,
we saw a considerable reduction in the total number of
variant calls (Table 4; Additional file 1: Figures S36–S37).
This is in contrast to Cornish and Guda [38] who reported
only a minor decrease in SNPs between similar pipelines.
These results should be interpreted with caution as we do
not know the actual number of errors in each case.
Variants detected by each FreeBayes [30] and Samtools

mpileup [31] using BWA alignments also exhibited strong
positional bias (Additional file 1: Figures S38–S41). Since
Samtools skips anomalous read pairs and orphan reads by
default, filtering out improperly-paired reads would not
remove the positional bias.

Positional bias is present in resequencing analysis
In the previous subsections, reads used for variant calling
came from the same individual as the reads used for the
reference genome assembly. Therefore, any called variants
would be considered false positives. In this subsection, we
investigate the alignment of reads from a different indi-
vidual to the reference genome. In this case, some of the
called variants should be real but there could also be false
positives that would potentially manifest themselves as
the positional bias described in this study. This analysis
imitates the practical use of draft de novo assemblies in
resequencing projects that focus on non-model species.
To verify that the positional bias would still be present in

variant calling performed with reads from a different indi-
vidual, we aligned a short-insert library ofA. thaliana Bs-1
genotype [21] against our assemblies constructed from

Table 4 SNPs called by GATK when using BWA or Bowtie2 (Bt2)
to align Bs-1 reads against simulated contig assemblies

Assembly Bt2 Total Bt2 Pos k BWA Total BWA Pos k

Sim_allp 97,020 3 488,839 69

Sim_sga_m75 97,740 28 500,829 948

Sim_sga_m77 97,727 27 501,055 917

Sim_soap_K69 96,485 35 497,002 2016

Sim_soap_K71 96,003 44 497,486 2004

Total columns show the total number of SNPs in any position while ‘Pos k’ columns
show the number of SNPs at position k

the simulated read data. The bias was present in all con-
tig assemblies (Additional file 1: Figures S42–S43). It was
also clearly visible in both Sim_sga and both Sim_soap
scaffold assemblies at the expected locations (Additional
file 1: Figures S44–S45). Meanwhile, the bias essentially
disappeared in the Sim_allp scaffold assembly, proba-
bly because of the assembly’s high quality (Additional
file 1: Figures S44–S45). As before, we transformed scaf-
fold positions into contig positions for all scaffold SNPs
and observed partial recovery of the bias in Sim_allp
(Table 3; Additional file 1: Figures S46–S47). We traced a
large number of SNPs on Sim_soap_K69 scaffolds to con-
tigs shorter than 200 bp (‘Untransf ’ column in Table 3).
We also found that 15 and 95 SNPs (23 and 5%) from
non-k positions in Sim_allp and Sim_soap_K69 scaffolds
respectively corresponded to position k SNPs in the con-
tig assemblies (bias masking). These results are consistent
with those uncovered through the alignment of our simu-
lated reads.
We tested whether the variant positions in the Bs-1

alignments overlapped with the variant positions in the
simulated read alignments. If they overlap well, remov-
ing these positions may provide a useful solution for the
bias reduction. Despite the partial overlap (Additional
file 1: Figures S48–S49; ‘Both’ row in Additional file 1:
Figures S50–S51), Sim_allp and Sim_soap_K69 data sets
possessed abnormally high number of position k SNPs
that were unique to the Bs-1 alignments (‘Bs-1’ row
in Additional file 1: Figures S50–S51). These SNPs
comprise the variants that would remain after the fil-
tering of the shared SNPs. The remaining bias was
particularly strong in case of Sim_soap_K69. Similar
pattern appeared when positions of scaffold SNPs were
transformed into contig coordinates (Additional file 1:
Figures S52–S55). Even though the filtering essentially
eliminated the bias from the 5′ end of the Sim_allp
assembly (‘Bs-1’ row in Additional file 1: Figure S54),
the results were not universal and other solutions would
be needed.

Considerable reduction in bias achieved by repetitive
element filtering
For each assembly created from the simulated read data,
we traced the origins of all reads that had primary align-
ments to SNPs at position k with the mapping quality
of at least 40 and without any insertions or deletions
compared to the reference (CIGAR = 100M). Such con-
servative filtering ensured that the analysed reads aligned
well only to a single location in the assembly and the align-
ments were not coerced by read clipping. If all such reads
had a single origin per variant, it would suggest that the
corresponding variants were caused by either simulated
sequencing errors or poorly aligned reads from remote
genomic regions with modest similarity. If the reads had
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multiple origins, the variants were likely caused by highly
similar repeated or homologous sequences in the genome.
Fewer than 6% of the SNPs had the selected reads

coming from the same origin. It suggests that the bias
is not caused by poor alignments or sequencing errors
but rather by repetitive or homologous sequences. Such
sequences would lead to multiple potential path exten-
sions through de Bruijn or string graphs. The extensions
would also have equally high support and may form either
a junction or a so-called “bubble” in the path [11]. Further
investigation is needed to determine why the assemblers
tend to terminate the path extension shortly after a bubble
or a junction is formed.
We used RepeatMasker [32] to identify repetitive ele-

ments in the assemblies constructed from the simulated
reads and discovered that the vast majority of SNPs
near contig or scaffold ends were within those sequences
(Fig. 3; Additional file 1: Figures S56–S66). The pat-
tern persisted whether the SNPs were called against
contigs (Additional file 1: Figures S56–S57) or scaffolds
(Additional file 1: Figures S58–S61) and whether the SNPs
were called from the alignment of our simulated reads
(Additional file 1: Figures S56–S61) or from the align-
ment of the actual Bs-1 reads (Fig. 3; Additional file 1:
Figures S62–S66).
In the simulated contig data set, position k SNPs

appeared within diverse repetitive elements. The largest
number of SNPs were in the DNA and long termi-
nal repeat (LTR) families (Additional file 1: Figure S67),
which had the highest representation in the A. thaliana
genome [39]. When adjusted for family frequency, SNPs
were more likely to appear in the satellites (ALLPATHS
and SOAPdenovo2 assemblies) or DNA repeats (SGA
assemblies). However, none of the families were strongly
overrepresented.
When the SNPs located in repetitive elements were

filtered out from the set obtained through the align-
ment of the simulated reads, the positional bias was
either completely eliminated as in the case of Sim_allp or
reduced to negligible levels as in the case of Sim_soap and
Sim_sga assemblies (Additional file 1: Figures S68–S73).
The remaining bias might be due to unannotated repeti-
tive elements or other homologous sequences. The same
tendency was observed with the SNPs called from the
alignment of the actual Bs-1 reads (Fig. 4; Additional
file 1: Figures S74–S78) except that more SNPs remained
overall. This is expected because the alignment of the
simulated reads can only produce false positives while
the alignment of Bs-1 reads should additionally yield real
SNPs.
Finally, we checked whether it would be possible to

reduce the bias even further by removing both SNPs in
repetitive elements and SNPs produced with the sim-
ulated read alignments from the Bs-1 SNP set. Since

the bias after the repetitive element filtering was already
absent in Sim_allp and barely detectable in Sim_sga
assemblies, we only report the results for Sim_soap_K69.
After transforming scaffold coordinates to contig coordi-
nates, there were 25 SNPs called at position k from Bs-1
read alignments. Out of them, 6 SNPs were also pro-
duced by the simulated read alignments (Additional file 1:
Figure S79). Overall effect of the additional filtering is
fairly minor (row ‘Both’ in Additional file 1: Figure S80)
but the bias almost entirely disappears (row ‘Bs-1 Only’ in
Additional file 1: Figure S80).

Discussion
Resequencing projects rely on a wide range of complex
applications that often need to be tuned for the best per-
formance. To achieve high quality results, it is essential
to know limitations and biases inherent to each employed
application. We have shown that variants obtained from
the alignment of short reads against assemblies con-
structed with de Bruijn or string graphs suffer from posi-
tional bias. While the degree of bias varied depending on
the input data and setup, it was clearly visible in most
tested configurations that encompassed several popular
aligners and assemblers. If not addressed, the bias may
trigger confounding effects in downstream analyses.
To confirm the bias, we designed two types of analy-

ses. First, we called variants after aligning the reads from a
short-insert library that was previously used to construct
the reference assembly. In this case, all variants would
be false positives. However, they would also be likely to
appear when aligning reads from a different individual
as long as the corresponding regions are conserved. This
type of analyses was performed on both publicly available
assemblies and our assemblies constructed from simu-
lated reads. Second, we performed variant analyses with
actual reads coming from a genotype different from the
reference. In this case, the variants would contain a mix of
true positives and false positives. Due to the limited avail-
ability of data, we only performed these analyses with the
assemblies constructed from the simulated reads.
Our results suggest that the positional bias was caused

by the alignment of reads from repetitive or homolo-
gous sequences that often had fewer copies included in
the assembly compared to the actual genome. The most
effective method to reduce the bias is to remove the vari-
ants located in repeated sequences. Such variants are very
likely to be false positives even when they are not located
at position k. Depending on the assembler configuration
and input data, such filtering may either eliminate the
bias completely or reduce it to almost negligible level. The
remaining bias-causing SNPs probably reside in unanno-
tated repetitive elements or other homologous sequences
that have multiple copies in the genome but only a single
copy in the assembly. While some of the variants could
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Fig. 3 Distribution of SNP positions at the 5′ end of contigs in the Bs-1 data set with repetitive element annotation. Colour indicates whether the
SNPs are within repetitive sequences (blue) or not (orange). SNPs were called from the Bs-1 read alignments. Repetitive elements included all
sequences reported by RepeatMasker

have been caused by heterozygosity in B. constrictor and
M. zebra genomes, the simulated data set essentially rep-
resented a haploid individual without any heterozygous
regions. Therefore, heterozygosity is unlikely to constitute
a major factor in positional bias.
We also observed the positional bias while using alter-

native variant callers (FreeBayes and Samtools) and read
aligners (NextGenMap and GSNAP). The only exception
was Bowtie2 whose read alignments yielded very weak
bias in the SGA and SOAPdenovo2 assemblies and no
bias in the ALLPATHS-LG assembly when calling variants
with GATK. However, the alignment of the resequencing
data with Bowtie2 against the simulated contig assemblies

generated considerably fewer SNPs in all positions com-
pared to BWA (Table 4) suggesting decreased sensitivity
of the aligner.
Previous reports also showed the reduced sensitivity of

Bowtie2 [35, 36] while others revealed only minor [38] or
inconclusive [40] differences between Bowtie2 and BWA.
Interestingly, Li attributes the differences between vari-
ants called from BWA and Bowtie2 alignments to lower
mapping scores that Bowtie2 assigns to reads with addi-
tional suboptimal alignments [36]. Since similar repetitive
sequences are likely to appearmultiple times in the assem-
bly, the respective primary alignments would have very
low scores and they would rarely produce variants. On the
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Fig. 4 Distribution of SNP positions at the 5′ end of contigs in the Bs-1 data set after repetitive element filtering. SNPs were called from the Bs-1 read
alignments and SNPs located in the annotated repetitive elements were removed

other hand, such drastic reduction in the number of SNPs
between BWA and Bowtie2 alignments is unlikely to stem
exclusively from the false positives called by BWA. There-
fore, further research is needed to determine whether
Bowtie2 actually outperforms BWA in terms of both sen-
sitivity and specificity when calling variants against draft
genome assemblies.
Theoretically, it may be beneficial for resequencing

projects to align reads previously used to construct the
reference assembly, call variants and exclude them from
the variants called in resequenced individuals. If the
involved regions are completely conserved between the
reference individual and a resequenced individual, those
SNPs would be called for the resequenced individual as
well and they would be false positives. However, this type

of filtering produced very minor effects on the positional
bias in the data sets we analysed, especially after the
removal of SNPs located in repetitive elements.
The extent of positional bias obviously depends on the

quality of the reference genome assembly. High quality
assemblies have reduced number of contigs or scaffolds.
Thus, they will have fewer locations to call the bias-
causing SNPs. For many projects dealing with non-model
organisms, it may not be realistic to construct genome
assemblies with adequate quality in sufficiently short time.
Moreover, even when a high quality assembly does not
readily exhibit a strong positional bias, it may still appear
after mapping scaffold coordinates to contig coordinates.
We found the evidence for such bias masking in our
analyses. Increased number of repetitive elements in a
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genome would also yield higher positional bias while
lowering assembly quality. Therefore, regardless of the
assembly quality it would be important to filter SNPs that
appear in repetitive elements in order to avoid potential
complications.
A more conservative approach would involve filtering

out all variants near contig ends. When using a suffi-
ciently large threshold (greater than read length), this
would remove the positional bias completely. However,
any true variants in those regions will also be lost. To apply
such a filter, it would be necessary to know contig coor-
dinates within scaffolds and this information may not be
readily available. In any case, this kind of filtering should
be done in addition to the filtering of variants in repetitive
elements because some repetitive sequences would not be
located near contig ends.

Conclusions
This study describes positional bias in variant calls that
are made against draft genomes constructed with sev-
eral popular assemblers. The variant calls that cause the
bias are mostly false positives that arise from aligning the
reads originated in spatially remote repeated sequences
or homologous regions. The degree of the bias depends
on the choice of tools, configuration, and underlying data
set. However, the bias is likely to affect many projects that
rely on de novo draft assemblies generated from short
read data. The bias can be mitigated by removing vari-
ants located in repetitive elements that can be identified
by programs such as RepeatMasker [32]. More conserva-
tively, the bias can also be removed by filtering out all
variants located near contig ends. Our findings will help
researchers who work on resequencing projects to recog-
nise and reduce the position bias, which will result in
higher quality variant data sets.

Additional file

Additional file 1: Supplementary figures. (PDF 1499 kb)
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