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Abstract

Background: Restriction site associated DNA sequencing (RADseq) has the potential to be a broadly applicable,
low-cost approach for high-quality genetic linkage mapping in forest trees lacking a reference genome. The statistical
inference of linear order must be as accurate as possible for the correct ordering of sequence scaffolds and contigs to
chromosomal locations. Accurate maps also facilitate the discovery of chromosome segments containing allelic variants
conferring resistance to the biotic and abiotic stresses that threaten forest trees worldwide. We used ddRADseq for
genetic mapping in the tree Quercus rubra, with an approach optimized to produce a high-quality map. Our study design
also enabled us to model the results we would have obtained with less depth of coverage.

Results: Our sequencing design produced a high sequencing depth in the parents (248×) and a moderate sequencing
depth (15×) in the progeny. The digital normalization method of generating a de novo reference and the SAMtools SNP
variant caller yielded the most SNP calls (78,725). The major drivers of map inflation were multiple SNPs located within the
same sequence (77% of SNPs called). The highest quality map was generated with a low level of missing data (5%) and a
genome-wide threshold of 0.025 for deviation from Mendelian expectation. The final map included 849 SNP markers (1.
8% of the 78,725 SNPs called). Downsampling the individual FASTQ files to model lower depth of coverage revealed that
sequencing the progeny using 96 samples per lane would have yielded too few SNP markers to generate
a map, even if we had sequenced the parents at depth 248×.

Conclusions: The ddRADseq technology produced enough high-quality SNP markers to make a moderately dense,
high-quality map. The success of this project was due to high depth of coverage of the parents, moderate depth of
coverage of the progeny, a good framework map, an optimized bioinformatics pipeline, and rigorous premapping
filters. The ddRADseq approach is useful for the construction of high-quality genetic maps in organisms lacking a
reference genome if the parents and progeny are sequenced at sufficient depth. Technical improvements in reduced
representation sequencing (RRS) approaches are needed to reduce the amount of missing data.
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Background
The low cost and broad applicability of reduced repre-
sentation sequencing (RRS) technologies have enabled a
burst of genetic architecture and gene discovery studies
in natural populations. A widely used RRS technique,
restriction site associated DNA sequencing (RADseq),
inexpensively generates tens of thousands of SNP calls, a
seemingly sufficient number for detecting fine-scale
population substructure, constructing phylogenies, and
generating densely populated genetic maps [1–4]. Tech-
nical evaluations of RADseq show that library construction
techniques, DNA quality, read coverage, and informatics
strongly influence the accuracy and number of SNP calls
but most of these studies are focused on the application of
RADseq technologies for phylogenetic and population fine
structure analyses [5–8]. SNP calling errors and missing
data have different impacts on phylogenetic and population
fine structure analyses than on the construction of densely
populated genetic maps. In this study we tested the
performance of double digest RADseq (ddRADseq) [9, 10]
for dense genetic mapping in northern red oak (Quercus
rubra L.), a highly heterozygous, outcrossing angiosperm
forest tree lacking a reference genome. None of the
ecologically dominant and economically valuable oaks of
eastern North America have reference genomes and studies
of population dynamics remain limited. RRS tech-
niques have the potential to provide an affordable
technology for dense genetic mapping and gene dis-
covery in oaks and the other long-lived angiosperm
forest trees of eastern North America.
Our approach to mapping with ddRADseq included a

full-sib population from one seed parent and one pollen
parent, a pedigree that provides more information for
genetic mapping than a half-sib family of the same size.
The outcrossing parents were expected to have many
SNP loci heterozygous for the same SNP, enabling the
construction of one map rather than separate male and
female maps. Both parents have seed, bud and leaf
morphologies consistent with those expected for Q.
rubra. We used a high coverage design, devoting one
lane of sequencing on an Illumina HiSeq for the two
parents and five lanes for the progeny (50/lane), consid-
erably fewer than the 96 individuals typically loaded in
each lane for RADseq involving non-model organisms
lacking reference genomes [11]. The informatics pipeline
included two approaches for generating a de novo
reference for Q. rubra and two SNP variant callers. We
generated a statistically robust framework map with gSSR
and EST-SSR markers, and then used ddRADseq to
discover SNP markers for the same individuals. This study
design enabled us to test the performance of ddRADseq
for genetic mapping under optimized conditions and to
model the results we would have received had we used an
experimental design with less coverage per individual.

Oaks are outcrossing, diploid forest trees with rela-
tively tractable genome sizes (~600–800 Mb) [12, 13]
and a haploid chromosome number of 12 [14]. Quercus
rubra is the most dominant and wide-ranging species of
the Lobatae, a section of the Quercus genus containing
nearly 100 species ranging from California to the Atlan-
tic coast, north to northern Ontario and south across
Mexico and Central America to northern Columbia [15].
The Lobatae are ecologically significant in many forest
communities of eastern North America, occurring across
a wide range of ecosystems, including dry savannahs,
mesic bottomlands and upland forests [16]. Unlike the
white oaks (Quercus section Quercus), which are native
in North America, Europe, and Asia the red oaks are
native only in the Americas [17]. The accidental import-
ation of exotic pests, diseases, and weedy species com-
bined with short-sighted management practices threaten
the health of the oak forests worldwide [18]. The
development of high-quality genetic maps and other
genomics tools for oaks, in combination with sound
management, will enable more effective and timely
responses to these challenges.
Prior studies on woody perennials have used RADseq

to examine gene flow among ecologically divergent
species of Populus [19], adaptive evolution through
interspecific hybridization in Populus [20], signatures of
selection in buckthorn (Frangula alnus) [21], adaptation
to aridity in Eucalyptus tricocarpa [22] and phylogeny
across the Quercus genus [23]. Use of a hypomethylation-
sensitive enzyme and messenger RNA sequencing
(mRNAseq) has permitted RADseq marker development
for the gigantic 16 Gb genome of Atlas cedar (Cedrus
atlantica) [24]. However, there are few reported RADseq
efforts for generating genetic maps in non-domesticated
woody perennials. Recent reports of mapping in woody
perennials include an interspecific cross of the jujube fruit
Ziziphus Mill. [25], a cross of the European pear (Pyrus
communis L.) and the Chinese pear (Pyrus bretschneideri
Rehd.) [26], pomelo (Citrus grandis Osbeck) [27], kiwifruit
(Actinidia chinensis Pl.) [28], red raspberry (Rubus idaeus
L.) [29], foxtail pine (Pinus balfouriana Grev. & Balf.) [30]
and the interspecific cross Populus deltoides Marsh x P.
simonii [31]. Of these, only foxtail pine, a conifer, and the
angiosperm Populus species are undomesticated.
In the Fagaceae (oaks, chestnuts, and beeches), genetic

maps are reported for the European pedunculate oak
(Quercus robur L.) [32, 33], the interspecific cross of Q.
robur x European sessile oak (Q. petraea (Matt.) Liebl.)
[34], European chestnut (Castanea sativa Mill.) [35],
Chinese chestnut (C. mollissima Blume) [36, 37], and
the interspecific cross of Chinese chestnut x American
chestnut (C. dentata (Marsh.) Borkh.) [38]. In the most
recent report of genetic mapping in oaks, an 8 k custom
genotyping array was used to generate very dense maps
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using two intraspecific and two interspecific full-sib
families of Quercus robur and Quercus petraea [39].
Prior to our study, no structured crosses and no genetic
maps existed for any of the Lobatae.
Paleobotanical data suggest that Quercus and Lobatae

sections of the genus Quercus diverged between 15 and
40 Mya [17]. Even though both sections of the genus
have 12 haploid chromosomes, the genetic barrier
between the sections is complete. Results from other
tree genera show that the number of shared SNPs de-
creases as the phylogenetic distance between species in-
creases, suggesting that a SNP array based on closely
related species in the European roburoid oaks may not
be sufficiently informative for genetic mapping in the
new world Lobatae [40]. One approach to overcome this
difficulty is to use the transcriptome sequence of one
species to do exome capture of a distantly related
species, then sequence the captured pieces for SNP
discovery [41]. The exome capture approach provides
genetic resources that are otherwise problematic in the
typically huge genomes (20 to 40 Gb) of conifers [42]. In
contrast, the genome sizes of diploid angiosperm trees are
much smaller (usually < 1Gb) and reasonably well-
conserved within genera [13]. Thus we anticipated that
ddRADseq, a technology that does not require any existing
genomic tools other than a suitable mapping population,
would have the potential to be a broadly applicable, low-
cost approach for genetic mapping in woody angiosperms.

Methods
Mapping population
SM1 and SM2 are the labels given to the two parents of the
mapping population. The parent trees are located on the
campus of Purdue University, approximately in the middle
of the native range for this species. The species identity was
verified by co-author Dr. Mark Coggeshall. Parentage ana-
lysis identified SM2 as the predominant pollen parent for
our selected seed tree SM1 [43]. The full-sib progeny used
for this investigation were naturally pollinated by SM2 in
2009, hand-picked from SM1 in 2010 (Q. rubra has a 2-
year acorn), parentage-verified with gSSR and outplanted in
2011. The progeny and parents were propagated as repli-
cated clones at the Horticulture and Agroforestry Research
Center (HARC) in New Franklin, MO in 2013. Co-author
Coggeshall collected voucher specimens for SM1 and SM2
in 2017 and deposited sun leaves and shade leaves speci-
mens for each parent in the Greene-Nieuwland Herbarium
(herbarium code NDG) at the University of Notre Dame.
The voucher specimen codes are ND145625, ND145626,
ND145627, and ND145628.

DNA extraction and DNA marker development
DNA was initially extracted from the parents and the
2010 sibship using a previously reported modified CTAB

protocol [44]. For RADseq the 2010 sibship and the two
parents were re-extracted with Qiagen DNeasy® Plant
Mini kits according to the manufacturer’s protocol. For
the framework map, we developed new gSSRs from a Q.
rubra library enriched for CA repeats (Genetic Information
Services, Chatsworth, CA). Primers were designed using
Primer3 v. 0. 4.0 [45]. We also designed primers for 454-
sequenced Q. rubra EST-SSRs detected in the northern red
oak tissue above ground (ROA) and northern red oak roots
below ground (ROB) (http://hardwoodgenomics.org/con-
tent/de-novo-northern-red-oak-quercus-rubra-ro454v2).
We tested all CA and GA repeat gSSRs previously reported
for Q. rubra [46–48], EST-SSRs reported for the European
pedunculate oak Quercus robur L. [32] and EST-SSRs
reported for the Chinese chestnut Castanea mollissima
[49]. Markers were retained if the parental alleles occurred
in any of the five configurations informative for mapping in
the F1 progeny of outcrossing parents [50].

PCR amplification and genotyping
All PCR reactions were carried out in an Eppendorf ther-
mal cycler with a 10 μl reaction mixture composed of 2 μl
of DNA (10 ng/μl), 4 pmol of each forward and reverse
primers, 25 mM MgCl2, 10 mM dNTP, 1 μl of 10× Mg
free PCR reaction buffer, 1 μl of 4% BSA, 0.25 U/μl
TaKaRa Taq™ (Takara Bio USA, Mountain View,
California) and 3.5 μl of double distilled H2O. The PCR
amplification profile consisted of initial denaturation at
94 °C for 2 min, 35 cycles of 94 °C for 30 s, annealing at a
marker specific temperature for 30 s, then 72 °C for 45 s
followed by 60 °C for 45 min and ending with a final ex-
tension at 72 °C for 10 min. Fluorescently labeled ampli-
cons were size fractionated on an ABI 3730 XL genetic
analyzer (Applied Biosystems, Foster City, CA) using Gen-
eScan™ 400 HD ROX™ (Applied Biosystems) as internal
size standard. Fragment length polymorphisms were
scored using GeneMapper® v 4.0 (Applied Biosystems). Of
the 379 SSR markers tested (67 gSSRs from Q. rubra, 180
EST-SSRs from Q. rubra, 120 bin-mapped EST-SSRs from
Q. robur and 12 EST-SSRs from C. mollissima), 116
markers were informative (Additional file 1).

ddRADseq library preparation and sequencing
We chose 225 full-sibs, a subset of the 399 full-sibs used
for the framework map, for ddRADseq. Each DNA sam-
ple was diluted to a final concentration of 150 ng/μl and
plated into a 96-well plate with each well containing
900 ng of DNA in a final volume of 6 μl. Library
construction was done in the Genomics and Bioinformatics
Core Facility at the University of Notre Dame. Libraries
were prepared using a ddRADseq approach [51] modified
for paired-end compatibility with additional modifications
to size selection and library purification. Samples were
digested with EcoRI and MseI [51]. At the time the libraries
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were prepared, there were no publically released genomes
for any of the Fagaceae. Thus we were not able to query a
genome sequence to determine the optimum pair of
restriction enzymes for producing fragment sizes appropri-
ate for Illumina sequencing technology. Following restric-
tion digestion, each sample was ligated with a unique
indexed EcoRI adapter and an MseI adaptor [52] modified
for paired-end sequencing. Following ligation, samples were
PCR amplified with iProof™ High-Fidelity DNA Polymerase
(Bio-Rad, Hercules, California), pooled and purified using
AMPure XP beads (Beckman Coulter Inc., Brea, CA) to
make the ddRADseq library. In the final step, each library
pool was size selected to a range of 300–500 bp using
the BluePippin system (Sage Science Inc., Beverly,
MA). Quantity and size distribution were assessed
using the Qubit® 2.0 Fluorimeter (Life Technologies
Corp., Carlsbad, CA) and Bioanalyzer 2100 System
(Agilent Technologies, Santa Clara, CA).
Pooled libraries were sent to BGI International (Cam-

bridge, MA) for sequencing. We pooled libraries of 50 full-
sib samples per lane and to ensure accuracy of the SNP
variant calls, used one lane for the two parent libraries with
the expectation of obtaining better sequence coverage than
the standard 96 samples per lane design. One of the pro-
geny lanes contained libraries of 25 Q. rubra individuals
not included in this project, so every progeny lane did have
50 individuals. Sequencing was done on an Illumina HiSeq
2000 using 101 bp paired-end reads.

Preprocessing of raw reads
We checked raw sequences from the six Illumina HiSeq
lanes for initial quality using FastQC [53]. As the
forward reads were determined to be of high quality
compared to the reverse reads, which were almost
always much shorter, only the forward reads were used
in the subsequent analyses [54, 55]. Adapters and poor
quality sequences were removed using Trimmomatic
[56] with recommended settings. Finally, reads were
demultiplexed by index into separate libraries using a
custom python script called trimmer [57]. This produced
six files, one per lane, of FASTQ reads with sequence
headers renamed to clearly indicate the individual from
which they were derived.

Generation of a de novo reference for Q. rubra
To minimize the computational requirements of deriv-
ing a reference assembly, we tested two non-alignment
methods, a digital normalization and a center star
method (Fig. 1). For the first method, we wrote a custom
Perl script to perform “digital” normalization of ddRAD-
seq data [58, 59]. First, a read was deemed a putative
allele only if at least half of its 15-mers (15-mers are
contiguous substrings of size 15 in a given read) were
novel or not found in a previously saved allele. This has

the benefit of being very simple to implement while re-
moving repetitive sequences quickly. The downside of
this approach is that low coverage alleles may still re-
main. To partially overcome this limitation we also
aligned all 151.8 million reads using BWA [60] with less
stringent settings (−k 3 -n 8) onto the putative loci. We
then removed all potential alleles with four or fewer
alignments along with extraordinarily highly covered al-
leles (>500 occurrences), most of which matched known
oak plastid DNA.

Fig. 1 Summary of the bioinformatics pipeline for calling SNP variants
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For the center star method, progeny reads derived
from either parent were clustered based on BWA align-
ments to a parental allele used to build a center star tree,
such that the distance of each sequence is computed to
all other sequences. The resulting reference set is all
alleles that have the minimum distance to fellow
progeny alleles, presumably because they have fewer
sequencing errors. As the digital normalization strategy
identified more hk x hk markers than the center star
method, the digital normalization strategy was used for
all subsequent steps (Additional file 2).

Alignment of FASTQ files and SNP calling
The reads of the individual quality-controlled FASTQ
files were aligned to the generated reference sequences
using default parameters of BWA, SAMtools [61] and
Picard tools (https://broadinstitute.github.io/picard/).
These alignments were used to create the intermediate
files for variant detection. We tested the SNP calling
methods implemented in SAMtools and in the GATK
HaplotypeCaller Walker annotated default [62], on both
the digital normalization reference (DNR) and the center
star reference (CSR). Finally, we set a filtration stage
wherein only the SNPs for which the parents had an in-
formative SNP configuration for mapping were retained.
The digital normalization reference with SAMtools gener-
ated the most SNP calls (Additional file 2).

Premapping filters
The informative SNP called by SAMtools were trans-
formed into the JoinMap® format required for mapping
with the F1 progeny of two outcrossing parents [50]. The
premapping filters we tested first were missing data and
the value of the chi-square test statistic for deviation
from Mendelian expectation (F3 and F4, Fig. 1). We
used two criteria to evaluate the effect of a range of
cutoff values for missing data (0–30%) and the value of
the chi-square test statistic (10–50). The first criterion
was a reduction in map inflation, as determined by the
difference in centimorgan length between the round two
regression map and the maximum likelihood map for a
given linkage group. In theory, if all the recombination
events in the mapping population are detected, if no
data are missing and if there are no genotyping errors,
the regression map and the maximum likelihood map
should be approximately the same length [63]. Our
second criterion was preservation of the order of the
markers on the framework map. We assumed that a low
density framework map constructed with 399 full-sibs
had sufficient statistical power to ascertain correct order
in a diploid organism with 12 haploid chromosomes.
These two criteria required that we generate maps
using the two different mapping approaches (regres-
sion and maximum likelihood) for all of the linkage

groups. Later, we added two additional premapping
filters (F1 and F2, Fig. 1): the number of SNPs called
within a given marker sequence and the position of
the SNP within the sequence.

Mapping
We generated the framework map first, using an inde-
pendence LOD threshold of 20 for grouping markers
and the Kosambi mapping function for regression
mapping. For the final map, the initial data consisted of
the 116 framework markers and 1413 SNP markers (see
results for how our filters produced this number). Prior
to mapping with the full dataset, we removed eight indi-
viduals with > 90% missing data (most of which were
SNP markers), leaving a mapping population of 217 indi-
viduals. Finally, we excluded SNP markers with similarity
value ≥ 0.945, leaving 1344 unique SNP markers and all
of the framework markers. The data were grouped using
an independence LOD threshold of 30. Framework
markers were specified using the fixed order function in
JoinMap® 4.1 before mapping. The fixed order function
specifies only a fixed order, not a fixed distance. We
generated maps using both the approximate maximum
likelihood and regression mapping algorithms with
default settings. The final map was generated using
round two regression mapping with the Kosambi
mapping function and charted using MapChart 2.30 [64].

Downsampling experiments
We tested the effectiveness of our conservative use of
sequencing capacity (one lane for the two parents and
only 50 progeny per lane) by comparing our results with
those we may have obtained if we had used a less
conservative design. We conducted two progeny down-
sampling experiments (Exp1 and Exp2). For Exp1, we
downsampled the trimmed and demultiplexed FASTQ
files for the 225 progeny used for mapping while keeping
the parent data intact, to simulate 96 progeny per lane,
but reserving one lane for the two parents. For Exp2, we
downsampled both progeny and parents to simulate the
condition in which all of the progeny and the parent
libraries were run in three lanes: 96 progeny samples in
two lanes, 33 progeny in the third lane with 31 replicates
for one parent and 32 for the other.
We implemented the downsampling approach by

randomly selecting 52% (50/96 *100) of the FASTQ data
from each progeny for the downstream analysis. For
Exp2, progeny downsampling was the same as in Exp1.
For the parents, our design has the effect of utilizing ~32%
of the sequencing lane capacity for each parent, as opposed
to 50% based on our initial sequencing approach. We see
this as a choice an investigator is likely to make, to save the
cost of using another lane, while at the same time getting
more parent reads. We implemented parent downsampling
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by randomly selecting 64% (32/50*100) of the data for each
parent for downstream analysis. In all experiments, we used
the DNR approach, with SAMtools as the SNP caller, the
same as we did with the full data set.

Results
SNP calling approach and premapping filtration
The number of reads for parents and progeny totaled
877,796,304. The parent lane yielded 88,788,165 reads
for SM1 and 61,994,649 reads for SM2. The mean
number of reads per progeny was 2,908,053, the median
3,056,516. Using the DNR reference sequence, SAMtools
called more than six times as many SNPs (78,725) as
Haplotype Caller (12,694) (Additional file 2). Both SNP
callers produced far fewer SNP calls with the CSR refer-
ence sequence. We chose to proceed with the 78,725
SNPs called by SAMtools.
Our initial filters (missing data and value of the chi-s-

quare test statistic) resulted in severely inflated maps,
even at the strict criteria of 5% missing data and a chi-
square value < 10. The maximum likelihood map for
linkage group 3 exceeded 1000 cM, nearly ten times the
distance inferred with the round two regression map. All
other linkage groups were inflated as well. We found
that sequences with > 1 SNP call were driving this result.
Of the 78,725 ddRADseq markers in which informative
SNPs were detected, 60,687 (77%) had > 1 SNP. These
60,687 SNPs occurred on 21,526 ddRADseq sequences,
indicating that some sequences had more than two
SNPs. Our query of Repbase (http://www.girinst.org/
repbase/) for matches to the 21,526 sequences with > 1
SNP resulted in only 46 matches at an E-value ≤ 9.91E-
07, 34 of which had best hits to Gypsy or Copia LTR-re-
trotransposons. Our query of P-mite, a database for
plant miniature inverted-repeat transposable elements
[65] yielded only two good alignments. We suspect that
our query sequences may be too short (~80–120 bp) for
accurate, strong annotations and that the repeats in Q.
rubra may have diverged in sequence significantly from
the repeats of the model plants represented in the two
databases. Removal of these multi-SNP loci left 18,038
SNP markers. Finally, previous experience with SNP
chips suggests that SNPs located in the first 9 bp of the
marker sequence are more likely to generate artifacts.
After removal of loci with SNPs in the first 9 bp (2263
markers), 15,775 SNP markers remained for use in map-
ping. This filtered SNP marker number is greater than
the number of unfiltered SNP calls we obtained with
GATK-HaplotypeCaller (12,694 SNPs).

Final filtration
As both algorithms we used for genetic mapping are
sensitive to missing data [63], we tested three conserva-
tive filters for missing data (none, 2%, and 5%) on the

remaining set of 15,775 SNP markers. For each level of
missing data, we generated chi-square cutoff values of
50 and 20. The number of markers remaining at a chi-s-
quare cutoff of 20 was only slightly smaller than the
number remaining at a chi-square cutoff of 50 at each
level of missing data tested. The final set of 1413 SNP
markers used for mapping had < 5% missing data and a
chi-square value < 20. This number was further reduced
to 1344 after removal of markers with highly similar or
identical genotypes (≥0.945).

Final map construction
The framework map identified 12 linkage groups con-
taining a total of 108 SSR markers. Eight of the 116 SSR
markers were excluded during the mapping process. The
round 3 framework regression map spanned a total
length of 652.2 cM with an average spacing between
markers of 6 cM. The map included 39 Q. robur EST-
SSR markers across the 12 Q. rubra linkage groups. In
those linkage groups with three or more Q. robur
markers (2, 4, 6, 7, 8, 9, 12), the order is the same (Fig. 2)
as that previously reported for the Q. robur maps [32].
Based on this initial evidence for colinearity, we have
given our linkage groups the same numbers as those
given to the Q. robur linkage groups.
GO annotations suggested stress resistance functions

for three of the 73 EST-SSRs located on the final map.
The PIE_126 sequence matches the Quercus robur
cDNA clone LG0AAA8YO09RM1 (NCBI FP025018).
The GO annotation suggests similarity to a family of
proteins involved in response to cadmium stress [66].
The WAG_023 sequence matches the Quercus petraea
cDNA clone WZ0AQPAI7YG19FM1 (NCBI FN736994).
The GO annotation suggests similarity to Arabidopsis
genes involved in response to colder temperatures [67].
The FIR_008 sequence matches Quercus robur cDNA
clone LG0AAA8YO09RM1 (NCBI FP025018). The GO
annotation suggest similarity to Calcineurin B-like
protein 9, a protein involved in the regulation of early
stress-related CBF/DREB transcription factors [68].
To generate the final map we used the 217 individuals

that had both framework markers and high-quality SNP
marker genotypes. Our round two final regression map
contains 957 markers distributed over 1014.47 cM
(Table 1, Fig. 2). The mean read depth in the parents for
the SNPs in the final map was 248× (median 241×). The
mean read depth in the progeny for this final set of SNPs
was 13× (median 14.8×).
The longest linkage groups (LG2 and LG8) on the Q.

robur-Q. petraea consensus map [39] were also the lon-
gest linkage groups on the Q. rubra map. The areas in
the Q. rubra linkage groups in which SNPs are markedly
absent were the regions where the sequences with >1
SNP were concentrated, especially on LG3, where the
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map inflation was the most severe if these sequences
were included. We found no evidence for segregation
distortion in any of these 957 markers using the method
described by Bodénès et al. [39] for the Q. robur-Q. pet-
raea consensus map. The Q. robur EST marker FIR_110
produced two different sets of informative alleles, map-
ping to LG6 and LG2 (Fig. 2, Additional files 1 and 3).
The marker FIR_110 maps to LG6 in Q. robur [32].

Downsampling results
In Exp1, the trimmed and demultiplexed FASTQ files
for the progeny were downsampled, while the parent
FASTQ files were not downsampled. This yielded 5090
SNP calls using DNR and SAMtools. When both the
parents and the progeny were downsampled in Exp2, the
yield was even smaller (1616 SNP calls) (Table 2). Using
the filtering criteria we used to construct the map re-
ported here, only six SNP markers remained after Exp1
downsampling and three SNP markers for Exp2. If we

Fig. 2 Genetic linkage map for Q. rubra. Linkage groups shown to scale in cM. Unlabeled black bars indicate SNP positions. The REO prefix indicates an
EST-SSR from Q. rubra. The GA prefix indicates a GA repeat gSSR from Q. rubra. A prefix beginning with a number indicates a CA repeat gSSR from Q. rubra.
Markers having labels in bold green type are EST-SSR from Q. robur. Linkage groups have the same numbers as those given to the Q. robur linkage groups

Table 1 Summary description of the Q. rubra map

Linkage Group # Loci Q. robur EST-SSR
markers

Length (cM) Densitya

LG1 94 1 72.5 0.77

LG2 122 5 105.4 0.86

LG3 51 2 79.9 1.56

LG4 59 5 86.8 1.47

LG5 88 2 82.2 0.93

LG6 70 6 91.2 1.30

LG7 71 4 84.4 1.18

LG8 98 4 99 1.01

LG9 71 3 87.5 1.23

LG10 85 1 68.3 0.80

LG11 79 1 83.3 1.05

LG12 69 5 73.9 1.07

Total 957 39 1014.4
aAverage number of markers/cM
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had used the less strict criteria of < 10% missing data
with a chi-square cutoff of 20 on the Exp1 data, 61 SNP
markers would have remained. Given that the point of
using ddRADseq is to produce enough SNP markers for
a dense map, this reduced depth of sampling produces
an unsatisfactory result. Given the necessity of gene-
rating a de novo reference and our goal of generating a
dense map, the sequencing design we actually used
(allocating an entire lane to the two parents and
multiplexing 50 progeny per lane) proved to be an
effective one.

Discussion
Any technical advance that puts genomics technology
within the reach of those who work on non-model
systems tends to be quickly embraced with great enthu-
siasm, followed by a more measured approach once
technical limitations are understood. This is certainly
the case with RADseq. Our purpose in this study was
twofold: 1) a rigorous test of the ddRADseq approach
for constructing dense genetic maps in outcrossing,
undomesticated woody perennials lacking a reference
genome and 2) the production of a high-quality linkage
map for Q. rubra, the most widely distributed species in
the speciose Lobatae section of the Quercus genus. Our
study design enabled us to examine the effects of lower
coverage, alignment methods, and variant callers on the
yield of SNP markers suitable for high quality genetic
mapping in an organism lacking a reference genome.
The second step in genetic mapping is grouping and
inference of linear order, a process which requires a
sound understanding of the limits of statistical inference
in genetic mapping.

Inferred linear order vs. the actual linear order
Genetic mapping projects have the advantage of two of the
strongest priors in all of biology: Mendelian expectation

and the linear information storage system of DNA. The first
prior enables a rigorous test of the performance of a RRS
technology and associated informatics pipelines for accur-
ate and consistent detection of alleles, i.e. alleles present in
the parents, if correctly called, must be present in the
progeny of these parents and will occur with an expected
frequency in the progeny population. Next, the probability
of recombination between any two loci in the linear DNA
array is a function of the distance between them. Finally, if
the variant calls are correct and the recombination
estimates are accurate, then the inferred linear order of the
markers will be the actual linear order if the inference
algorithm is appropriate.
In genotyping by sequencing, the requirement for

accurate calls is likely to be met by high coverage, but
the depth of sequencing coverage for parent and for
progeny need not be equal, as we have shown. Our
downsampling experiment indicated that multiplex
sequencing 96 samples per lane would not have pro-
duced enough high-quality data for genetic mapping,
even if the parents were sequenced to a high depth of
coverage. Thus the answer to the design problem of
“large numbers of individuals at low depth vs. a small
number of individuals at greater depth” has different
solutions depending on the intended use. When no ref-
erence genome is available, generating good sequencing
depth in the progeny (to ensure consistency of SNP vari-
ant calls) and higher sequencing depth in the parents (to
ensure accuracy of the SNP variant calls) is prudent, re-
gardless of other conditions. The values of “good” and
“higher” can be approximated by in silico digests of a
related genome, but at the time this project was de-
signed there were no genomes released for any oak
species. With the Q. robur and Q. lobata (Quercus
section Quercus) genomes now released [69, 70] the
number and size of the cut sites, as well as the
optimum combination of restriction enzymes may be
estimated and the project design adjusted accordingly.
The primary purpose of our work was to generate a

high quality genetic map and, by using sequenced
markers, provide a tool for correctly ordering sequence
scaffolds and contigs to chromosomal locations. How-
ever, a given progeny population contains a fixed
amount of information regardless of the marker system
used for detection, whereas mapping algorithms have no
limit on map length. Thus the measure of map quality
must not be how many of the SNPs called were mapped.
If the LOD criteria used for grouping and mapping
are low and very similar SNP genotypes are included,
longer linkage groups may result, but the relationship
of this inference to actual order may be weak. The
“ground truth” test of comparing the inferred linear
order with the actual linear order is rarely available
for non-model organisms. A useful indirect test is a

Table 2 SNP calls remaining after sequential filtration of
downsampling experiment data

Sequential filtration Exp1 Exp2

None 5090 1616

After F1a 4500 1449

After F2b 4055 (2304)c 1343 (545)c

After MD filter >20%d 550 (347)c 320 (132)c

After MD filter >10%d 113 (61)c 63 (20)c

After MD filter ≥5%d 20 (6)c 10 (3)c

aRemoval of markers with >1 SNP in the same sequence
bRemoval of markers in which the SNP occurs in the first 9 bases of sequence
cSubset of markers meeting criterion of chi-square value ≤ 20
dRemoval of markers in which >20%, >10% or ≥5% of 217 individuals have
missing data, as indicated

Konar et al. BMC Genomics  (2017) 18:417 Page 8 of 12



comparison of the map length produced by a regres-
sion approach with that produced by approximate
maximum likelihood. This approach is well described by
others [50, 63], but given the surge in genetic mapping pro-
jects made possible by RSS technologies, it is useful to point
out here that a regression approach is designed to reject
loci for poor fit (e.g. a locus that produces negative distance
estimates). A maximum likelihood approach has the re-
quirement of accounting for all of the markers in the group.
Mathematically, this requires that the overall map distance
must lengthen to accommodate the most poorly fitting
markers. This is a major source of map inflation if many
markers fit poorly. Thus a comparatively quick indirect
check on the quality of a map is a comparison of the length
of the regression map to the length of the maximum likeli-
hood map, for each linkage group. If genetic maps are to be
useful for ordering scaffolds and for gene discovery, some
measure of quality control is essential.

De novo reference genomes from ddRADseq data
When a reference genome is lacking, one must be gener-
ated de novo from the RADseq data itself. Our initial
tests indicated that our digital normalization approach,
with the SAMtools variant caller, yielded the most SNP
calls (78,725). A recent investigation of the accuracy of
variant calling pipelines across different technology
platforms showed that a variation of the BWA alignment
tool (BWA-MEM) with the SAMtools SNP variant
caller, performed better on Illumina data than the BWA-
MEM with the GATK-HC pipeline [71]. This suggests
that our BWA-SAMtools pipeline actually did detect
more real SNPs than the BWA-GATK-HC pipeline.
However, after additional filtration and mapping, only
849 of 78,725 SNPs variants detected (1.8%) were placed
on our map. Most of the SNP variants (77%) were
rejected for having >1 SNP in the sequence. We suspect
that these SNPs were accurately called but occur in
sequences in different places within linkage groups,
violating the necessary assumption that the SNP variants
detected are alleles of a single locus. This violation
would generate the huge map inflation we observed.
Our results are consistent with the results of a recent
study in which a reference genome was available [72].
Zhang et al. found that of the three references tested
(unmasked scaffolds, repeat masked scaffolds, and gene
models), the repeat masked genome produced the best
map. The percentage of ddRADseq markers anchored to
the top 10 megascaffolds was highest with markers
detected using repeat masked scaffolds. Many of the
markers detected using unmasked scaffolds were present
on more than one scaffold, while markers detected using
only gene models are too few to generate a dense map.
Using restriction enzymes that target sites within the
gene space would minimize the number of SNPs

detected in repeated sequences, but reduce the utility of
the resulting low coverage map for ordering contigs
from whole genome sequencing projects.

The 5% standard for missing data
Even with the aid of a good framework map and using
only those SNPs remaining after application of the
premapping filters, we found that map inflation was best
minimized using the strict criterion of 5% missing data,
a lower value than the 10–25% typically reported for gen-
etic maps constructed with RRS technologies [3, 31, 73, 74].
Improvements in sequencing technologies and methods of
library construction could address the problem of missing
data, as long as the calling accuracy (the number of times a
variant is detected when it is present) is part of the quality
control process. Mapping populations of full-sib progeny
from the same two parents in a long-lived forest tree
species provide an excellent source of positive controls for
such technology improvements.

Mapping with haploid tissues
Regardless of the technology employed, the construction
of a high-quality genetic map using the F1 progeny of
outcrossing, highly heterozygous parents is an exacting
and tedious process. In conifers, genetic maps can be
constructed using the haploid megagametophyte seed
storage tissue from the seeds of a single tree [75–77], as
was recently done with ddRADseq for the white cypress
pine, Callitris glaucophylla [78]. The technology for
genotyping single pollen grains, the only easily accessible
haploid tissue in angiosperms, exists [79] and was
recently demonstrated in hyūganatsu (Citrus tamurana)
[80], but the technical challenges are considerable. For
undomesticated angiosperm forest trees, especially the
ecologically dominant, economically valuable and
speciose oaks, the only feasible method at present is to
use the progeny of known parents.

Conclusions
Using ddRADseq in combination with an SSR-based
framework map, we have constructed an oak genetic
map that will enable testing of explicit hypotheses about
the organization of loci contributing to adaptive evolu-
tion in oaks and provide a tool for the detection of allelic
variants contributing to stress tolerance. Although
mapping stress tolerance genes was not the main focus
of this study, three of the 73 EST-SSR markers located
on the final map have annotations suggestive of involve-
ment in stress tolerance. The generation of a moderately
dense genetic map in Q. rubra complements the dense
map produced for the European oaks Q. robur and Q.
petraea [39], confirms synteny and provides evidence of
high colinearity across two genetically incompatible
sections of the Quercus genus. These dense maps,
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together with the data from the Q. robur genome, the Q.
lobata (California valley oak) genome [70] and the Casta-
nea mollissima (Chinese chestnut) genome [36, 37, 81, 82],
will greatly foster our understanding of the genetic architec-
ture of the genus Quercus and of the Fagaceae (oaks,
chestnuts and beeches), a major family of forest trees in the
temperate and subtropical regions of the world. Finally, we
anticipate that improved, low-cost RRS technologies and
more accessible informatics pipelines will enable the
solution of a fundamental puzzle in evolutionary biology,
one for which oaks are justifiably famous: rapid sympatric
speciation, in the presence of persistent gene flow, within
and across a wide array of ecological niches, on all of the
continents in which the oaks are native.
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robur EST-SSRs. The table shows the marker name, the corresponding sequence
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Additional file 2: Performance of SNP variant callers with two methods
of de novo reference construction. Tabular data shows how the number
of SNP markers generated by SAMtools and HaplotypeCaller changed
after elimination of the SNPs with 30% or more missing genotypes for
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for mapping in F1 of outcrossing parents. (XLSX 9 kb)

Additional file 3: Q. rubra mapped markers and associated data. The
table shows all of the mapped framework and SNP markers, the cM
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genotypes for the 217 full-sib progeny used for mapping. (XLSX 890 kb)
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