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Abstract

Background: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole
genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and
epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system
to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and
epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research
using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for
the Paramecium lineage.

Results: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model
species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription
start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction
with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation
pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations
obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species.
The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is
more sensitive than the previously established microarray resource.

Conclusions: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns
of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and
oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density.
Accurate predictions of 3′ and 5′ UTR will be particularly valuable for studies of gene expression (e.g. nucleosome
positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene
annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene
configuration are available through ParameciumDB (http://paramecium.i2bc.paris-saclay.fr). TrUC software is freely
distributed under a GNU GPL v3 licence (https://github.com/oarnaiz/TrUC).
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Background
Ciliates are unique among unicellular eukaryotes in
making a germ/soma distinction. The germline and som-
atic functions of chromosomes are respectively ensured
by a germline micronucleus (MIC) which undergoes
meiosis and fertilization and a somatic macronucleus
(MAC) that contains a version of the germline genome
stripped of parasitic sequences and optimized for gene
expression. The MAC is lost at each sexual cycle and a
new one differentiates from a copy of the zygotic nucleus,
by reproducible DNA elimination under the control of
meiosis-specific RNA interference pathways [1].
Genetics of the ciliate Paramecium was pioneered nearly

a century ago [2] and this complex unicellular eukaryote
has since served as model for a variety of biological pro-
cesses commonly found in animals, from excitable mem-
branes and swimming behavior [3] to programmed DNA
elimination and its epigenetic control during somatic dif-
ferentiation [4]. The early genetics studies led to the
realization that Paramecium aurelia is a complex of mor-
phologically identical but reproductively isolated sibling
species, renamed primaurelia, biaurelia, triaurelia, tetra-
urelia, etc. [5]. Paramecium tetraurelia became the most
widely used species for genetics and physiology, because of
its convenient growth properties.
P. tetraurelia somatic genome sequencing revealed

that the present diploid genome was shaped by a series
of at least 3 whole genome duplications (WGDs), each
WGD being slowly resolved by gene loss over evolution-
ary time [6]. It was suggested that the P. aurelia species
complex emerged concomitantly with the most recent
WGD [6], a hypothesis confirmed by sequencing two
other aurelia genomes and P. caudatum as outgroup [7,
8]. Custom microarrays were designed to obtain gene
expression data for the nearly 40, 000 P. tetraurelia
protein-coding genes [9]. The data were used to show
that gene expression level is a major determinant of gene
dosage and protein evolution [10].
The Paramecium aurelia species complex is now

recognized as an outstanding system to study the conse-
quences of WGD in a unicellular eukaryote [11] and
should also prove powerful for investigation of genetic
and epigenetic mechanisms that drive speciation. In this
context, the MAC genomes of many species are being
sequenced. It thus became necessary to develop a pipe-
line optimized for the Paramecium lineage, able to make
accurate gene predictions for AT-rich, compact (>80%
coding) eukaryotic genomes with unusually small introns
(20–30 nt). To this purpose, we generated oriented P.
tetraurelia RNA-Seq and Cap-Seq data, as input for soft-
ware we developed to predict transcription units
(TrUC). The transcription unit predictions and other
evidence were combined to produce gene annotations
using EuGene software [12] trained for Paramecium.

Annotations obtained for P. tetraurelia were used as evi-
dence to improve the annotation of other Paramecium
species. The P. tetraurelia RNA-Seq samples were also
analyzed for differential gene expression during the sex-
ual cycle of autogamy, generating an improved transcrip-
tome resource.

Results and Discussion
Transcription units
Genome-guided transcription unit construction was pio-
neered by Denoeud et al. [13] (G-Mo.R-Se software)
using short-read mapping. The widely used Cufflinks
software [14] then adopted fragment alignment as part
of its assembly strategy. To take into account alternative
splicing, Cufflinks finds the minimal number of paths
through the mapped fragments. We decided to develop
our own transcription unit prediction software rather
than use Cufflinks, because in our hands, Cufflinks did
not always predict transcription units despite good frag-
ment coverage in regions presenting strong evidence of
protein-coding genes, probably because of overlapping
UTRs in the very compact Paramecium genome. Our
approach is conceptually similar to G-Mo.R-Se but takes
into account improvements in library construction and
sequencing, especially orientation information. We
added detection of transcription termination sites (TTS)
using the polyA signal and the optional use of Cap-Seq
data to predict transcription start sites (TSS). The TrUC
(TRanscription Units by Coverage) pipeline is schema-
tized in Fig. 1. TrUC predicts TSS and TTS using the
consensus position of Cap-Seq and polyA coverage, re-
spectively. TrUC uses oriented data to predict oriented
transcription units, however the software can predict in-
trons from un-oriented RNA-Seq data, using the GT..
AG splice site consensus to determine orientation. TrUC
does not consider alternative splicing since exon skip-
ping is not found in Paramecium [15]. Like Cufflinks,
TrUC can identify non-coding transcripts as it does not
look at translation. TrUC multi-threaded Perl software is
available from https://github.com/oarnaiz/TrUC.
Since not all genes are expressed at all stages of the life

cycle, use of different life-cycle time points can help an-
notation by increasing the number of genes that are cov-
ered by RNA-Seq data. For P. tetraurelia transcription
unit prediction, we sequenced polyA+ RNA from a
time-course through the sexual process of autogamy as
well as from vegetative cells. Combining all the RNA-
Seq and Cap-Seq data (Additional file 1: Table S1), TrUC
predicts 37, 847 transcription units greater than 300 nt
in size, 12,389 TSS and 5967 transcription termination
sites (TTS). We found 85% of the previously annotated
P. tetraurelia genes [6] (hereafter called “v1” annotation)
covered by a predicted transcription unit. The average
size of the predicted transcription units, 1229 nt, is close
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to the average size of the v1 genes (Table 1; Additional
file 2: Figure S1) indicating that most of the predicted
transcription units correspond to one gene. However,

some transcription unit predictions may be split, owing
to reduced RNA-Seq coverage within the unit. Alterna-
tively, since genes in the compact P. tetraurelia genome

a

b

Fig. 1 Gene annotation strategy. a Overview of the workflow. EuGene software, using a Paramecium-trained matrix, combines (i) transcription unit
predictions, (ii) TSS predicted positions, (iii) TTS predicted positions, (iv) Paramecium predicted proteins mapped on the reference genome using
BLASTX then Exonerate, and (v) non-coding gene predictions obtained using the Rfam database. b Schema of the TrUC pipeline. TrUC is able to
predict transcription units, TSS and TTS positions. To achieve this, the software uses oriented polyA+ mRNA-Seq and Cap-Seq data. The upper
part of the schema represents RNA-Seq insert coverage of the genome. A configurable threshold (horizontal dotted line) is used to determine
the edges of the transcription units. The middle of the schema shows how intron, TSS and TTS positions are predicted. The transcription units
predicted by combining all of the information are shown at the bottom of the schema. The TSS and the TTS are used to refine the structure of
the transcription unit predictions. This can be particularly critical in a compact genome to avoid fusing adjacent transcription units. An example is
shown in orange, where the TSS is used to shorten the predicted transcription unit, removing the open box. The example in green, shows how a
TTS can prevent fusion of two adjacent transcription units
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sometimes overlap, some transcription units may be
fused owing to continuous RNA-Seq coverage, a prob-
lem partially overcome by use of the predicted TSS and
TTS (cf. Fig. 1b). Split or fused predicted transcription
units do not compromise gene annotation (cf. next sec-
tion), which also takes into account protein-coding po-
tential to define gene models.
A total of 85,236 introns were identified in the pre-

dicted transcription units, corresponding to a mean of
2.25 introns per transcription unit, very close to the 2.3
introns per gene previously reported for P. tetraurelia
[6, 15].

Gene annotation
Accurate, user-friendly gene annotation tools for eukary-
otes, such as AUGUSTUS [16], would require code
modifications to correctly identify tiny introns [17]. In-
deed, ~ 98% of P. tetraurelia introns are 20–30 nt in
size, with a mean of 25 nt. A handful of significantly lar-
ger introns, ~ 80 nt in size, contain snoRNAs [18]. We
therefore decided to train the highly configurable Eu-
Gene annotation software [12] for Paramecium, using
gene models completely confirmed by RNA-Seq cover-
age (see Methods).
Table 1 compares gene annotations predicted by Eu-

Gene for P. tetraurelia, using the transcription units as-
sembled with TrUC and other lines of evidence (labeled
‘v2’), with the v1 gene annotation for this species [6],
long considered a gold standard for ciliate gene annota-
tion. The statistical differences are slight, aside from the
fact that the v1 statistics do not include any non-coding
gene predictions. The v2 annotation contains about 800
more protein-coding gene models, probably because of
the greater quantity of transcript evidence allowing pre-
diction of short genes (the average CDS length is slightly
smaller in v2 annotation). To determine sensitivity, a set
of 1690 manually curated genes was constituted (avail-
able from ParameciumDB [19]). We found 95% of the
gene structures (excluding UTRs) and 99% of the introns
to be correctly annotated.
In order to analyze the impact of the Cap-Seq data, we

ran the same gene annotation pipeline for P. tetraurelia
without any Cap-Seq data and compared the two sets of
gene models. We found 91.8% of the protein-coding
gene models to be identical. Among the 3293 gene
models that were different, there were 649 cases where
addition of the Cap-Seq data split one gene model into
two gene models. In most of the remaining cases (2149),
the coding sequence was changed. The Cap-Seq data we
generated thus have a modest but significant impact on
the gene annotation. Knowledge of TSS for the P tetra-
urelia model will be particularly valuable for functional
studies. We looked for possible alternative TSS by evalu-
ating whether adjacent TSSs fall within the same gene.

In >99% of the cases, adjacent TSS were in different
genes. In only 29 cases could we find adjacent TSS in
the same gene. We consider it likely that they represent
technical noise given their occurrence mainly in highly
expressed genes (Additional file 1: Table S2) but we can-
not exclude biological significance. We conclude that al-
ternative TSS are extremely rare in Paramecium.
The size distribution of 10,087 5′ UTRs that could be

confidently predicted from the Cap-Seq data, shown in
Fig. 2, confirms the unusually small size of 5’UTRs in
Paramecium (mean 21.7 nt, median 19 nt), much
smaller than in animals and fungi (100–200 nt average,
[20]) or the ciliate Tetrahymena thermophila (n = 4149,
mean = 95.6 nt, median = 88 nt) [21]. The 4641 3′
UTRs predicted from polyA tracts present in the RNA-
Seq data (Fig. 2) display a nearly Gaussian distribution
(mean = 44.6 nt, median = 44 nt) and are much smaller
than in animals and fungi (200–1000 nt average, [20]) or
Tetrahymena thermophila (n = 1290, mean = 231 nt,
median = 163 nt, [21]).
The Paramecium-trained annotation pipeline was used

to annotate P. biaurelia, P. sexaurelia and P. caudatum
genomes, using the P. tetraurelia v2 predicted proteins
as evidence as well as the unoriented RNA-Seq data pre-
viously used for the published annotation of these spe-
cies [7, 8]. In all 4 species, we observe ~2.3 introns/gene
and the same median intron size in v1 and v2 annota-
tions (Table 1). However, the average intron size is larger
in the published P. biaurelia, P. sexaurelia and – to a
lesser extent – P. caudatum v1 annotations than in the
corresponding v2 annotations (Table 1). This is owing to
the prediction of significant numbers of introns larger
than 40 nt in the published v1 annotations (Table 1, Fig.
3). Far fewer questionable “large” introns are found in
the v2 annotations (10%, 12.5% and 30% with respect to
the v1 annotations for biaurelia, sexaurelia and cauda-
tum, respectively). This is because the v2 annotations in-
tegrate TrUC intron predictions. Most of these “large”
introns are likely to be incorrect and as a consequence,
so are the thousands of gene models that contain them.
The difference between v1 and v2 annotations is less
pronounced for P. caudatum, which has the smallest in-
trons so far reported for the Paramecium genus (median
size 22 nt, average size 23 nt). We conclude that TrUC
predictions improve Paramecium gene models not only
by predicting TSS and TTS if Cap-Seq and oriented
mRNA-Seq data are available, but also thanks to the in-
tron predictions, which can be made even from unor-
iented RNA-Seq data.
Paramecium genomes are intron-rich, an ancestral

property of eukaryotes [22]. Not only is intron size very
small, but no exon-skipping has been observed [15].
These properties helped discover translational control of
eukaryotic intron splicing [15]. In Paramecium, splice
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Fig. 2 Size distribution of P. tetraurelia 5′ and 3′ UTRs. a Histograms of the distribution of predicted 5′ UTR sizes (gray) and 5′ UTR sizes confirmed by a
TSS prediction using Cap-Seq data. b Histograms of the distribution of predicted 3′ UTR sizes (gray) and 3′ UTR sizes confirmed by a TTS prediction
using the polyA+ RNA-Seq read pairs. The Cap-seq confirmed 5′ UTRs have a mean size of 21.7 nt and a median size of 19 nt. The 3′ UTRs predicted
from polyA tracts have a mean size of 44.6 nt and a median size of 44 nt

Fig. 3 Intron size distribution. The graphs show the number of introns as a function of their size for Paramecium tetraurelia, biaurelia, sexaurelia
and caudatum. For each species, 3 curves are superimposed: introns predicted by TrUC (gray), introns in the v1 annotations (red) and introns in
the v2 annotations (blue). The v2 introns are the subset of TrUC introns in gene models and additional introns predicted by Eugene without
RNA-Seq support. The P. tetraurelia v1 introns were intentionally filtered when greater than 45 nt [6]. In all cases, the great majority of introns are
smaller than 40 nt. In v1 annotations (except P. tetraurelia), there are more large introns than in TrUC or v2 annotations. Since the RNA-Seq (TrUC
predictions) are expected to show the true distribution of intron sizes, we are more confident in the v2 annotations
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site signals are weak, presumably because of the muta-
tional burden, and splicing is not very accurate. The
nonsense-mediated decay (NMD) pathway [23] cleans
up the mess on the pioneer round of translation, pro-
vided that there is a Premature Termination Codon
(PTC) in the poorly spliced transcript. That this is the
case is easily visualized in Paramecium, thanks to the
unique TGA stop codon, by comparing the frequency of
introns that do or do not contain a STOP codon in
phase with the upstream exon, as a function of their size
modulus 3. As shown in (Additional file 2: Figure S2),
stopless introns that are 3n in size are counter-selected
in all 4 species: these introns cannot give rise to a PTC
if retained in the transcript so are potentially deleterious.
The observed deficit of 3n stopless introns in all 4 spe-
cies (Additional file 2: Figure S2) validates the annota-
tion and extends previous observation of translational
control of intron splicing [15] to other P. aurelia species
and to P. caudatum.

Differential gene expression
In Paramecium, the sexual cycle encompasses meiosis,
fertilization and development of a new MAC. The latter
process involves programmed elimination of at least 25%
of the germline DNA. Custom microarrays were previ-
ously used to characterize differential gene expression
during autogamy (auto-fertilization) in P. tetraurelia [9].
We now report use of the mRNA-Seq samples for differ-
ential gene expression. Since cells enter autogamy from
a fixed point in the vegetative cell cycle [24], which is
not synchronized in our cell cultures, there is an asyn-
chrony of at least 5 h in the samples. Therefore, cytology
data (Additional file 2: Figure S3) and gene expression
levels were used to cluster samples into 6 stages: vegeta-
tive (Veg, n = 2), meiosis (Mei, n = 2), fragmentation
(Frg, n = 3), early development (Dev1, n = 2), intermedi-
ate development (Dev2 and Dev3, n = 4) and late devel-
opment (Dev4, n = 2) (see Methods, Additional file 1:
Table S1 and Additional file 2: Figure S3). These stages
are equivalent to those used previously with microarrays
[9], with the addition of one later stage, Dev4.
For analysis of differential gene expression (DGE) we

first counted mapped RNA-Seq fragments for each v2
gene model (see Methods). We found 99.8% of the
mapped fragments in the sense orientation and 0.2% in
the anti-sense (AS) orientation (see Additional file 2:
Figure S4). This low level of AS transcription might re-
flect biological noise or pervasive transcription [25], es-
pecially as pervasive non-coding transcription is
required for genome rearrangements in Paramecium
[26, 27]. We cannot formally exclude errors in strand-
specificity during construction of the sequencing librar-
ies [28]. An intriguing possibility is regulation of gene
expression by AS transcripts at specific loci. Higher

coverage or long reads will be needed to interpret the
AS transcription we have detected.
The DGE analysis was performed with the sense frag-

ment counts and DESeq2 software. Requiring an ad-
justed p-value <0.01 and a fold-change of 2 in
expression, we identified 17,190 genes whose expression
varied during autogamy. We separated these genes into
induced (n = 8220) or repressed (n = 8970) (cf.
Methods), and then used hierarchical clustering to
visualize the induced or repressed genes and to define 6
clusters: ‘Early peak’, ‘Intermediate peak’, ‘Late peak’, Late
induction’, ‘Early repression’, ‘Late repression’ (Additional
file 2: Figures S5 and S6).
To validate the clusters, we used published genes in-

volved in autogamy and some negative control genes not
involved in autogamy (Additional file 1: Table S3). All of
the genes known to be induced during autogamy were
classified in an appropriate RNA-Seq induced cluster, al-
though 4 of the 26 genes had not been found in the
microarray clusters. Genes known to be expressed dur-
ing meiosis in Paramecium (SPO11, SPT5m, DCL2,
DCL3, NOWA1, NOWA2, LIG4a and XRCC4) [29–33]
are found in the Early peak. Only one of the 12 negative
control genes was induced during autogamy: PTIWI14,
characterized as a component of the vegetative siRNA
pathway [34], appears in the Late induction cluster. We
also compared the distribution of the genes in the
microarray clusters with respect to the RNA-Seq clusters
(Table 2). The microarray resource was of good quality
and essentially all of the genes in the microarray clusters
are found in the RNA-Seq clusters. The RNA-Seq ap-
proach is more powerful and allows more genes to be
identified as differentially expressed during autogamy. A
modest qualitative difference between microarray and
RNA-Seq classification concerns the microarray ‘Inter-
mediate induction’ cluster. The genes in this cluster are
found in either the RNA-Seq ‘Intermediate peak’ or the
RNA-Seq ‘Late induction’ clusters. This may be a conse-
quence of the additional late time points in the RNA-
Seq experiment (Dev4) which change the gene expres-
sion profiles being clustered.
To estimate how well RNA-Seq data can discriminate

the ~12,000 pairs of paralogs created by the recent
WGD (~83% nucleotide identity on average), we com-
puted the number of identical stretches of 100 nt shared
by each pair. We estimate that >97% of the paralog pairs
are devoid of common 100 nt stretches over >90% of
their length and should therefore be well-discriminated
in the present analysis. This is likely to be an underesti-
mate, since the procedure uses mapping of pairs of
100 nt reads, not of single 100 nt reads. Therefore, in
theory, RNA-Seq should better discriminate the paralogs
than the previous microarray data [9]. In addition, RNA-
Seq has greater dynamic range and sensitivity than
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microarray technology ([35] and our data), which can
also contribute to good paralog discrimination. The P
tetraurelia microarrays involved hybridization of 6
probes (50 nt) per gene designed to optimize chances of
discriminating the paralogs. However, it is difficult to
evaluate the extent of microarray cross-hybridization. In
order to compare the discrimination of WGD paralogs
by the microarray and RNA-Seq methods, we calculated
paralog expression level divergence (Additional file 2:
Figure S7). Paralogs are more sensitively discriminated
by RNA-Seq because of its greater dynamic range (Add-
itional file 2: Figure S7a, b). When the paralogs share
high nucleotide identity (with the greatest risk of cross-
hybridization), there is little difference between their ex-
pression levels in the microarray data, but the same is
true of the RNA-Seq data (Additional file 2: Figure S7a–
d). We propose two, non-exclusive, explanations to ac-
count for this observation, the first technical, the second
biological. The first explanation is that RNA-Seq cannot
discriminate highly similar paralogs because reads are
mapped randomly between 2 equivalent loci, which re-
duces the difference in the measured expression level of
such loci. The second explanation is that the paralogs
sharing high nucleotide identity probably tend to have
similar expression levels. This could result from strong
selective pressure on highly expressed genes [10] or from
gene conversion between WGD paralogs, frequently ob-
served for P. aurelia species [7]. Gene conversion leads
to increased GC content and high nucleotide identity
between paralogs, and can extend to promotor regions
depending on the recombination breakpoint. Indeed, ex-
pression level and GC content are correlated with the
nucleotide identity of P. tetraurelia paralogs (Additional
file 2: Figure S7e, f ).
We also looked at whether genes duplicated at the recent

WGD have kept the same expression profiles. First, we re-
moved paralogs that differ in length by more than 10%, a
filter that removes potential pseudogenes (n = 10,323; 85%
of the paralog pairs are retained after this stringent filtering,
P. tetraurelia v2 annotation). For 22% of the pairs, we

found both paralogs in the same autogamy cluster, and for
38%, neither paralog was differentially expressed during
autogamy. Interestingly, we found 31.5% of the pairs had
one paralog in an autogamy cluster and one paralog not
differentially expressed. This might reflect an early stage of
pseudogenization, shown to begin with changes in expres-
sion level [11], probably via mutations in promoter
sequences. We also found 8.5% of pairs with paralogs in dif-
ferent autogamy clusters, a possible indication of neo- or
sub-functionalization. The important point is that finding
paralogs with different expression profiles, irrespective of
the origin of the difference, is an indication that the para-
logs are well-discriminated by the RNA-Seq data.
A qualitative picture of the biological processes turned

on during autogamy can be obtained using Gene Ontol-
ogy (GO) terms [36], with the caveat that Paramecium
functional annotation has not been curated. We first
made a high-confidence gene set by requiring a fold-
change of 4 during autogamy (7065 genes). We then
used GO Biological Process terms associated with pro-
tein domains (cf. Methods) to make word clouds (Add-
itional file 2: Figure S8). The Early peak (Additional file
2: Figure S8a) covers meiosis and fertilization and is
enriched in appropriate terms: DNA, repair, chromo-
some, mismatch, condensation, homologous, recombin-
ation, Okazaki, replication, chromatid, cohesion. The
Intermediate peak (Additional file 2: Figure S8b) corre-
sponds to development of the new MAC involving chro-
matin remodeling and shows enrichment in repair,
chromatin, DNA, methylation, and chromosome. Many
biological processes are activated in the Late peak and
Late induction clusters so that the only over-represented
informative words relate to signal transduction (GTPase,
signal, transduction, phosphorylation, inositol) and mem-
brane trafficking (vesicle-mediated, autophagy) (Add-
itional file 2: Figure S8c, d). The cluster of genes that are
turned off when cells leave vegetative growth and enter
the sexual cycle (Early repression, Additional file 2: Fig-
ure S8e) is enriched for words that refer to translation
and cellular homeostasis (rRNA, redox, homeostasis,

Table 2 Differential Gene Expression

Early peak Intermediate peak Late peak Late induction Early repression Late repression none

Early peak 333 17 0 1 0 8 1

Early induction 49 33 1 9 0 0 0

Intermediate induction 5 315 17 211 0 0 1

Late induction 0 7 0 28 1 0 0

Early repression 0 0 0 1 209 30 4

Late repression 28 0 0 0 1 1022 3

none 1315 1398 395 2937 3986 3072 20,043

Distribution of differentially expressed (DE) genes in RNA-Seq clusters (columns) and microarray clusters [9] (rows). Overall, the two analyses provide similar results,
but the RNA-Seq approach detects many more DE genes. Essentially all microarray DE genes were found by RNA-Seq. The main qualitative difference is that the
genes in the microarray Intermediate induction cluster are now found in one or the other of 2 RNA-Seq clusters: Intermediate peak or Late induction. See Methods
for details of the analysis
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ribosome, oxido-reduction, translation, pseudouridine).
For the Late repression cluster (Additional file 2: Figure
S8f ), the only informative words refer to microtubule-
based, movement and phosphorylation,
dephosphorylation.
The gene expression atlas is provided as a table

(Additional file 3: Table S4).

Conclusions
Plummeting genome sequencing costs and rising interest
in Paramecium species for studies of genome evolution in
unicellular eukaryotes, prompted us to build a new pipe-
line for gene annotation that takes into account specific-
ities of the genus, in particular high gene density and
stereotyped small intron size. This has been achieved with
new software to predict transcription units (TrUC) and
specific training of the highly configurable EuGene gene
annotation software. High quality gene annotations will be
important for future comparative and functional genomics
analyses of Paramecium species. The mRNA-Seq data
used to predict P. tetraurelia transcription units for the
gene annotation enabled us to generate an improved gene
expression atlas and carry out differential gene expression
analysis of the sexual cycle of autogamy that is more
complete than previously possible with microarrays.

Methods
RNA samples and mRNA sequencing
Three time-course experiments for the sexual process of
autogamy of P. tetraurelia wild-type strain 51 were used.
Some of the samples had previously been used for
microarray experiments [9] (see Additional file 1: Table
S1). Total RNA was Trizol-extracted as previously de-
scribed [9]. PolyA+ RNA was extracted from each sam-
ple using the FastTrack MAG mRNA isolation kit
(Thermo Fisher Scientific) following the manufacturer’s
instructions. Strand-oriented Illumina libraries were
made with reagents from the Illumina TruSeq Small
RNA library preparation kit using an adapted protocol.
First, RNA was fragmented by incubation for 4 min at
94 °C with New England Biolabs’ Mg2+ solution, yield-
ing fragments with an average size of ~260 nt. The RNA
was purified using RNeasy columns (Qiagen) followed
by treatment with antarctic phosphatase and polynucleo-
tide kinase (New England Biolabs) and another purifica-
tion on RNeasy columns. Illumina adapter ligation and
RT-PCR was done essentially following the Illumina
protocol, except that for the final library purification
step AMPure beads were used (Beckman Coulter).
HiSeq paired-end sequencing was performed on the
samples, yielding at least 2 × 30 million reads, 100 nt in
length, for each of the samples.

Cap-Seq
Five samples, representing 3 time points (Veg, T0 and
T11; [9]) were used for 5′ Transcription Start Site (TSS)
mapping. Purified polyA+ RNA was dephosphorylated
using Calf Intestine Phosphatase (CIP) prior to 5′ cap
removal with Tobacco Acid Pyrophosphatase (TAP),
using a FirstChoice RLM-RACE kit (Life Technologies).
Illumina 5′ adaptors were ligated to the 5′ monopho-
sphate ends generated specifically at TSSs, followed by
RNA fragmentation by incubation for 4 min at 94 °C
with New England Biolabs’ Mg2+ solution. This yielded
an average fragment size of 260 nt. Following CIP treat-
ment to convert the 3′ monophosphate ends generated
by RNA fragmentation to 3’OH ends, Illumina 3′
adapters were ligated to the fragments. The libraries
were subjected to RT-PCR amplification (18–20 cycles)
before Illumina HiSeq paired-end sequencing that
yielded approximately 2 × 13 million reads of 100 nt per
sample. Every step in TSS library preparation ended with
purification using RNAeasy columns (Qiagen) or phenol/
chloroform extraction and isopropanol precipitation. The
final PCR amplification products were purified using
AMPure beads (Beckman Coulter) before sequencing.

Transcription unit determination
We developed the multi-threaded Perl software TrUC
(Transcription Units by Coverage), dependent on the
Bio::DB::Sam module. The software is organized in 3 inde-
pendent modules (Fig 1). The TSS module uses Cap-Seq
data, which need not be paired-end, to predict transcription
start sites. The predicted TSS is the position with the highest
Cap-Seq coverage in the interval defined by the size of the
fragments. The TTS module uses oriented paired-end
mRNA-seq reads. If one of the reads in the pair maps par-
tially on the reference genome and ends in polyA, then the
insert is used to specify a transcription termination site. The
predicted TTS is the position with the highest polyA cover-
age in the interval defined by the size of the fragments. The
transcript module takes paired-end TopHat2 mapping
(BAM files; [14]) and optionally, the output of the TSS and
TTS modules, to predict transcription units including intron
positions, based on fragment coverage. TrUC was run with
the following parameters for P. tetraurelia annotation:
truc TSS -min_coverage 15 -nb_replicates 2 -min_score

500; truc TTS -min_coverage 5 -nb_replicates 2 -min_score
10 -nb_min_A 5; truc transcript -min_splicing_rate 0.7
-no_overlap -min_coverage 15 \

-intron_consensus -min_intron_length 15
-max_intron_length 100 \
-min_intron_coverage 15 -min_length 300 -min_score
45 -tss [truc TSS GFF3 output file] -tts [truc TTS
GFF3 output file].
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For P. biaurelia, P. sexaurelia and P. caudatum, TrUC
was used with unoriented RNA-Seq data reported in [7, 8]
(Accessions PRJNA268243, PRJNA268244 and
PRJNA268245, respectively), to predict introns, with
the following parameters:

truc transcript -not_stranded -min_splicing_rate 0.7
-min_coverage 10 -intron_consensus
-min_intron_length 10 \ -max_intron_length 100
-min_intron_coverage 3 -min_length 300 -min_score 10.
TrUC is distributed under a GNU GPL v3 license at
https://github.com/oarnaiz/TrUC.

Gene annotation
The workflow for gene annotation is schematized in Fig.
1. EuGene software [12] was used to predict gene struc-
ture. EuGene was trained with 1597 curated Parame-
cium tetraurelia genes to generate a prediction matrix
that takes into account the unusually small size of Para-
mecium introns [15]. The prediction matrix is available
from http://paramecium.i2bc.paris-saclay.fr/download.
The evidence sets used for annotation of the 4 Parame-
cium genomes are available on request.

Comparative genomics
UTR lengths for Tetrahymena thermophila were calcu-
lated using the June 2014 annotation available at http://
www.ciliate.org/system/downloads/
T_thermophila_June2014.gff3.

Differential gene expression
Paired-end RNA-Seq reads were mapped to the reference
P. tetraurelia strain 51 genome [37] using TopHat2
(v2.0.12, −−mate-inner-dist 50 –mate-std.-dev 100 –min-
intron-length 15 –max-intron-length 100 –coverage-
search –keep-fasta-order –library-type fr-secondstrand
–min-coverage-intron 15 –max-coverage-intron 100
–min-segment-intron 15 –max-segment-intron 100
–max-multihits 1 –read-mismatches 1 –max-deletion-
length 1 –max-insertion-length 1). Raw fragment counts
for the genes in each sample, determined using htseq-
count (v0.6.0 –stranded = yes –mode = intersection-non-
empty) on filtered BAM files (samtools v0.1.18 samtools
view -q 30), were used as input for DESeq2 (v1.4.1) [38],
an R Bioconductor package, which normalizes the frag-
ment counts, calculates the dispersion in the data using
the biological replicates, and then determines differential
gene expression using negative binomial linear models.
The samples were grouped into biological replicates (Veg,
Mei, Frg, Dev1, Dev2_3, Dev4) using the cytology data
and clustering of the sample normalized counts with a dis-
tance matrix (see Additional file 2: Figures S3 and S4 sam-
ple dendrogram; see Additional file 1: Table S1). We
considered genes to be differentially expressed during

autogamy if at least one contrast between Veg and any
point in the autogamy time course had an adjusted p-
value smaller than 0.01 and a fold-change (FC) of expres-
sion greater than 2. We filtered out genes if there was not
at least one time point with more than 20 normalized
counts. The genes were classed as induced (FC > 2) or re-
pressed (FC < ½) before hierarchical clustering.

GO term enrichment and word cloud visualization
To gain qualitative appreciation of the processes associ-
ated with the groups of co-expressed genes, we focused
on a subset of differentially expressed genes with a fold-
change >4 (and an adjusted p-value <0.01). GO bio-
logical process terms were electronically inferred using
InterProScan (v5.7.48) domain annotation of the corre-
sponding proteins. If more than one protein domain was
associated with a protein, the domain with the lowest
InterProScan P-value was retained. All words in the
terms were counted for all the protein-coding genes in
the genome and for the protein-coding genes in each
co-expression group. After removing non-discriminatory
words (“protein”, “process”, “domain” and the “stop-
words” defined by the wordcloud R package, v. 2.5), a
Fisher exact test was used to determine the word enrich-
ment ratio (p-value <0.05) in each co-expression group
with respect to the word frequency for the whole gen-
ome. A score determined for each word (score = log2(p-
value−1)) was used as weight to draw each word cloud (R
wordcloud v2.5). The protein domains and GO terms
used for this analysis can be found in the gene expres-
sion atlas (Additional file 3: Table S4).

Additional files

Additional file 1: Table S1. RNA sequencing. Table S2. Genes with
potential alternative TSS. Table S3. Differential expression of genes with
known autogamy expression profiles. (XLSX 38 kb)

Additional file 2: Figure S1. Comparison of the sizes of P. tetraurelia
transcription units and genes. Figure S2. Intron size distributions. Figure
S3. Autogamy time-course experiments. Figure S4. Anti-sense transcrip-
tion. Figure S5. Hierarchical clustering of differentially expressed genes.
Figure S6. Autogamy co-expression clusters. Figure S7. Paralog discrim-
ination by microarrays and RNA-Seq. Figure S8. Word cloud analysis of
biological processes in clusters. (PDF 8271 kb)

Additional file 3: Gene expression atlas. All P. tetraurelia v2 genes (‘ID’)
with their normalized RNA-Seq counts (last 15 columns, sample labels as in
Additional file 2: Table S1) are given. The mean value for biological replicates
are given in the columns VEG, MEI, FRG, DEV1, DEV2/3, DEV4. The ‘P-value’
‘Significant’ and ‘Expression profile’ refer to the differential gene expression
analysis (cf. Methods). ‘Note’ is the description of the best SwissProt BLASTP
match. The GO ID and GO description were inferred electronically using
InterProScan. The Biological Process GO term associated with the highest
scoring protein domain is given. (TSV 12379 kb)
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