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Abstract

Background: Gene co-expression, the similarity of gene expression profiles under various experimental conditions,
has been used as an indicator of functional relationships between genes, and many co-expression databases have
been developed for predicting gene functions. These databases usually provide users with a co-expression network
and a list of strongly co-expressed genes for a query gene. Several of these databases also provide functional
information on a set of strongly co-expressed genes (i.e., provide biological processes and pathways that are enriched
in these strongly co-expressed genes), which is generally analyzed via over-representation analysis (ORA). A limitation
of this approach may be that users can predict gene functions only based on the strongly co-expressed genes.

Results: In this study, we developed a new co-expression database that enables users to predict the function of
tomato genes from the results of functional enrichment analyses of co-expressed genes while considering the genes
that are not strongly co-expressed. To achieve this, we used the ORA approach with several thresholds to select
co-expressed genes, and performed gene set enrichment analysis (GSEA) applied to a ranked list of genes ordered by
the co-expression degree. We found that internal correlation in pathways affected the significance levels of the
enrichment analyses. Therefore, we introduced a new measure for evaluating the relationship between the gene and
pathway, termed the percentile (p)-score, which enables users to predict functionally relevant pathways without being
affected by the internal correlation in pathways. In addition, we evaluated our approaches using receiver operating
characteristic curves, which concluded that the p-score could improve the performance of the ORA.

Conclusions: We developed a new database, named Co-expressed Pathways DataBase for Tomato, which is
available at http://cox-path-db.kazusa.orjp/tomato. The database allows users to predict pathways that are relevant
to a query gene, which would help to infer gene functions.

Keywords: Co-expression database, Pathway, Over-representation analysis, Gene set enrichment analysis,
Percentile-score

databases provide users with a co-expression network and
a list of strongly co-expressed genes for a query gene,

Background
Gene co-expression, the similarity of gene expression pro-

files under various experimental conditions, has been
used as an indicator of functional relationships between
genes [1], and many databases using co-expression analy-
sis have been developed for plant research, e.g., ATTED-II
[2], ALCOdb [3], AraNet v2 [4], RiceNet v2 [5], PlaNet
[6], PODC [7], CoP [8], VTCdb [9], and TFGD [10]. These
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which has successfully contributed to the characterization
of many genes [11-14].

To further facilitate the prediction of gene functions,
several of these databases have also provided functional
information on a set of strongly co-expressed genes with a
query gene, i.e., providing biological processes and path-
ways that are enriched in strongly co-expressed genes
[2, 4, 8, 9]. These genes are usually analyzed by over-
representation analysis (ORA), which can identify biolog-
ical processes and pathways enriched in the set of selected
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genes of interest and help to extract biological meanings,
and therefore, has been used to facilitate interpretation
of gene expression data [15, 16]. However, a limitation of
ORA is that the results are highly dependent on the cutoff
used in selecting a set of genes of interest and ignore the
effect of the remaining genes [15, 16].

Gene set enrichment analysis (GSEA) has been devel-
oped to overcome the limitation of ORA [17]. Unlike
ORA, GSEA can assess, without selecting genes of
interest, whether biological processes and pathways are
enriched at the top of a ranked list of genes ordered by
the degree of differential expression [17, 18]. This enables
GSEA to be performed without being dependent on the
cutoff used to select differentially expressed genes. GSEA
may also be effective in the case of the co-expression
analysis. Namely, GSEA may be applied to a ranked list
of genes ordered by the degree of co-expression, which
would enable the examination of gene—pathway relation-
ships without being dependent on the threshold used to
determine strongly co-expressed genes. However, there is
no co-expression database that uses GSEA in this way.
Currently, only strongly co-expressed genes are consid-
ered, and therefore, users cannot predict gene functions
from other co-expressed genes.

Solanum lycopersicum (tomato) is a major crop world-
wide and a model system for fruit development [19]. Eluci-
dating the metabolic functions of individual tomato genes
will facilitate rational design of metabolic engineering and
breeding. Tomato fruit metabolites have been intensively
studied [20]. For example, the biosynthesis mechanism
of lycopene, the red pigment in tomato fruits, has been
well-characterized both in vitro and in vivo [21], and its
consumption is reported to be associated with lowered
risks of cancer and cardiovascular disease [22].

In this study, we developed a new database that allows
users to predict the function of tomato genes from the
results of functional enrichment analyses of co-expressed
genes. Our developed database provides, for each tomato
gene, a ranked list of pathways in which higher-ranked
pathways are more likely related to each gene. To create
the ranked pathway list, we performed ORA with sev-
eral thresholds to select co-expressed genes, and applied
GSEA to a ranked list of genes ordered by the co-
expression degree. This approach enables users to predict
pathways that are relevant to the gene of interest while
considering the genes that are not strongly co-expressed.
In addition, we introduced a new measure for evalu-
ating the relationship between the gene and pathway,
which improved the prediction of functionally relevant
pathways.

Construction and content
We constructed a database, named Co-expressed Path-
ways DataBase for Tomato (CoxPathDB) [23], which aims
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to help users infer relevant pathways to a query gene
and assist to predict its gene functions. In this section,
we describe the procedural steps taken to construct the
database and to evaluate our approach.

Creation of the gene-gene correlation matrix

RNA-Seq data from tomato plants generated on the
lumina HiSeq or MiSeq platforms were downloaded
from the DDBJ Sequence Read Archive (SRA) database
[24]. The 1,234 downloaded SRA files were converted to
FASTQ format using the fastq-dump utility of the SRA
toolkit [25].

To remove low-quality reads and adapter sequences,
the reads were trimmed using Trimmomatic version
0.36 [26] with the following parameters: ILLUMINA-
CLIP:2:30:10 LEADING:3 TRAILING:3 SLIDINGWIN-
DOW:20:20 MINLEN:50. Then, the reads were used to
estimate gene expression levels by using kallisto version
0.43.0 [27] and the tomato cDNA sequences obtained
from the RefSeq database [28]. In the case of single-
end reads, the average fragment length was set to 200
bp. NCBI Entrez Gene IDs were converted to Ensembl
Gene IDs by using BioMart [29] and the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database [30]
(Additional file 1), and the genes whose IDs could not be
converted were removed from the analysis. We filtered
out low-quality SRA data (total estimated counts < 1 mil-
lion), and then performed manual curation (e.g., removed
small RNA-Seq data annotated as RNA-Seq data). Conse-
quently, 790 SRA Runs were selected for further analysis
(Additional file 1).

The expression values (transcripts per million) were
quantile-normalized using the preprocessCore package in
the R statistical software [31], and were log2-transformed
after adding pseudo-count of 4. The 790 SRA Runs
were clustered based on their gene expression profiles
by the unweighted pair-group method using arithmetic
averages (Additional file 2). They were clustered largely
according to the sample tissues, suggesting the valid-
ity of the gene expression matrix. Then, the gene—
gene correlation matrix was calculated with the gene
expression matrix; correlations between gene expression
profiles were calculated using the Pearson’s correlation
coefficient. The gene expression matrix and the corre-
lation matrix can be downloaded from the CoxPathDB
webpage [23].

Creation of the ranked gene lists

For each tomato gene, we created a ranked list of genes
based on the values of correlation coefficients in the cor-
relation matrix; all genes except for each target gene were
ordered in decreasing order of correlation with the tar-
get gene. Consequently, 13,183 ranked gene lists were
created.
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ORA of co-expressed genes

For each ranked gene list, we selected the top 100, 500,
1000, 1500, 2000, 2500, and 3000 ranked genes and per-
formed ORA via the Fisher’s exact test implemented in
the SciPy Python library. In ORA and GSEA (described
later), we used the KEGG pathways downloaded from the
KEGG database [30], because they cover a wide variety
of metabolic pathways and are less redundant than Gene
Ontology terms. We omitted pathways containing more
than 500 genes or less than 15 genes because they might
be too general or meaningless.

GSEA of the ranked gene lists
We performed GSEA [17] for all 13,183 ranked gene lists
using KEGG pathways. The sample permutation approach
is not applicable for this analysis, and therefore, the gene
permutation approach was used to obtain significance lev-
els. To calculate the exact p-values, we used unweighted
GSEA via dynamic programming [32], which is described
as follows.

Given that a target gene is ¢ and the ranked gene list
for the target gene is L;, the overall ranked gene list is
represented as

Le={g-- g} (n=-- =1y, (1)

where 7 is the total number of genes in the gene list and
r* is the correlation coefficient of gene g* in the ranked
gene list. We also assumed that the pathway to be tested
is S, the number of genes in the pathway is m, and V is
a vector where V(j) is the component corresponding to
gene gj in the ranked gene list L;. V'(j) takes the value 1/m
for the gene in pathway S and —1/(n — m) for the gene not
in pathway S. The enrichment score (ES), the test statistic
of GSEA, for pathway S is calculated as

k
ES(S) =f(§) max |3 V(), (2)
=i |
+1 (X5 Vo) 2 0),
f(S) = o 3)
-1 (2K Vo) <0),
k
k' = arg max Z V(). (4)
k=1,~~,n /':1

Namely, ES is the maximum deviation of the running
sum statistic, le;l V(j), from zero. The significance level
is calculated depending on whether ES(S) is positive or
negative. In the case of positive ES(S), the p-value for
whether pathway S is enriched at the top of the ranked
gene list L; is computed by

p-value = Pr {ES+,,,4” > ES, (S)} , (5)

where Pr means probability, ES; represents positive ES,
and ES.,,y is ESy for a randomly generated pathway in
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which m genes are randomly distributed in the ranked
gene list L;. This probability can be calculated exactly by
using dynamic programming [32]. If the p-value is small
(e.g., p < 0.05), pathway S is significant. In the case of neg-
ative ES(S), the p-value for whether pathway S is enriched
at the bottom of the ranked gene list can be computed
similarly. However, in this study, the p-values of pathways
with negative ES were set to 1 because we focused on
detecting pathways enriched at the top.

Calculation of the percentile (p)-scores

In addition to the p-value, we calculated the p-score from
the GSEA results, which is defined as follows. Additional
file 3 shows the observed ES distribution of each pathway,
which were obtained from the GSEA of 13,183 ranked
gene lists. The p-score of each pathway for a gene of inter-
est was calculated using the observed ES distribution. To
estimate the probability density function of the observed
ES, we used kernel density estimation, implemented in R
version 3.3.1 [31]. Based on the estimated probability den-
sity function, the p-score of each pathway for a gene of
interest was calculated as

p-score = Pr{ES > ES,}, (6)

where ES, is the ES for the gene of interest. As described
in Eq. (5), the p-value is derived from the ES distribu-
tion of randomly generated pathways, whereas the p-score
is derived from the observed ES distribution that was
obtained from the GSEA of all 13,183 ranked gene lists.

Evaluation of the ORA and GSEA results

We evaluated the ORA and GSEA results using receiver
operating characteristic (ROC) curves. We classified
gene—pathway pairs as “condition positive” or “condition
negative” by using the relationship between genes and
pathways in the KEGG database. If a gene was a member
of a KEGG pathway, the gene—pathway pair was classified
as condition positive; otherwise the gene—pathway pair
was classified as condition negative. We calculated the
true positive rate and false positive rate for each approach,
drew ROC curves, and calculated the area under the
curves (AUCs).

Results

Comparative analysis of ORA and GSEA

We evaluated the ORA of the top 100, 500, 1000, 1500,
2000, 2500, and 3000 ranked genes and the GSEA of the
ranked lists of genes ordered by the co-expression degree
(Fig. 1 and Additional file 4). We expected that if the
p-value was small, the gene—pathway pair would be
related to each other. Fig. 1 shows the ROC curves drawn
from the ORA of the top 100, 500, and 3000 ranked genes
and the GSEA of the ranked gene lists (see Additional
file 4 for the ROC curves generated from the ORA of the



Narise et al. BMC Genomics (2017) 18:437

Page 4 of 9

a 10 ORA (Top 100)
A ‘ : =~
. ’
0.8} e 1
’
. 7’
- 0.6 | e B
o ,
F o4l R il
’
. 7’
02 - AUC =0.756 1
. ’
00 L L L L
00 02 04 06 08 10
FPR
C 10 ORA (Top 3000)
A : : p
’
7’
0.8} e 1
’
. 7’
- 0.6 | e B
o ,
= 0.4 R4 ‘ i
’
. 7’
02rf .~ AUC = 0.749 ]
. ’
00 L L L L
00 02 04 06 08 10
FPR

b, ORA (Top 500)
: ‘ ‘ =
’
08k e
’
. ’
- 0.6 | e 1
o ’
o4l e |
’
. 7’
0z~ AUC = 0.782 1
. ’
OO Il Il Il Il
0.0 0.2 0.4 0.6 0.8 1.0
FPR
d , GSEA
’
’
’
0.8} e 7
’
. ’
- 0.6 | e 1
o ’
= 04} R4 ’ i
’
. 7’
02/~ AUC = 0.721 1
. ’
00 Il Il Il Il
0.0 0.2 0.4 0.6 0.8 1.0
FPR

Fig. 1 Evaluation of the ORA and GSEA. ROC curves drawn from the ORA of the top (a) 100, (b) 500, and (€) 3000 ranked genes and from (d) the

GSEA of the ranked gene list

top 1000—2500 ranked genes). These results demonstrated
that the ORA of the top 500 ranked genes performed
best, with the largest AUC value of 0.782. The AUC of
GSEA was smaller than that of ORA, although GSEA is a
threshold free approach.

Effect of internal correlation in pathways

We examined the effect of internal correlation in path-
ways (Fig. 2 and Additional file 5), which is reported to
lead to an overestimation of the statistical significance of
GSEA [18]. To calculate the internal correlation in each
pathway, we averaged the correlation coefficients between
all gene pairs in each pathway. Then, to examine the effect
of the internal correlation, we averaged, for each path-
way and approach, the —log10 p-values of gene—pathway
pairs where the gene was not a member of the path-
way tested. We plotted the p-value averages against the
internal correlation (Fig. 2 and Additional file 5).

Figure 2 and Additional file 5 indicate that the internal
correlation in pathways affected the significance levels of
ORA and GSEA, i.e., even when a gene is not a member of
a pathway tested, the higher the internal correlation in the
pathway, the smaller the p-value tended to become. The
effect of internal correlation was larger in GSEA than in
ORA (for GSEA, r = 0.775, and for ORA of the top 100—
3000 ranked genes, r = 0.383, 0.577, 0.630, 0.628, 0.613,
0.598, and 0.588), which explains the lower performance
of GSEA.

Evaluation of the ranked lists of KEGG pathways
CoxPathDB provides, for each tomato gene, a ranked list
of KEGG pathways, where higher ranked pathways are
more likely related to each gene. Therefore, we evaluated
whether the highly ranked pathways are actually related to
each gene (Fig. 3; see Additional file 6 for the ROC curves
generated from the ORA of the top 1000-2500 ranked
genes). Figure 3 and Additional file 6 show that in addi-
tion to the evaluation of the p-value (Fig. 1 and Additional
file 4), the ORA of the top 500 ranked genes had the
second largest AUC value of 0.758.

Improvement in the ranked lists of KEGG pathways

The findings highlighted in Fig. 2 may be biologically
meaningful; the pathways with high internal correlation
may tend to be related to many genes, and therefore, had
small p-value averages (Fig. 2). However, if all pathways
tested are ordered by increasing p-values, the pathway
with high internal correlation tends to be ranked higher
than that with low internal correlation, which prevents
users from exploring a wide variety of gene—pathway rela-
tionships. For example, the “Photosynthesis” pathway had
a high internal correlation (0.577) and small p-value aver-
ages (the —log10 p-values were 3.82 for GSEA and 0.560,
1.80, 2.68, 2.92, 2.89, 2.80, and 2.68 for the ORA of the
top 100-3000 ranked genes). This is consistent with a
previous report stating that in the Arabidopsis gene co-
expression network, genes involved in photosynthesis are
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strongly co-expressed and over-represented in the largest
co-expression module [33]. This centrality of photosyn-
thesis genes indicates that many genes are related to
photosynthesis, and therefore, the Photosynthesis path-
way is often ranked high, which may hinder the discovery
of relationships among other pathways and genes.

Therefore, to compare pathways without being affected
by the difference in their internal correlation, we calcu-
lated p-scores from the GSEA results, as described in the
“Construction and content” section. The distribution of p-
scores was similar among all pathways (Additional file 7),
indicating that p-scores are not affected by internal cor-
relation and suitable for examining diverse gene—pathway
relationships.

Another merit of the p-score is that it can be calculated
with respect to all gene—pathway pairs. Although the ORA
of the top 500 ranked genes performed well overall, these
genes often do not contain any genes from the pathways
to be tested. In such cases, the significance levels of the
pathways cannot be compared, which decreases the per-
formance of ORA. The p-scores can be used to order such
pathways. The performance of GSEA using the p-score
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itself is smaller than those of ORA except for the ORA
of the top 100 genes (Fig. 4a). However, the combination
of the ORA of the top 500 ranked genes and the GSEA
using the p-score had the largest AUC value among the
approaches we used (Fig. 4b).

Utility and discussion

In this section, we give an example of the usage of
CoxPathDB (Fig. 5). The search box on the CoxPathDB
website is shown in Fig. 5a. In this example, the word
“CRTISO” is entered. The CRTISO enzyme catalyzes the
isomerization of prolycopene to lycopene [21]. After click-
ing the “Submit” button, the search results are displayed
on the search results page (Fig. 5b). The “Ensembl Gene
Id” column provides the links for the ranked list of KEGG
pathways for the query gene. In this example, the blue link,
“Solyc10g081650.1,” provides the link for the ranked list of
the CRTISO gene (Fig. 5b).

The webpage for each gene (Figs. 5¢ and d) also pro-
vides brief gene information from the Entrez database
[34], Ensembl Plants [29] and the KEGG database [30],
and the KEGG pathways that the gene belongs to (Fig. 5¢).
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Fig. 4 Evaluation of the GSEA using the p-score. ROC curves drawn from (a) the GSEA using the p-score and from (b) the analysis combining the
ORA of the top 500 ranked genes and the GSEA using the p-score. The evaluation is based on the rank order of KEGG pathways for each gene
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CRTISO. ¢, d The page for the CRTISO gene displaying (c) the brief gene information and (d) the ranked list of KEGG pathways

Each id is a link to the external database where the detailed
information is available. The KEGG pathways list is dis-
played just below the gene information (Fig. 5d). In the
default setting, it provides pathways that were ordered pri-
marily by the increasing p-values obtained from the ORA
of the top 500 ranked genes, and then, by p-scores calcu-
lated from GSEA, because this performed best among the
approaches we used (Figs. 3 and 4 and Additional file 6).
The results for pathways with less than 15 genes are avail-
able by clicking the “Show pathways with less than 15
genes” button.

The “KEGG Pathway Mapping” column provides links
to the KEGG database (Fig. 5d). In this example, the
CRTISO gene is highly correlated with “Carotenoid
biosynthesis,” the pathway to which the CRTISO gene
belongs (the p-value [ORA Top 500] = 0.00732 and the
p-score = 0.0166). When the corresponding link in the
column is clicked, the genes in the Carotenoid biosynthe-
sis pathway are mapped to the KEGG pathway database
and colored in red or blue (Additional file 8); the CRTISO
gene itself is colored in purple. The intensity of red and
blue colors reflects the degree of positive and negative
correlations, respectively. Green color means that the cor-
responding gene is present in the KEGG database but is
not present in CoxPathDB, whereas white color means
that the corresponding gene is not present in the KEGG
database.

Figure 5d shows that the CRTISO gene is also highly
correlated with the “Aminoacyl-tRNA biosynthesis” path-
way (the p-value [ORA Top 500] = 3.25E—7 and the
p-score = 0.185). Although the p-value from the ORA
of the top 500 ranked genes is small, the p-score is
not very low. The p-score can compare pathways with-
out being affected by the internal correlation in path-
ways (Additional file 7), and therefore, the reason for the
small p-value may be the high internal correlation. On
the other hand, the p-score of the Carotenoid biosyn-
thesis pathway is relatively low (0.0166), indicating that
its small p-value is not caused by high internal correla-
tion. By checking the p-score, users can examine gene—
pathway relationships while considering the context of
pathways.

The “Peroxisome” pathway also exhibits a low p-value
for the ORA of the top 500 ranked genes (0.0160) and a
low p-score (0.0120). It has been proposed that antiox-
idative enzymes in peroxisomes may act as modulators
of reactive oxygen species (ROS) signaling during pep-
per fruit maturation [35]. Solyc07g063430.2 (Entrez Gene
ID: 101247444), encoding an MPV17 protein which may
be involved in ROS metabolism, is strongly co-expressed
with the CRTISO gene (Additional file 9), which may
suggest that peroxisomal ROS generated via this protein
modulates the lycopene biosynthesis during tomato fruit
maturation.
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Conclusions

In this study, we developed a database named Co-
expressed Pathways DataBase for Tomato [23]. The
database provides, for each tomato gene, a ranked list of
KEGG pathways, where the higher-ranked pathways are
more likely related to each gene. The p-score enables users
to predict functionally relevant pathways without being
affected by internal correlation in pathways.
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Additional file 1: ID correspondence table and information on the SRA
Runs. The correspondences among Entrez Gene ID, Kegg Gene ID, and
Ensemble Gene ID are shown in Table 1. Information (Run ID, Experiment
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Additional file 2: Dendrogram of the RNA-Seq samples. The dendrogram
of the clustering analysis of the RNA-Seq samples. The first color bar
indicates the sample tissue, and the second one indicates the cultivar.
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distribution of ES for each KEGG pathway, which was obtained from the
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Additional file 4: Evaluation of the ORA of the top 1000-2500 ranked
genes. ROC curves drawn from the ORA of the top (A) 1000, (B) 1500, (C)
2000, and (D) 2500 ranked genes. (PDF 132 kb)

Additional file 5: Effect of internal correlation in pathways. The average of
—log10 p-values (y-axis) was plotted against the internal correlation (x-axis),
and the correlation coefficient between x and y, represented as r, was
calculated. The ORA of the top (A) 1000, (B) 1500, (C) 2000, and (D) 2500
ranked genes. (PDF 205 kb)
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