
The Author(s) BMCGenomics 2017, 18(Suppl 4):387
DOI 10.1186/s12864-017-3735-1

RESEARCH Open Access

A scalable and memory-efficient
algorithm for de novo transcriptome assembly
of non-model organisms
Sing-Hoi Sze1,2*, Meaghan L. Pimsler3, Jeffery K. Tomberlin3, Corbin D. Jones4 and Aaron M. Tarone3

From Fifth IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS 2015)
Miami, FL, USA. 15–17 October 2015

Abstract

Background: With increased availability of de novo assembly algorithms, it is feasible to study entire transcriptomes
of non-model organisms. While algorithms are available that are specifically designed for performing transcriptome
assembly from high-throughput sequencing data, they are very memory-intensive, limiting their applications to small
data sets with few libraries.

Results: We develop a transcriptome assembly algorithm that recovers alternatively spliced isoforms and expression
levels while utilizing as many RNA-Seq libraries as possible that contain hundreds of gigabases of data. New
techniques are developed so that computations can be performed on a computing cluster with moderate amount of
physical memory.

Conclusions: Our strategy minimizes memory consumption while simultaneously obtaining comparable or
improved accuracy over existing algorithms. It provides support for incremental updates of assemblies when new
libraries become available.

Keywords: RNA-Seq, Transcriptome assembly, Alternative splicing, Gene expression

Background
As the advance of high-throughput sequencing makes it
possible to sequence billions of bases in a single experi-
ment, this shift in the availability of genomic data allows
researchers to focus on biological questions in non-
model organisms. With the increased availability of de
novo assembly algorithms that are designed specifically
for assembling millions of short reads [1–8], it becomes
possible to study entire genomes or transcriptomes by
investigating the assembled sequences.
To obtain a transcriptome, many RNA-Seq libraries are

constructed under different experimental conditions or
developmental stages, with each library corresponding to

*Correspondence: shsze@cse.tamu.edu
1Department of Computer Science and Engineering, Texas A&M University,
College Station, TX 77843, USA
2Department of Biochemistry & Biophysics, Texas A&M University, College
Station, TX 77843, USA
Full list of author information is available at the end of the article

one sequencing run of a biological sample. It is prefer-
able to utilize as many libraries as possible to construct
one single assembly for each species, as the large amount
of data enables simultaneous expression analysis and an
increase in coverage support of transcripts that may not
be highly expressed under some conditions. In order to
obtain the best transcriptomic profile for a given species,
there is a need to integrate large amount of accumulated
data together from disparate projects and create updated
transcriptome assemblies as new data become available.
This creates a significant challenge for de novo assembly
algorithms, since computational resources are often lim-
ited in individual labs while the computational time and
memory requirement increase rapidly as the number of
reads increases.
These computational challenges have motivated the

development of algorithms that are specifically designed
for performing transcriptome assembly. While algorithms
such as Oases [9] and Trinity [8] aim to extract as

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-3735-1&domain=pdf
mailto: shsze@cse.tamu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 36 of 55

much information as possible, they are very memory-
intensive, limiting their applications to small data sets
with few libraries that biologists produce during experi-
ments. Algorithms such as SOAPdenovo-Trans [10] and
Trans-ABySS [11] have high memory requirements for
large data sets.
To address these difficulties, our goal is to develop

transcriptome assembly algorithms that recover alterna-
tively spliced isoforms while utilizing as many RNA-Seq
libraries as possible that contain hundreds of gigabases
of data. We subdivide the computations into two stages,
in which the first stage collects information from each
library independently and in parallel, and the second stage
merges these results together while minimizing needed
computations. To reduce memory consumption so that
computations can be performed on a computing cluster
with moderate amount of physical memory, we develop
new techniques to enumerate k-mer frequencies in the
first stage. We impose appropriate cutoffs in the sec-
ond stage in order to obtain comparable or improved
accuracy over existing algorithms. This strategy supports
incremental updates of assemblies when new libraries
become available since only the second stage needs to
be rerun.
We evaluate the performance of our algorithm by con-

structing transcriptome assemblies using publicly avail-
able libraries from model organisms, and comparing our
assemblies to the ones obtained from SOAPdenovo-Trans,
Trans-ABySS, Oases and Trinity. We evaluate our per-
formance on non-model organisms both by obtaining
publicly available libraries from the naked mole rat Het-
erocephalus glaber and by constructing new RNA-Seq
libraries for the blow fly Chrysomya rufifacies.

Methods
De Bruijn graph
Given a set of reads and a parameter k, a de Bruijn graph
is defined by taking each k-mer that appears within the
reads as a vertex. Two k-mers s1s2 · · · sk and s2 · · · sksk+1
are connected by a directed edge if the (k + 1)-mer
s1s2 · · · sksk+1 appears in the reads and the (k−1)-suffix of
the first k-mer is the same as the (k − 1)-prefix of the sec-
ond k-mer, where s1 and sk+1 can be arbitrary letters. By
linking together the same k-mer that appears in different
reads, the de Bruijn graph can be used to implicitly assem-
ble these reads [12, 13]. Since the size of the de Bruijn
graph depends on the number of distinct k-mers from
the reads that is often much smaller than the total size
of reads, this strategy is especially suitable for assembling
high-throughput sequencing data [2, 3, 5–7].

Independent computation of k-mer frequencies
While most existing short read assembly algorithms use
hashing techniques [5, 8, 14] or suffix arrays [15] to

enumerate k-mer frequencies, the memory requirement
per k-mer can be high with large multiplicative con-
stants. While techniques such as sparse hashing (http://
code.google.com/p/google-sparsehash) or entropy-based
compression [16] can be used to reduce the memory
overhead per k-mer, there is a need to handle colli-
sions and the memory requirement can still be high.
Recently, two algorithms DSK [17] and KMC [18] were
developed based on disk-based partitioning of the k-
mer space, which allow the user to specify a memory
consumption limit.
We consider the following iterative algorithm to enu-

merate k-mer frequencies independently for each library
(see Fig. 1). At the start of each iteration, we assume that
a list of all k′-mers that appear in the library in either the
forward or the reverse complementary direction are given
in sorted order for k′ < k. This list can be represented
by encoding each nucleotide by two bits and using a 64-
bit or 128-bit integer to encode each k′-mer. Suppose that
there are n such k′-mers. We create an array of size 4n that
contains four slots for each k′-mer. We use it to count the
number of each (k′ + 1)-mer that appears in the library
by using binary search to find the location of its k′-prefix
within the array and updating one of the four slots that
corresponds to its last nucleotide. At the end of the itera-
tion, we remove slots with zero counts to obtain a list of
all (k′ + 1)-mers.
To make sure that each edge in the de Bruijn graph

corresponds to a (k + 1)-mer that appears in the library,
we repeat this procedure until the frequencies of (k +
1)-mers are obtained and store all k-mer frequencies
along with edge information. To reduce computational
time, we start the process with a moderate value of k′
(between 10 to 15) by assuming that all k′-mers appear

Fig. 1 Illustration of the iterative algorithm to enumerate k-mer
frequencies. For the k′-mer a1 · · · ak′ , its two frequency slots with zero
counts for nucleotides c and t are removed to obtain (k′ + 1)-mers
a1 · · · ak′a and a1 · · · ak′g

http://code.google.com/p/google-sparsehash
http://code.google.com/p/google-sparsehash


The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 37 of 55

in the library. One advantage of this procedure is that
the memory requirement per k-mer is low with a multi-
plicative constant of four. When multiple assemblies with
different values of k are needed, frequencies with smaller
values of k for one assembly can be used to obtain fre-
quencies with larger values of k for another assembly.
This significantly reduces the computational time over all
values of k.

Construction of de Bruijn graph
Given a list of all k-mer frequencies in sorted order for
each library, we combine these lists by performing amerge
sort and adding the corresponding frequencies for each
k-mer. We exclude a k-mer from the de Bruijn graph if
its frequency is less than a given k-mer coverage cutoff
c. This strategy is different from the one employed by
other short read assembly algorithms such as Velvet [5] or
ABySS [6], which apply the cutoff after constructing the
de Bruijn graph and removing redundant paths that are of
less support. Since our results show that there is a need to
increase the values of k and c to obtain good performance
as the size of the data set increases, our strategy keeps the
size of the de Bruijn graph manageable. Edges in the de
Bruijn graph are constructed by linking together adjacent
k-mers through binary search. After the initial construc-
tion of the de Bruijn graph, each linear path that contains
a maximal succession of vertices with no branches is
collapsed into a single node. While the entire merging
process needs to be run sequentially for each given set-
ting of k and c, different settings of k and c can be run
in parallel.

Construction of splicing graphs
To simplify the de Bruijn graph, we remove short tips
that may correspond to sequencing errors by iteratively
removing end nodes with sequence length less than 2k.
We follow the strategy in [19] to obtain splicing graphs
from the de Bruijn graph so that each splicing graph
mostly represents alternatively spliced variants of only

one gene, with new strategies to handle paired-end reads.
Note that this strategy is different from algorithms that
construct a set of predicted transcripts from the de Bruijn
graph [8–11].
In order to remove obvious SNPs that create branches

in the graph, we search for split-then-merge branching
structures in which all the branches from a node merge
immediately into a single node and the sequences associ-
ated with each branch are of the same length with very
few mismatches. Successive split-then-merge structures
are merged into a single node.
For each paired-end read, we identify the node u in

the collapsed de Bruijn graph in which the last k-mer
of the forward read resides and the node v in which
the first k-mer of the reverse read resides, and increase
the frequency count of the paired edge u → v by one.
We repeat this procedure over all paired-end reads and
retain all paired edges that have frequency counts above
a given cutoff c2 that is proportional to the total num-
ber of bases in the data set. The resulting de Bruijn graph
contains two types of edges, including normal edges and
paired edges.
Our results show that there is always a big tangle in the

de Bruijn graph that contains a large number of nodes
within a single connected component, while most of the
other tangles are much smaller. In order to address these
tangles, we decompose each connected component into
strongly connected components, in which each strongly
connected component is either just a single edge or a
maximal subgraph with each node reachable from all
other nodes. The regions within a strongly connected
component that are not just a single edge represent the
complicated regions that always contain a cycle, while
the other regions represent the simpler regions in which
each connected region is likely to belong to the same
gene. With the assumption that the reads are not strand-
specific, it is also possible to have forward-backward
tangles in which a connected component contains both
a forward node and its corresponding backward node

Table 1 Data sets used in the evaluation of transcriptome assembly, with organism denoting the organism, type denoting whether
the organism is model or non-model, libraries denoting the total number of libraries, size denoting the total number of bases in all the
reads after quality trimming, reference denoting the publication that describes the libraries, and tick marks within assembly on 32 GB
machines denoting the algorithms that can be used for assembly on machines with 32 GB physical memory

Assembly on 32 GB machines

Organism Type Libraries Size Reference SOAPdenovo-Trans Trans-ABySS ASplice

S. pombe Model 32 16.9 G [8]
√ √ √

A. thaliana Model 5 16.1 G [29]
√ √ √

D. melanogaster Model 245 158 G [30]
√ √

H. glaber Non-model 13 60.5 G [31]
√ √

C. rufifacies Non-model 66 590 G New data
√



The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 38 of 55

in the reverse complementary direction. Both of these
structures can be identified by using depth-first search
with time complexity that is linear in the size of the
graph.
We extract the strongly connected components that are

not just a single edge and all the forward-backward tan-
gles. We ignore the junction information within these
subgraphs, and treat each node as an individual splic-
ing graph that consists only of a single node. We remove
these nodes along with their adjacent edges, and extract
each connected component in the remaining graph as a
splicing graph that does not contain cycles. We remove
the overlapping sequence fragments within the nodes

that arise according to the definition of a de Bruijn
graph, and make the junction locations precise in obvi-
ous cases when a node does not have multiple incom-
ing edges and multiple outgoing edges at the same
time. We retain one of the two possible orientations for
each splicing graph. Only splicing graphs with length
(in nucleotides) of the longest path of at least 100 are
retained.
In order to study expression of nodes in a splicing graph,

we incorporate the de novo expressionmeasure of number
of reads per kilobase of node per million reads (RPKM)
developed in [19]. This measure is similar to the num-
ber of reads per kilobase of exon per million mapped

Table 2 Comparisons of transcriptome assemblies of SOAPdenovo-Trans, Trans-ABySS and ASplice in model organisms over different
values of k and k-mer coverage cutoff c

S. pom SOAPdenovo-Trans Trans-ABySS ASplice

total unique mem total unique mem splicing total unique mem
k_c locus N50 hits hits (GB) trans N50 hits hits (GB) graphs N50 hits hits (GB)

25_10 3267 4455 7343 4230 10 21215 2854 28376 4400 3 5859 3032 5271 4650 9

25_20 3393 3795 7153 4341 10 14193 2880 19541 4284 3 5231 2723 4941 4579 9

25_50 3747 3025 8174 4513 10 8748 2317 10686 4370 3 5163 2210 5002 4580 9

31_10 3366 4164 8481 4342 10 20569 2977 33192 4323 4 5580 3005 5148 4611 9

31_20 3470 3590 7864 4418 10 13701 3045 22303 4158 4 5076 2625 4956 4565 9

31_50 3891 2788 8783 4576 10 7972 2421 10259 4284 4 5103 2088 5080 4620 9

A. tha SOAPdenovo-Trans Trans-ABySS ASplice

total unique mem total unique mem splicing total unique mem
k_c locus N50 hits hits (GB) trans N50 hits hits (GB) graphs N50 hits hits (GB)

25_10 18980 1705 80644 21614 17 348069 460 383663 21715 7 103450 344 92605 21487 10

25_20 16327 1622 71684 20239 17 159952 772 139875 20213 7 71419 561 66645 20033 9

25_50 13384 1472 53209 17788 17 66058 948 70136 17544 7 43407 778 42396 17535 9

31_10 19604 1700 74854 20952 17 350165 578 525359 21422 7 92665 444 88408 21288 10

31_20 16882 1605 62748 19516 17 141642 948 181322 19838 7 58877 760 56869 19691 9

31_50 13660 1438 42763 16990 17 54189 1083 75863 17050 7 35448 973 34906 17030 9

D. mel Trans-ABySS ASplice

total unique mem splicing total unique mem
k_c trans N50 hits hits (GB) graphs N50 hits hits (GB)

25_10 135048 1192 179499 12989 27 99930 728 51854 12322 11

25_20 83303 1693 102591 12848 27 60662 1328 35402 12245 10

25_50 47341 2082 58523 12453 27 36093 1874 26130 11921 9

31_10 113805 1547 225887 13025 30 77439 1203 45278 12453 11

31_20 70061 2029 124050 12787 30 45645 1952 28616 12259 10

31_50 41210 2296 64736 12337 30 32593 2085 24093 11861 9

The predicted units are locus for SOAPdenovo-Trans that is represented as a splicing graph containing nodes and edges, transcript (trans) for Trans-ABySS that is a linear
concatenation of constituent nodes, and splicing graph for ASplice. For SOAPdenovo-Trans and ASplice, N50 denotes the N50 value of the length (in nucleotides) of the
longest path in each splicing graph. For Trans-ABySS, N50 denotes the N50 value of the length of a predicted transcript, and only predicted transcripts of length at least 100
are retained. Total hits denotes the total number of hits from nucleotide BLAST search of nodes to the transcriptome of the same organism. Isoforms are considered to be the
same gene. Only the top hit with E-value below 10−7 is considered. Hits from nodes within the same predicted unit to the same gene are counted only once. Unique hits
denotes the number of unique hits to different genes. Mem (GB) denotes the physical memory requirement in gigabytes over all stages of each algorithm



The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 39 of 55

reads used by [20] and [21], except that reads that appear
in the assembly are used instead of mapped reads, and
each node in a splicing graph is evaluated instead of each
exon, with each read that contains a k-mer within a node
contributing to that node.Within each node, a RPKM esti-
mate is computed independently for each library. Alterna-
tively, measures similar to transcripts per million (TPM)
[22] can be used, which are more comparable across
libraries.
In order to make the results directly applicable to down-

stream analysis, we represent each assembly in an anno-
tated FASTA format, in which each splicing graph is given
as a collection of nodes, with connecting normal and
paired edges and RPKM values for each library embed-
ded within the name of each node. Since it is possible
to have empty nodes that do not contain any nucleotide
after adjustment of junction locations, RPKM values are

computed before junction adjustment to reflect the orig-
inal coverage values across a branch. Such empty nodes
correspond to additional isoforms that skip nodes (e.g.,
exons) within a branch.

Results and discussion
Model organisms
To compare the performance of our algorithm ASplice
to other algorithms, we extracted reads from publicly
available RNA-Seq libraries in model organisms
Schizosaccharomyces pombe, Arabidopsis thaliana and
Drosophila melanogaster (see Table 1). We trimmed
each read by removing all positions including and after
the first position that has a quality score of less than
15. We applied our algorithm to obtain a de Bruijn
graph for a given k-mer length and a given k-mer cov-
erage cutoff c. We compare the performance of our

25_10 sens 25_20 sens 25_50 sens 31_10 sens 31_20 sens 31_50 sens

25_10 spec 25_20 spec 25_50 spec 31_10 spec 31_20 spec 31_50 spec

45

55

65

75

85

95

SOAPdenovo-Trans Trans-ABySS ASplice

45

55

65

75

85

95

SOAPdenovo-Trans Trans-ABySS ASplice

45

55

65

75

85

95

Trans-ABySS ASplice

Fig. 2 Sensitivity and specificity comparisons of SOAPdenovo-Trans, Trans-ABySS and ASplice with respect to mRNA BLAST results in model
organisms over different values of k and k-mer coverage cutoff c (represented by k_c). Sensitivity (sens; marked by bars) is defined to be the
percentage of nucleotide positions in the transcriptome that are recovered through the top BLAST alignments from each node in the assembly.
Specificity (spec; marked by lines) is defined to be the percentage of predicted positions that are included in the top BLAST alignments from each
node of the assembly



The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 40 of 55

algorithm ASplice to SOAPdenovo-Trans and Trans-
ABySS on machines with 32 GB physical memory (except
for D. melanogaster, in which there is not sufficient
memory to run SOAPdenovo-Trans). Nucleotide BLAST
search is applied to the transcriptome of the same organ-
ism to evaluate the performance. Since each algorithm
returns different structures, note that the results are not
completely comparable.
Table 2 shows that while there were performance trade-

offs among different values of k and the k-mer coverage
cutoff c, SOAPdenovo-Trans and Trans-ABySS generally
recovered longer transcript structures and more genes in
the transcriptome (except for S. pombe, in which ASplice
recovered more genes).
Figure 2 shows that ASplice had higher specificity with

respect to the percentage of predicted positions that are
included in the top BLAST alignments. ASplice also often
had comparable sensitivity with respect to the percent-
age of nucleotide positions in the transcriptome that are
recovered through the top BLAST alignments, especially
for larger values of the k-mer coverage cutoff c when the
assembly conditions are more stringent, and had higher
sensitivity for S. pombe.
Figure 3 further shows that, with respect to alterna-

tive splicing junctions that are derived from the splicing

graphs and annotated positions of the gene transcripts,
ASplice was often more conservative, and could have
higher sensitivity when the assembly conditions are more
stringent (no comparisons were made to SOAPdenovo-
Trans since its assemblies often contain many gap posi-
tions around junctions, making comparisons difficult).
The poor performance with respect to alternative splicing
junctions in A. thaliana is due to the relatively small size
of the data set.
Figure 4 shows that our de novo expression estimates

were highly correlated to the ones obtained from apply-
ing RSEM [22] to map the reads in each library to the
transcriptome of the same organism, with 0.49 ≤ R2 ≤
0.84 for gene transcripts without alternative splicing and
0.28 ≤ R2 ≤ 0.40 for gene transcripts with alternative
splicing, where R2 denotes the coefficient of determina-
tion that measures how well the data fit a regression line.
The lower R2 in the latter case is probably due to higher
assembly difficulties.
In terms of memory requirement, Table 2 shows that

while SOAPdenovo-Trans and Trans-ABySS had large
increases as the size of the data set increases (compare to
Table 1), ASplice had a large fixed memory overhead for
all data sets with small increases for larger data sets. Since
each library can be further subdivided into multiple parts

25_10 sens 25_20 sens 25_50 sens 31_10 sens 31_20 sens 31_50 sens

25_10 spec 25_20 spec 25_50 spec 31_10 spec 31_20 spec 31_50 spec

0

10

20

30

40

50

Trans-ABySS ASplice

0

10

20

30

40

50

Trans-ABySS ASplice

Fig. 3 Sensitivity and specificity comparisons of Trans-ABySS and ASplice with respect to alternative splicing junctions in model organisms over
different values of k and k-mer coverage cutoff c (represented by k_c). Sensitivity (sens; marked by bars) is defined to be the percentage of junctions
in the gene transcripts that appear in the assembly. Specificity (spec; marked by lines) is defined to be the percentage of junctions in the assembly
that appear in the gene transcripts. Junctions in the gene transcripts are defined by concatenating the two sequences of length k that are
immediately to the left and immediately to the right of all locations with alternative splicing that are derived from annotated positions of the gene
transcripts to obtain a sequence of length 2k. Junctions in the assembly are defined by concatenating the two non-overlapping k-mers at the
beginning and ending nodes of an edge to obtain a sequence of length 2k. Up to three mismatches are allowed when looking for occurrences of
these sequences that span across a junction. Notations are the same as in Fig. 2



The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 41 of 55

Fig. 4 Regression in log scale of the de novo RPKM values from the 25_10 assembly (with k = 25 and k-mer coverage cutoff c = 10) of ASplice
against the FPKM values from RSEM over all libraries. The gene transcript that corresponds to each node from ASplice is identified through a
bi-directional nucleotide BLAST alignment of length at least 100 to the transcriptome of the same organism. Nodes that have no correspondences
are ignored. For A. thaliana and D. melanogaster, regressions are performed separately on gene transcripts without alternative splicing and on gene
transcripts with alternative splicing

to reducememory requirement during the parallel stage of
ASplice, the maximum memory consumption is obtained
during the sequential stage, in which the main structure to
store is the de Bruijn graph after the k-mer coverage cutoff
c is applied.

Non-model Heterocephalus glaber
We also assess the performance of our algorithm in
the non-model naked mole rat Heterocephalus glaber
(there is not sufficient memory to run SOAPdenovo-
Trans on machines with 32 GB physical memory for
this data set). Table 3 shows that large values of the
k-mer coverage cutoff c were needed to obtain rea-
sonable assemblies due to the large size of the data
set (see also Table 1). Similar trends were observed
as before when translated BLAST search to the rat
Rattus norvegicus is applied, with ASplice recovering
more genes when the assembly conditions are more
stringent.

Non-model Chrysomya rufifacies
We applied our algorithm to assemble the transcriptome
of the blow fly Chrysomya rufifacies from a set of RNA-
Seq libraries that we have constructed, which includes the
following developmental stages: embryos, first instar lar-
vae, second instar larvae, predator and non-predator third
instar larvae, early pupae, mid pupae, late pupae, thely-
genic and arrhenogenic adult females, and adult males.
There are totally 66 libraries with 6.8 G reads and average
read length 86 after quality trimming.
The blow fly C. rufifacies has monogenic sex deter-

mination in which a female either produces only female
offspring (thelygenic) or produces only male offspring
(arrhenogenic) based on the genotype [23], which is a
distinct mechanism among flies. Sex determination in
flies is typically achieved (in part) by alternative splic-
ing, in which sex-specific isoforms of genes like double-
sex and transformer lead to female or male development
[24, 25].Within the genus, there is also a human-associated



The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 42 of 55

Table 3 Comparisons of transcriptome assemblies of Trans-ABySS and ASplice in the naked mole rat H. glaber over different values of k
and k-mer coverage cutoff c

H. gla Trans-ABySS ASplice

R. nor unique mem splicing R. nor unique mem

k_c trans N50 hits hits (GB) graphs N50 hits hits (GB)

25_50 97640 970 40391 13592 19 110379 533 35671 13056 9

25_100 62495 714 34433 11758 19 71037 445 30442 11558 9

25_200 37371 527 24940 9059 19 42666 359 21515 9371 9

31_50 91149 987 38346 13415 20 116375 457 38271 12900 9

31_100 59730 695 33864 11510 20 73734 381 31369 11356 9

31_200 35292 503 24404 8703 20 42180 320 21110 9084 9

Notations are the same as in Table 2 except that translated BLAST search (to R. norvegicus) is performed instead of nucleotide BLAST search

male-eye phenotype that is hypothesized to have evolved
multiple times in concert with human civilization [26].
Genomic tools for this blow fly enable the study of the
evolution of sex determination and co-evolution with
humans.
Since there is not sufficient memory to run either

SOAPdenovo-Trans or Trans-ABySS on machines with
32 GB physical memory for this large data set with 590 G
bases, we only run ASplice, which allows computations to
be performed on a computing cluster due to its low mem-
ory requirements. We considered larger values of k and
further subdivided large libraries into multiple parts dur-
ing the parallel stage. Table 4 shows that the assemblies
were of high quality, with long splicing graphs, moder-
ate amount of branches that may represent alternative
splicing, and over 60% of theD. melanogaster genes recov-
ered. The ratio of the total number of BLAST hits from
different splicing graphs to the number of unique BLAST
hits to different genes was between 1.5 to 2, indicating a
small amount of sequence fragmentation of the same gene
into different splicing graphs. There were only a small
number of splicing graphs that have BLAST hits to more
than one gene, and the maximum number of different

genes that have BLAST hits to a splicing graph was small,
thus each splicing graph specifies the alternatively spliced
variants of one gene in most cases.
By comparing to the D. melanogaster homologs of

assembled nodes (see Fig. 5), we found expected alter-
native splicing in the doublesex gene and consistent bias
of expression within female-specific (upper right node of
length 117) and male-specific (lower right node of length
876) segments and between thelygenic and arrhenogenic
females (with generally higher expression within thely-
genic females in the upper right node).

Small Drosophilamelanogaster libraries
Since Oases and Trinity are very memory-intensive, we
assess their performance by extracting reads from a
small set of three D. melanogaster RNA-Seq libraries
in [27] at the sequence read archive [28] that includes
the following developmental stages: 2–16 hours embryos
(SRR058885), third instar larvae (SRR059066), and mixed
pupae (SRR042298). These libraries have 1.8 G bases after
quality trimming, and k is fixed to 25.
Table 5 shows that Oases had the longest assemblies and

recovered the largest number of genes. While ASplice had

Table 4 Transcriptome assemblies of ASplice in the blow fly C. rufifacies over different values of k and k-mer coverage cutoff c

C. ruf splicing max >1-node max avg D. mel unique >1-hit max mem

k_c graphs length N50 graphs nodes nodes hits hits graphs hits (GB)

31_50 67945 29763 1482 20900 2066 33 17516 9246 1029 15 13

31_100 52099 27855 1651 16790 2786 27 16237 9090 844 38 10

31_200 41872 35802 1717 13318 2648 21 15013 8776 624 68 9

35_50 66381 55047 1600 20465 5299 33 16470 9235 994 59 13

35_100 53120 34347 1686 16529 1398 26 15965 9062 769 14 10

35_200 41421 35802 1769 13159 4076 21 14693 8723 582 76 9

Max length denotes the length (in nucleotides) of the longest path over all splicing graphs. >1-node graphs denotes the number of splicing graphs with non-linear
structures. Max nodes denotes the maximum number of nodes in a splicing graph. Avg nodes denotes the average number of nodes in splicing graphs with non-linear
structures. >1-hit graphs denotes the number of splicing graphs that have BLAST hits to more than one gene in D. melanogaster. Max hits denotes the maximum number of
different genes that have BLAST hits to a splicing graph. Other notations are the same as in Table 2 except that translated BLAST search to D. melanogaster is performed



The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 43 of 55

Fig. 5 A splicing graph in the 31_200 assembly (with k = 31 and
k-mer coverage cutoff c = 200) of ASplice in the blow fly C. rufifacies
that is related to the doublesex gene in D. melanogaster. Each node is
represented by a rectangle of width that is proportional to (and
labeled by) the length of its sequence. The histogram adjacent to
each node gives the RPKM values for each adult library, with each
light bar and the dark bar to its right denoting an adult female and its
mate (an adult male) respectively. The left half of each histogram
(marked by solid bars) denotes thelygenic females and their mates,
while the right half of each histogram (marked by dashed bars)
denotes arrhenogenic females and their mates

longer assemblies than Trinity, Trinity recovered more
genes. Figure 6 shows that ASplice had slightly higher
specificity at the expense of lower sensitivity with respect
to recovered mRNA positions, and had higher speci-
ficity with respect to alternative splicing junctions when
the assembly conditions are more stringent. Sensitivity
was low for all algorithms due to the small size of the
data set. When compared to the results on the large D.
melanogaster data set, this shows that as many libraries
as possible should be utilized to obtain a more complete
transcriptome, justifying the use of our scalable algorithm
when possible.

Conclusions
We have developed an algorithm for de novo transcrip-
tome assembly of non-model organisms that utilizes a
large amount of RNA-Seq libraries in order to obtain a
transcriptome that is as complete as possible, while simul-
taneously extracting alternative splicing information and
expression levels in different libraries. When compared to
existing algorithms, our algorithm is more conservative
and generally has higher specificity at the expense of lower
sensitivity, but is able to utilize larger amount of data to
obtain more complete assemblies. As the size of the data
set increases, larger values of k and usually much larger
values of the k-mer coverage cutoff c are needed to obtain
reasonable assemblies.
Since large libraries can be further subdivided into mul-

tiple parts during the parallel stage, our algorithm is
scalable and the parallel stage can be run on different
computing nodes. Since our k-mer counting technique
requires iterating over every read and performing binary
search repeatedly over increasing values of k, our algo-
rithm is generally much more computationally intensive
than existing algorithms, although our memory require-
ment is much lower for large data sets. Our strat-
egy is especially suitable when multiple assemblies with
different values of k are desired, as our algorithm is
based on processing iteratively larger values of k. Incre-
mental updates of assemblies are easy to perform, as
it is only necessary to run the parallel stage on the
new libraries before running the sequential stage on
all libraries. Such a strategy is especially important to
iteratively obtain more complete transcriptome assem-
blies over time through collaboration across research
communities.
For small to medium data sets, it takes a few hours to a

few days to complete the parallel stage over all values of k
as long as the libraries are subdivided into small enough
parts. The time to finish the sequential stage ranges from
a few hours for a small data set to one to two days for a
larger data set. For our largest C. rufifacies data set with
590 G bases, it takes a few days to finish the parallel stage
over all values of k when the libraries are subdivided into
parts with about 10 G bases each, with each computing

Table 5 Comparisons of transcriptome assemblies of Oases, Trinity and ASplice on a small D. melanogaster data set with k = 25 and
over different values of k-mer coverage cutoff c

D. mel Oases Trinity ASplice

(small) total unique mem total unique mem splicing total unique mem
k_c locus N50 hits hits (GB) locus N50 hits hits (GB) graphs N50 hits hits (GB)

25_3 32277 748 46371 11311 26 50656 264 48079 9987 12 31949 305 30423 9560 9

25_5 21246 880 28366 9930 20 35797 254 34487 8412 12 20533 335 20061 8043 9

25_10 11509 842 15489 7075 18 20281 245 19759 5946 12 11243 338 11149 5722 9

For Oases and Trinity, the predicted unit is locus that contains a set of predicted transcripts, N50 denotes the N50 value of the longest transcript length in a predicted locus,
and predicted transcripts of length at least 100 are retained. Other notations are the same as in Table 2



The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 44 of 55

Fig. 6 Sensitivity and specificity comparisons of Oases, Trinity and
ASplice with respect to mRNA BLAST results and alternative splicing
junctions on a small set of libraries from D. melanogaster with k = 25
and over different values of k-mer coverage cutoff c (represented by
k_c). Notations are the same as in Figs. 2 and 3

process consuming less than 14 GB memory. For each
given setting of k and the k-mer coverage cutoff c, it takes
a few days to finish the sequential stage. With values of c
between 50 and 200 in our largest C. rufifacies data set,
the memory consumption is less than 14 GB. Thus, our
algorithm can assemble large data sets on a computing
cluster with moderate resources.

Acknowledgements
We thank the reviewers for suggestions that significantly improve the paper.
Sequencing was performed at the High-Throughput Sequencing Facility of
the University of North Carolina at Chapel Hill and the Genomics and
Bioinformatics Services at Texas A&M University. Computations were
performed on the Whole Systems Genomics Initiative Cluster and the Brazos
Cluster at Texas A&M University.

Funding
This work was supported in part by the National Institute of Justice
[2012-DN-BX-K024]. AMT is supported by start-up funds from the College of
Agriculture and Life Sciences at Texas A&M University and Texas AgriLife
Research. C. rufifacies sequencing was funded by the Whole Systems
Genomics Initiative Catalyst and Texas AgriLife Genomics Seed grants. Points
of view in this document are those of the authors and do not necessarily
represent the official position or policies of the U.S. Department of Justice.
Publication costs for this work were funded by the Open Access to Knowledge
(OAK) Fund at the Texas A&M University Libraries.

Availability of data andmaterials
A software program that implements our algorithm (ASplice) is available at
http://faculty.cse.tamu.edu/shsze/asplice. The newly constructed Chrysomya
rufifacies RNA-Seq libraries are available at the sequence read archive
(SRP013354, SRP059603, SRP059612, SRP106565).

Authors’ contributions
S-HS and AMT designed the computational work. MLP, JKT and CDJ designed
themolecular experiments. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

About this supplement
This article has been published as part of BMC Genomics Volume 18
Supplement 4, 2017: Selected articles from the Fifth IEEE International
Conference on Computational Advances in Bio and Medical Sciences (ICCABS
2015): Genomics. The full contents of the supplement are available online at
http:dx.doi.org/https:bmcgenomics.biomedcentral.com/articles/
supplements/volume-18-supplement-4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science and Engineering, Texas A&M University,
College Station, TX 77843, USA. 2Department of Biochemistry & Biophysics,
Texas A&M University, College Station, TX 77843, USA. 3Department of
Entomology, Texas A&M University, College Station, TX 77843, USA.
4Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill,
NC 27599, USA.

Published: 24 May 2017

References
1. Dohm JC, Lottaz C, Borodina T, Himmelbauer H. SHARCGS, a fast and

highly accurate short-read assembly algorithm for de novo genomic
sequencing. Genome Res. 2007;17:1697–706.

2. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES,
Nusbaum C, Jaffe DB. ALLPATHS: de novo assembly of whole-genome
shotgun microreads. Genome Res. 2008;18:810–20.

3. Chaisson MJ, Pevzner PA. Short read fragment assembly of bacterial
genomes. Genome Res. 2008;18:324–30.

4. Hernandez D, François P, Farinelli L, Østerås M, Schrenzel J. De novo
bacterial genome sequencing: millions of very short reads assembled on
a desktop computer. Genome Res. 2008;18:802–9.

5. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18:821–9.

6. Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD,
Zhao Y, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD,
Marra MA, Jones SJM. De novo transcriptome assembly with ABySS.
Bioinformatics. 2009;25:2872–77.

7. Li R, Zhu H, Ruan J, QianW, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
Li S, Yang H, Wang J, Wang J. De novo assembly of human genomes with
massively parallel short read sequencing. Genome Res. 2010;20:265–72.

8. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I,
Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E,
Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C,
Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome
assembly from RNA-Seq data without a reference genome. Nat
Biotechnol. 2011;29:644–52.

9. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo
RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics. 2012;28:1086–92.

10. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S,
Li S, Zhou X, Lam TW, Li Y, Xu X, Wong GK-S, Wang J.
SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq
reads. Bioinformatics. 2014;30:1660–6.

11. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD,
Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A,
Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R,
Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst M,
Marra MA, Jones SJM, Hoodless PA, Birol I. De novo assembly and
analysis of RNA-seq data. Nat Methods. 2010;7:909–12.

12. Pevzner PA. l-tuple DNA sequencing: computer analysis. J Biomol Struct
Dyn. 1989;7:63–73.

13. Idury RM, Waterman MS. A new algorithm for DNA sequence assembly.
J Comput Biol. 1995;2:291–306.

14. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70.

http://faculty.cse.tamu.edu/shsze/asplice
http:dx.doi.org/https:bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-4.
http:dx.doi.org/https:bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-4.


The Author(s) BMCGenomics 2017, 18(Suppl 4):387 Page 45 of 55

15. Kurtz S, Narechania A, Stein JC, Ware D. A new method to compute
K-mer frequencies and its application to annotate large repetitive plant
genomes. BMC Genomics. 2008;9:517.

16. Conway TC, Bromage AJ. Succinct data structures for assembling large
genomes. Bioinformatics. 2011;27:479–86.

17. Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory
usage. Bioinformatics. 2013;29:652–3.

18. Deorowicz S, Debudaj-Grabysz A, Grabowski S. Disk-based k-mer
counting on a PC. BMC Bioinforma. 2013;14:160.

19. Sze SH, Tarone AM. A memory-efficient algorithm to obtain splicing
graphs and de novo expression estimates from de Bruijn graphs of
RNA-Seq data. BMC Genomics. 2014;15(Suppl 5):6.

20. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods.
2008;5:621–8.

21. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics. 2009;25:1105–11.

22. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinforma. 2011;12:323.

23. Ullerich FH, Schöttke M. Karyotypes, constitutive heterochromatin, and
genomic DNA values in the blowfly genera Chrysomya, Lucilia, and
Protophormia (Diptera: Calliphoridae). Genome. 2006;49:584–97.

24. Saccone G, Pane A, Polito LC. Sex determination in flies, fruitflies and
butterflies. Genetica. 2002;116:15–23.

25. Shearman DCA. The evolution of sex determination systems in dipteran
insects other than Drosophila. Genetica. 2002;116:25–43.

26. Wells JD, Singh MM, Suzuki K, Miura M, Kurahashi H. Male eye
dimorphism and synanthropy in Chrysomya pinguis (Walker) (Diptera:
Calliphoridae). Jpn J Sanit Zool. 1994;45:299–302.

27. Daines B, Wang H, Wang L, Li Y, Han Y, Emmert D, Gelbart W, Wang X,
Li W, Gibbs R, Chen R. The Drosophila melanogaster transcriptome by
paired-end RNA sequencing. Genome Res. 2011;21:315–24.

28. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K,
Chetvernin V, Church DM, DiCuccio M, Federhen S, Feolo M, Geer LY,
Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL,
Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J,
Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M,
Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L,
Wang Y, Wilbur WJ, Yaschenko E, Ye J. Database resources of the National
Center for Biotechnology Information. Nucleic Acids Res. 2010;38:5–16.

29. Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M. Transcriptome
survey reveals increased complexity of the alternative splicing landscape
in Arabidopsis. Genome Res. 2012;22:1184–95.

30. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L,
Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L,
Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D,
Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B,
Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N,
Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J,
Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA,
Kaufman TC, Oliver B, Celniker SE. The developmental transcriptome of
Drosophila melanogaster. Nature. 2011;471:473–9.

31. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM,
Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N,
Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV,
Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C,
Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J,
Gladyshev VN. Genome sequencing reveals insights into physiology and
longevity of the naked mole rat. Nature. 2011;479:223–7.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	De Bruijn graph
	Independent computation of k-mer frequencies
	Construction of de Bruijn graph
	Construction of splicing graphs

	Results and discussion
	Model organisms
	Non-model Heterocephalus glaber
	Non-model Chrysomya rufifacies
	Small Drosophila melanogaster libraries

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	About this supplement
	Publisher's Note
	Author details
	References

