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Abstract

Background: Circular RNAs (circRNAs) are a novel class of endogenous, non-coding RNAs that form covalently closed
continuous loops and that are both highly conserved and abundant in the mammalian brain. A role for circRNAs in
sponging microRNAs (miRNAs) has been proposed, but the circRNA-miRNA-mRNA interaction networks in human
brain cells have not been defined. Therefore, we identified circRNAs in RNA sequencing data previously generated
from astrocytes microdissected from the posterior cingulate (PC) of Alzheimer’s disease (AD) patients (N = 10) and
healthy elderly controls (N = 10) using four circRNA prediction algorithms - CIRI, CIRCexplorer, find_circ and KNIFE.

Results: Overall, utilizing these four tools, we identified a union of 4438 unique circRNAs across all samples, of which
70.3% were derived from exonic regions. Notably, the widely reported CDR1as circRNA was detected in all samples
across both groups by find_circ. Given the putative miRNA regulatory function of circRNAs, we identified potential
miRNA targets of circRNAs, and further, delineated circRNA-miRNA-mRNA networks using in silico methods. Pathway
analysis of the genes regulated by these miRNAs identified significantly enriched immune response pathways, which is
consistent with the known function of astrocytes as immune sensors in the brain.

Conclusions: In this study, we performed circRNA detection on cell-specific transcriptomic data and identified
potential circRNA-miRNA-mRNA regulatory networks in PC astrocytes. Given the known function of astrocytes in
cerebral innate immunity and our identification of significantly enriched immune response pathways, the circRNAs we
identified may be associated with such key functions. While we did not detect recurrent differentially expressed
circRNAs in the context of healthy controls or AD, we report for the first time circRNAs and their potential regulatory
impact in a cell-specific and region-specific manner in aged subjects. These predicted regulatory network and pathway
analyses may help provide new insights into transcriptional regulation in the brain.
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Background
CircRNAs are a class of endogenous, non-coding RNAs
that form covalently closed continuous loops and that are
pervasively expressed in eukaryotes [1–3]. Though RNA
circularization events were reported in the 1970s and 1990s
[4–6], they were disregarded as molecular artifacts arising
from aberrant splicing. However, with the advent of
next generation sequencing technology, coupled with the
development of computational algorithms to specifically

detect these back-splicing events, numerous circRNAs have
been reported since 2012. CircRNAs exhibit cell type-, tis-
sue- and developmental stage-specific expression [3, 7], and
show evolutionary conservation between mouse and
human [2, 3]. Furthermore, circRNAs are highly abundant
in the mammalian brain, compared to other tissues such as
lungs, heart, kidney, testis and spleen in humans, as well as
in mouse neuronal cell lines [8], and are derived preferen-
tially from neural genes [9].
The abundance and evolutionary conservation of cir-

cRNAs suggests that they could play important roles in
cellular processes. A few possible functions have been
reported, including microRNA (miRNA) sponges [3, 6,
10, 11], mediation of protein-protein interactions [12]
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and regulation of parental gene transcription [13]. Fur-
thermore, a few circRNAs have been found to originate
from disease-associated genomic loci, suggesting that
circRNAs may regulate pathological processes [14–18].
Given these data, it is likely that circRNAs regulate RNA
and protein networks, especially in the brain, but the
regulatory pathways are still unknown.
In the present study, we characterized the expression and

abundance of circRNAs in next generation RNA sequencing
(RNAseq) data of human brain astrocytes. Astrocytes, the
most abundant glial cells, play several essential roles in the
central nervous system, including homeostasis [19], immun-
ity [20] and energy storage and metabolism [21, 22]. We pre-
viously evaluated these astrocytes, which were derived from
the posterior cingulate (PC) of Alzheimer’s disease (AD) and
healthy elderly control brains (age > 65), and identified AD-
associated gene expression changes [23]. For this study, we
used four circRNA prediction algorithms to identify cir-
cRNAs in these AD and control samples. Given the potential
miRNA regulatory function of circRNAs, we then performed
in silico identification of miRNA binding sites on the de-
tected circRNAs, and further delineated putative circRNA-
miRNA-mRNA networks in astrocytes. We describe here
the first astrocyte-specific characterization of circRNAs and
their interaction networks in elderly individuals.

Results
CircRNA detection in PC astrocytes
The RNAseq data generated from our previous study
was used for analysis [23]. This data set was gener-
ated from 20 human PC astrocyte pools: 10 from
late-onset AD (LOAD) brains and 10 from no disease
(ND) healthy elderly control brains. Over 85,000,000
reads were sequenced for each sample, with an aver-
age mapping percentage of 70.8. Using FASTQ files
generated from sequencing, we ran four circRNA pre-
diction algorithms - CIRCexplorer [24], CIRI [25],
find_circ [3], and KNIFE [26], and detected a total of
4438 unique circRNAs with at least two supporting
junction reads (Additional file 1: Table S1). Among
the detected circRNA candidates, a total of 2331 cir-
cRNAs were identified in the AD samples and 2425
in the ND samples by at least one of the algorithms
(Fig. 1a). While 80% of the detected circRNAs had
less than ten supporting reads (Fig. 1b), 43 circRNAs
had over 20 junction reads and were detected in
more than one sample, and 31 circRNA candidates
were detected in at least five samples with five or
more supporting reads. Notably, the widely reported
CDR1as circRNA was detected with a median read
count of 52, by find_circ in all 20 samples and by
CIRI in one of the samples. CircRNA 2:40,655,612–
40,657,444 (chromosome:start-end) was detected in 12
of the 20 samples by two, three or all four algorithms

in each sample (Additional file 1: Table S1). Further-
more, 548 circRNAs detected in our dataset were also re-
ported in the four studies deposited in circBase [27]
(Additional file 1: Table S1); various cell lines and tissue
types were evaluated in these studies, including cerebel-
lum, diencephalon, SH-SY5Y cells, Hs68 cells, HeLa cells
and HEK293 cells.
Among all identified circRNAs, 416 were on chromo-

some 1 (length = 249,250,621 base pairs), while only eight
were detected on chromosome Y (length = 59,373,566
base pairs), consistent with previous findings that the
number of circRNAs detected is proportional to the
length of the chromosome [28]. Based on RefSeq annota-
tions, we observed that 70.3% of our candidates were
derived from exonic regions (3,123/4,438), of which 94%
(2,936/3,123) were in coding DNA sequences (CDS; ex-
cludes untranslated regions) (Additional file 1: Table S1).
Among the exonic circRNAs, 56.4% spanned one to 15
exons per circRNA, of which 20% were derived from sin-
gle exons, while a small percentage of the exonic cir-
cRNAs (6.8%) spanned over 100 exons per circRNA.
As previously reported [29], we observed that the over-

lap among the circRNAs detected by the different tools
was low. Overall, 243 circRNAs were predicted by all four
tools, while each tool also predicted unique circRNAs
(KNIFE—1680, find_circ—1077, CIRI—488, CIRCex-
plorer—198; Fig. 1c). Most of the candidates called by all
the tools originated from CDS (242/243; 99.5%) as well as
intronic regions (232/243; 95.5%), and 75% of the exonic
candidates spanned two to six exons per circRNA.
Further, the size distribution of all detected circRNAs, and
the tool-wise and condition-wise distribution of the cir-
cRNAs, are summarized in Figs. 1d, e and f.
We next compared the relative abundance of cir-

cRNAs and corresponding linear RNAs using back-
spliced reads and linearly spliced reads with the same
splice sites (Methods; Additional file 2: Table S2;
Additional file 3: Figure S1). We observed that for 26
circRNAs, the circular-to-linear ratio was 10 or greater
and the linear count was not 0, such as circRNA 17:
48,823,196–48,824,063 from LUC7L3 (LUC7 like 3 pre-
mRNA splicing factor; average back-spliced reads: 413,
average linear reads: 16.32) and 1:67,356,836–67,371,058
from WDR78 (WD repeat domain 78; average back-
spliced reads: 116.50, average linear reads: 9.50). Further,
44.6% (1,983/4,438) had no expression of linear RNA
and 45.5% (2,018/4,438) had higher expression of the
linear RNA.

MiRNA target prediction and delineation of circRNA-
miRNA-mRNA regulatory networks
Given the potential miRNA regulatory function of cir-
cRNAs, we next used the miRNA target prediction algo-
rithms miRanda [30] and RNAHybrid [31] to predict the
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Fig. 1 Summary of circRNA prediction results. a Number of unique and common circRNAs in AD and ND PC. b Read count distribution of all
detected circRNAs. c Intersection of circRNAs called by the four tools; the red bar indicates the number of circRNAs called by all four tools d Size
distribution of all detected circRNAs. e Violin plots indicating the number of circRNAs predicted by each tool across PC samples along with the
probability density. f Number of circRNAs predicted by each tool across PC samples, condition-wise. AD, Alzheimer’s disease; ND, no disease;
circRNA, circular RNA; PC, posterior cingulate; bp, base pairs
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miRNA targets of the circRNAs detected in ten or more
samples by at least one of the circRNA prediction algo-
rithms (N = 10 circRNA candidates). Using a list of 2588
published miRNAs from miRBase [32], we detected
14,296 unique interactions between circRNAs and
miRNAs that were predicted by both miRNA target pre-
diction algorithms and having a miRanda match score >
=150. These interactions represent binding sites for miR-
NAs on each circRNA candidate, predicted based on com-
plementarity in the miRNA seed region (nucleotide
positions 2–7 in the miRNA 5′-end). 2398 miRNAs in the
reference set were predicted to have binding sites in our
input list of circRNAs. Among these, a set of 612
circRNA-miRNA interaction pairs were predicted to
contain over 100 putative interaction sites by the miRanda
algorithm (Additional file 4: Table S3). These 612 circRNA-
miRNA interactions were predicted for six unique circRNAs
and 448 unique miRNAs. Using Cytoscape [33], we visual-
ized the circRNA-miRNA interaction network for these 612
interactions, wherein the edges between circRNAs and its
target miRNAs are weighted by the number of predicted
interaction sites for the circRNA-miRNA pair (Fig. 2a).
CDR1as was predicted to have binding sites for 74 distinct
miRNAs and 63 binding sites for miR-7 (Fig. 2b). According
to miRTarBase [34], miR-7 interacts with 578 target genes,
some of which include SNCA (synuclein alpha), EIF4E
(eukaryotic translation initiation factor 4E), KMT5A (lysine
methyltransferase 5A), MAPKAP1 (mitogen-activated pro-
tein kinase associated protein 1), and MKNK1 (MAP kinase
interacting serine/threonine kinase 1).
We further employed the list of miRNA-mRNA target in-

teractions common in both miRTarBase and TargetScan
[35] databases, to determine the target genes of the above

detected miRNAs. Overall, there were 2530 target genes for
our input list of 2398 miRNAs, of which 255 were also dif-
ferentially expressed between the AD and ND groups based
on DESeq2 analysis [36] of the linear RNAs (uncorrected
P < 0.05, Additional file 5: Table S4). Using this information
about miRNA target mRNAs, we delineated a putative low-
stringency circRNA-miRNA-mRNA network consisting of
ten circRNAs, 53 miRNAs and 255 genes (Additional file 6:
Figure S2). Further, we used the same list of circRNAs de-
tected in ten or more samples by at least one of the
circRNA prediction algorithms, and increased the fil-
tering stringency criteria to include circRNA-miRNA
interactions with a miRanda match score > = 180. We
also restricted the candidate miRNAs to those with mRNA
targets showing differential gene expression (uncorrected
P < 0.05) with a log2(fold change) ≥ 2 or ≤ − 2 between the
AD and ND groups. Using this strategy, we established a
high-stringency circRNA-miRNA-mRNA interaction net-
work with four circRNAs, 11 miRNAs and 49 genes (Fig. 3,
Table 1). Our overall workflow is outlined in Additional file 7:
Figure S3.

Pathway analysis
MetaCore pathway analysis on the 255 filtered differen-
tially expressed target genes from the previous analysis
revealed 112 perturbed pathways (corrected P < 0.01;
Table 2, Additional file 8: Table S5). 23 of these were im-
mune response-related, such as the IL-4 and IL-6 signal-
ing pathways. This identification of impacted immune
response pathways is consistent with the known function
of astrocytes as immune sensors in the brain and aligns
with our previous RNAseq study, which showed that im-
mune system response pathways are impacted in AD PC
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Fig. 2 circRNA-miRNA network. a circRNA-miRNA interactions with 100 or more predicted binding sites. Red circular nodes: circRNAs, green
triangular nodes: miRNAs. b miRNA network of CDR1as. The edge thickness in a and b is weighted by the number of binding sites predicted for
the circRNA-miRNA interaction. miRNA, microRNA
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astrocytes compared to ND PC astrocytes [23]. Addition-
ally, signal transduction pathways that may be perturbed
include post-translational modifications (PTMs) in BAFF-
induced signaling, mTORC2 downstream signaling and
protein kinase A (PKA) signaling.

Lack of circRNA differential expression in AD PC
astrocytes
We analyzed our catalog of circRNA candidates to deter-
mine whether there were circRNAs uniquely expressed

in either the AD or ND cohort. Though there were over
2000 circRNAs unique to each group, we did not
observe them to be recurrent in the samples within their
respective group. The log2(fold change) for all
candidates calculated using DESeq2 are summarized in
Additional file 1: Table S1. 93 circRNAs were unique to
AD and called in at least two samples by at least one of the
tools, and 82 circRNAs were unique to ND and called in at
least two samples by at least one of the tools. These cir-
cRNA candidates were supported by at least two junction

Fig. 3 High stringency circRNA-miRNA-mRNA regulatory network. Network of circRNA-miRNA-mRNA regulation for those circRNA-miRNA
interactions predicted by both RNAHybrid and miRanda, with a miRanda match score > = 180 and mRNA targets with differential expression
(uncorrected P < 0.05) and log2(fold change)≥ 2 or ≤ − 2. Red circular nodes: circRNAs, green triangular nodes: miRNAs, blue square nodes: genes.
mRNA, messenger RNA

Table 1 circRNA-miRNA-mRNA network elements for those circRNA-miRNA interactions predicted by both miRanda and RNAHybrid,
with a miRanda match score > = 180 and mRNA targets that are differentially expressed (uncorrected P < 0.05) with log2(fold
change) >= 2 or =< − 2 (high stringency network)

Circular RNA microRNA target Number of binding
sites predicted

Target genes (differentially expressed)

X:47,431,299–48,327,824 hsa-miR-139-5p 6 NOTCH1, STAMBP, TPD52

8:144,989,320–145,838,888 hsa-miR-320a 2 METTL7A, PBX3, PLS1, SEC14L1, VCL, VIM, VOPP1, YPEL2

8:144,989,320–145,838,888 hsa-miR-320b 2 RTKN, VCL, VOPP1

X:47,431,299–48,327,824 hsa-miR-449a 1 BAZ2A, MFSD8, NOTCH1, TSN, ZNF551

8:144,989,320–145,838,888 hsa-miR-125a-3p 1 ANKRD62, C15orf40, COL18A1, MFSD11, MPEG1, MUL1, TTC31, WDR12, ZNF641

X:47,431,299–48,327,824 hsa-miR-125a-5p 1 CD34, MEGF9, PANX1, RIT1, TP53INP1

8:144,989,320–145,838,888 hsa-miR-125a-5p 1 CD34, MEGF9, PANX1, RIT1, TP53INP1

X:47,431,299–48,327,824 hsa-miR-324-5p 1 FOXO1, MEMO1, PSMD4, SMARCD2

14:23,815,526–24,037,279 hsa-miR-142-3p 1 BTBD7, CLDN12, CPEB2, CSRP2, DAG1, KIF5B, PTPN23, WHAMM

4:88,394,487–89,061,166 hsa-miR-133b 1 FAM160B1

4:88,394,487–89,061,166 hsa-miR-448 1 DDIT4, PURG

4:88,394,487–89,061,166 hsa-miR-339-5p 1 AXL, HLA-E, METTL7A, ZNF285, ZNRF3
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reads. To identify any differentially expressed candidates,
we performed a Student’s t-test on those circRNAs com-
monly called across the two groups. Only two circRNAs
trending towards significance (uncorrected P < 0.05) were
identified and include 1:201,452,657–201,736,927 (uncor-
rected P = 0.015) and 16:1,583,657–2,204,141 (uncorrected
P = 0.046).

Discussion
CircRNAs, which are abundant in the mammalian
brain, represent a recent addition to the class of non-
coding RNAs. In this study, we detected astrocytic
circRNAs using whole transcriptome RNAseq data
obtained from the PC of AD and ND subjects, and
outlined circRNA-miRNA-mRNA regulatory networks.
Based on the results from four different circRNA de-
tection algorithms, we identified over 4000 unique
circRNAs across all samples, the majority of which
were derived from coding exons. Although we did not
identify circRNAs that were differentially expressed
and recurrent in AD or ND, we were able to delin-
eate circRNA-miRNA-mRNA networks for the ten
most recurrent circRNAs expressed across both
groups, and also incorporate our previous differential
expression analysis data from the linear mRNA. We
observe that the majority of identified circRNAs are
unique in the AD or ND groups and are not recur-
rent across the respective groups. This could be due
to their low abundance in those samples, which may
be below detection levels, or could be due to bio-
logical differences between the two groups, which re-
quires further investigation. Pathway analysis on the
differentially expressed miRNA target genes identified
immune system related and signal transduction path-
ways. Notably, astrocytes are active players in cerebral
innate immunity [37], and previous studies have re-
ported that astrocytes respond to IL-4 signaling and
potentially mediate between immune effector cells
and nervous responders [38]. These predicted regulatory
network and pathway analyses may help provide new
insights into transcriptional regulation in the brain.
The circRNA CDR1as (also known as CiRS-7, a cir-

cRNA sponge for miR-7) was detected in all 20 of our
samples and is a widely reported circRNA with 63 con-
served seed matches for miR-7, indicating possible miR-
7 binding sites [3, 11]. Interestingly, overexpression of
CDR1as in zebrafish decreased the midbrain size, sug-
gesting a functional role for CDR1as in the brain, while
knockdown of CDR1as downregulated miR-7 targets in
HEK293 cells [3]. This regulation is relevant since miR-7
plays a role in Parkinson’s disease, stress handling and
brain development [3, 39], and also has tumor-
suppressive properties [39]. CDR1as also showed wide-
spread expression in neuroblastoma and astrocytoma

[40]. However, expression of CDR1as was reduced in
AD hippocampal samples about 0.18-fold compared to
controls [15], which we did not observe in our PC astro-
cyte dataset. Apart from CDR1as, the tools also pre-
dicted circRNAs derived from genes including SLC8A1
(solute carrier family 8 - sodium/calcium exchanger -
member 1), which is under-expressed in hippocampal
neurons from aged human brains [41], SYT1 (synapto-
tagmin 1), whose increase was correlated to age-related
spatial cognitive impairment in mice [42], PSAP (prosa-
posin), which is increased in activated glia during nor-
mal aging in mouse brains [43], and FGF17 (fibroblast
growth factor 17).
Although our dataset provides insights into the exist-

ence and abundance of astrocytic circRNAs in elderly in-
dividuals, there are a few limitations. Primarily, the
whole transcriptome data we analyzed was not generated
from samples that were depleted of linear RNAs using
RNase R (ribonuclease R), an exoribonuclease that se-
lectively digests linear RNA but leaves behind lariat or
circRNA structures. Due to the presence of a larger pool
of transcripts, which are mostly linear RNAs, RNAseq
may not have comprehensively captured all the cir-
cRNAs in the samples. Notably, this enrichment step
has been used by various groups to enrich for circRNAs
for sequencing analyses [2, 3, 44].
Another limitation of bioinformatics-based circRNA

detection is the highly divergent results produced by dif-
ferent algorithms. We observed this in our analyses and
it has also been reported by two recent circRNA bench-
mark studies [29, 45]. The algorithms utilize different
aligners, heuristics and filtering criteria, thus introducing
‘blind spots’ (false negatives) when addressing biases in-
troduced by each method [46]. For example, find_circ
and CIRI rely on filtering for GT-AG splice signals and
thus may not capture candidates with non-canonical
splice signals. Further, most tools use a read count filter,
which may not be ideal for circRNAs with low expres-
sion relative to their linear host [47]. Given the low
reliability on read counts, statistical approaches improve de-
tection and classification of splice junctions, including novel
ones [48]. Among the circRNA detection algorithms, KNIFE
implements a logistic generalized linear model to distinguish
true circRNAs, and is therefore able to identify circRNAs de-
rived from non-canonical splice sites. Notably, KNIFE
achieves a more balanced performance in terms of precision
and sensitivity, compared to other circRNA detection algo-
rithms, as described in one of the benchmarking studies
[45]. We observed in our dataset that KNIFE detected more
circRNAs compared to find_circ, CIRI and CIRCexplorer.
Nonetheless, sequencing errors and technical artifacts intro-
duced during RNAseq may still lead to false positive cir-
cRNAs, and hence statistical tests to estimate false discovery
rates in circRNA detection need to be developed.
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While circRNAs have continued to gain attention as
an abundant non-coding RNA species with potential
regulatory functions, our understanding of their
expression in various cell and tissue types remains
limited. To address this challenge, we describe an
analysis of astrocytic circRNAs in RNAseq data from
elderly individuals, and we delineate potential
circRNA-miRNA-mRNA regulatory networks. Given
the role of astrocytes in signaling and synaptic modula-
tion, and as immune sensors in the brain, the circRNAs
we identified may be associated with such key functions.
Further characterization using circRNA-enriched datasets
will help us understand the atlas of circRNA expression in
the context of specific cell types and conditions, including
aging and AD. In addition, downstream functional studies
are needed to clarify how and whether circRNAs act as
hubs for influencing protein expression and cellular pro-
cesses. As we continue to piece together the factors in-
volved in transcriptional regulation, we will both better
understand basic cellular mechanisms and set the stage
for developing improved therapeutic strategies for AD and
other diseases.

Conclusions
In summary, we utilized astrocyte specific RNAseq data
to identify astrocytic circRNAs in aged subjects (N = 20).
Utilizing four circRNA prediction algorithms, we identi-
fied a total of 4438 unique circRNAs across samples,
the majority of which were derived from exonic regions.
The widely reported CDR1as circRNA was detected in
all 20 samples with a median of 52 supporting reads.
Given the putative miRNA regulatory function of cir-
cRNAs, we further performed in silico prediction of pu-
tative miRNA binding sites on the ten most recurrent
circRNAs, and further delineated a low- and high-
stringency circRNA-miRNA-mRNA regulatory network.
Pathway analysis on the genes from our low-stringency
network revealed significantly impacted immune re-
sponse pathways, which aligns with the known function
of astrocytes as immune sensors in the brain. While we
did not detect circRNAs recurrently expressed in the
context of healthy controls or Alzheimer’s, we are the
first to report circRNAs and their potential regulatory
impact in a cell-specific and region-specific manner in
aged subjects. Continued analyses such as these sets the
foundation for circRNA characterization and under-
standing their expression and regulatory networks in
specific cell types and regions in the brain.

Methods
Sample acquisition, library preparation and paired-end
sequencing
Detailed methods for sample acquisition, immunohisto-
chemistry using an aldehyde dehydrogenase 1 family,

member L1 (ALDH1L1) antibody, microdissection,
RNAseq library preparation and sequencing of astrocytes
are described in our previous publication [23]. Briefly,
postmortem human brain samples were collected at the
Banner Sun Health Research Institute’s (BSHRI) Brain
and Body Donation Program (BBDP) from 10 clinically
classified LOAD subjects (4 males and 6 females; 5
APOEε3/4 subjects and 5 APOEε3/3 subjects) and 10
ND controls (6 males and 4 females; 5 APOEε3/4 sub-
jects and 5 APOEε3/3 subjects). All subjects were en-
rolled in the BSHRI BBDP in Sun City, Arizona, and
written informed consent for all aspects of the program,
including tissue sharing, was obtained either from
the subjects themselves prior to death or from their
legally-appointed representative. The protocol and
consent for the BBDP was approved by the Western
Institutional Review Board (Puyallap, Washington).
Clinical and pathological donor demographics are
summarized in Additional file 9: Table S6. Approxi-
mately 300 astrocytes were laser capture microdis-
sected from PC brain sections and total RNA was
isolated from the cell lysates, followed by cDNA cre-
ation and library generation. Equimolar pools of li-
braries were sequenced by synthesis on the Illumina
HiSeq2000 for paired 83 base pair reads.

Data analysis
The data analysis workflow is summarized in Additional file 7:
Figure S3. Raw sequencing data, in the form of basecall files
(BCLs), were converted to FASTQ format using Illu-
mina’s bcl2fastq conversion software and quality
checked using FastQC [49]. To eliminate variance in
circRNA detection that could arise due to differences
in the number of sequencing reads, all FASTQ files
were down-sampled to 85,547,262 reads using seqtk
[50]. The down-sampled FASTQ files were then run
through four different circRNA prediction algo-
rithms—CIRCexplorer (v1.1.10), CIRI (v2), find_circ
(v1), and KNIFE (v1.4), using the parameter settings
described in Additional file 10: Table S7. CircRNAs
from each sample with at least two supporting reads
were used for further downstream processing and
analyses. CIRI produces 1-based circRNA coordinates,
and was therefore converted to 0-based coordinates
to be consistent with the other three algorithms. We then
annotated our catalog of circRNA candidates using UCSC
RefSeq annotations [51] and BEDtools [52].
The ratio of circular-to-linear RNA isoforms was cal-

culated using the approach described in [8]. For each
circRNA candidate, we used the number of back-spliced
reads for circRNA quantification (Nc) and the number of
linear reads supporting the same 5′ or 3′ splice junction
(Nl5 or Nl3) as the number of linear RNA reads. The lin-
ear junction supporting reads were obtained by aligning
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our RNAseq data to the reference genome (GRCh37)
using STAR [53].

Circular to linear ratio ¼ Nc= max Nl5;Nl3ð Þ

miRNA target prediction
For circRNAs detected in at least 50% of the sam-
ples, we next conducted miRNA binding site predic-
tion using the miRanda [30] and RNAHybrid [31]
algorithms. The miRanda algorithm finds potential
target sites for miRNAs in a genomic sequence using
a two-step strategy. First, a dynamic programming
local alignment is implemented between the miRNA
sequence and the sequence of interest (circRNA se-
quence in this study), scoring the alignment based
on sequence complementarity (match score). In the
second step, the thermodynamic stability of the
resulting RNA duplex is estimated based on the
high-scoring alignments from the first phase. The
RNAHybrid algorithm finds the energetically most
favorable hybridizations of a small RNA to a large
RNA. Only those circRNA-miRNA interactions pre-
dicted by both the algorithms are used for our
downstream network construction and analyses.
From the list of commonly predicted circRNA-
miRNA interactions, we filtered for those having a
miRanda match score > = 150.

circRNA-miRNA-mRNA network construction
miRNA-mRNA interactions that are common in both
miRTarBase [34] and TargetScan [35] were then used to
determine the gene targets of each filtered miRNA and
compared with genes identified using differential expres-
sion analysis of the linear RNAs (uncorrected P < 0.05;
DESeq2 performed as described in our previous publica-
tion). Using these data, we outlined a low-stringency
circRNA-miRNA-mRNA regulatory network using cus-
tom python scripts and visualized the network using
cytoscape. We further filtered for circRNA-miRNA in-
teractions with miRanda match scores > = 180 and miR-
NAs with mRNA targets showing differential expression
(uncorrected P < 0.05, log2[fold change] ≥ 2 or ≤ − 2) to
outline a high-stringency circRNA-miRNA-mRNA
network.

Pathway analysis
On the list of filtered miRNA target genes with DESeq2
uncorrected P < 0.05, we performed pathway analysis
using MetaCore GeneGO (v6.32.69020) from Thompson
Reuters to predict pathways that are commonly im-
pacted in the AD and ND groups. The results were fil-
tered for enriched pathways with a false discovery rate
(FDR)-corrected P < 0.01.
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(XLSX 559 kb)

Additional file 2: Table S2. Circular-to-linear ratios for all detected cir-
cRNAs (XLSX 342 kb)

Additional file 3: Figure S1. Circular-to-linear ratios. Ratio of average
back-spliced reads to average linearly spliced reads for all detected
circRNAs. (PDF 1075 kb)

Additional file 4: Table S3. CircRNA-miRNA interactions with ≥ 100
predicted binding sites. (XLSX 48 kb)

Additional file 5: Table S4 DESeq2 analysis results for genes with
uncorrected P < 0.05, between AD and controls. (XLSX 229 kb)

Additional file 6: Figure S2. Low stringency circRNA-miRNA-mRNA
regulatory network. Network of circRNA-miRNA-mRNA regulation for
those circRNA-miRNA interactions predicted by both RNAHybrid and
miRanda, with miRanda match scores > = 150 and mRNA targets with
differential expression (uncorrected P < 0.05). Red circular nodes:
circRNAs, green triangular nodes: miRNAs, blue square nodes: genes.
(PDF 771 kb)

Additional file 7: Figure S3. Computational workflow outline and
filtering criterion. PC, posterior cingulate; RNAseq, RNA sequencing;
circRNA, circular RNA; miRNA, microRNA; mRNA, messenger RNA.
(PDF 928 kb)

Additional file 8: Table S5. Pathways with corrected P < 0.01, apart
from the ones summarized in Table 2. (XLSX 14 kb)

Additional file 9 Table S6. Donor demographics. (XLSX 41 kb)

Additional file 10: Table S7. Tool parameters used for circRNA
detection in this study. (XLSX 45 kb)

Abbreviations
AD: Alzheimer’s disease; ALDH1L1: aldehyde dehydrogenase 1 family,
member L1; BBDP: Brain and Body Donation Program; BSHRI: Banner Sun
Health Research Institute; CDS: coding DNA sequences; CircRNA: circular
RNA; FDR: False discovery rate; LOAD: Late-onset Alzheimer’s disease;
miRNA: microRNA; mRNA: messenger RNA; PC: posterior cingulate;
RNAseq: RNA sequencing

Acknowledgements
We are grateful to the Banner Sun Health Research Institute Brain and Body
Donation Program of Sun City, Arizona for the provision of human brain
tissues for our previous study. The BBDP has been supported by the National
Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain
and Tissue Resource for Parkinson’s Disease and Related Disorders), the
National Institute on Aging (P30AG19610 Arizona Alzheimer’s Disease Core
Center), the Arizona Department of Health Services (contract 211002, Arizona
Alzheimer’s Research Center), the Arizona Biomedical Research Commission
(contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s Disease
Consortium) and the Michael J. Fox Foundation for Parkinson’s Research [54].
We would also like to thank TGen’s Dr. Kendall Jensen and Dr. Elizabeth
Hutchins for input and guidance, and Cynthia Lechuga for administrative
support. Nancy Linford, PhD, provided editorial suggestions.

Funding
Research reported in this publication was supported by the National Institute
on Aging (NIA) of the National Institutes of Health under award number
P30AG019610, and the Arizona Department of Health Services award
number ADHS14–052688. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National
Institutes of Health. The funders had no role in the study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
All the RNAseq data generated in this study are accessible through the
National Center for Biotechnology Information (NCBI) database of
Genotypes and Phenotypes (dbGaP; accession# phs000745.v1.p1), and

Sekar et al. BMC Genomics  (2018) 19:340 Page 9 of 11

https://doi.org/10.1186/s12864-018-4670-5
https://doi.org/10.1186/s12864-018-4670-5
https://doi.org/10.1186/s12864-018-4670-5
https://doi.org/10.1186/s12864-018-4670-5
https://doi.org/10.1186/s12864-018-4670-5
https://doi.org/10.1186/s12864-018-4670-5
https://doi.org/10.1186/s12864-018-4670-5
https://doi.org/10.1186/s12864-018-4670-5
https://doi.org/10.1186/s12864-018-4670-5
https://doi.org/10.1186/s12864-018-4670-5


data supporting our findings are included within the manuscript and
additional figures/tables.

Authors’ contributions
WL conceived the study. SS and WL performed all data analysis and
interpretation and wrote the manuscript. LC, JA and PG made substantial
contribution to data acquisition, performed library preparation and
sequencing of all samples and also contributed to data interpretation. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
All subjects were enrolled in the BSHRI BBDP in Sun City, Arizona, and
written informed consent for all aspects of the program, including tissue
sharing, was obtained either from the subjects themselves prior to death or
from their legally-appointed representative. The protocol and consent for the
BBDP was approved by the Western Institutional Review Board (Puyallap,
Washington).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Translational Genomics Research Institute, Phoenix 85004, AZ, USA. 2Arizona
Alzheimer’s Consortium, Phoenix 85014, AZ, USA. 3Arizona State University,
Tempe, AZ 85287, USA.

Received: 19 December 2017 Accepted: 13 April 2018

References
1. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the

predominant transcript isoform from hundreds of human genes in diverse
cell types. PLoS One. 2012;7(2):e30733.

2. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF,
Sharpless NE. Circular RNAs are abundant, conserved, and associated with
ALU repeats. RNA (New York, NY). 2013;19(2):141–57.

3. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L,
Mackowiak SD, Gregersen LH, Munschauer M. Circular RNAs are a large class
of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.

4. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-
stranded covalently closed circular RNA molecules existing as highly base-
paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73(11):3852–6.

5. Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW,
Vogelstein B. Scrambled exons. Cell. 1991;64(3):607–13.

6. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P,
Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in
adult mouse testis. Cell. 1993;73(5):1019–30.

7. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific
features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777.

8. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M,
Behm M, Bartok O, Ashwal-Fluss R. Circular RNAs in the mammalian brain
are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;
58(5):870–85.

9. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M,
Glock C, Quedenau C. Neural circular RNAs are derived from synaptic genes
and regulated by development and plasticity. Nat Neurosci. 2015;18(4):603.

10. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ,
Kjems J. miRNA-dependent gene silencing involving Ago2-mediated
cleavage of a circular antisense RNA. EMBO J. 2011;30(21):4414–22.

11. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK,
Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature.
2013;495(7441):384–8.

12. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA
retards cell cycle progression via forming ternary complexes with p21 and
CDK2. Nucleic Acids Res. 2016;44(6):2846–58.

13. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L.
Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct
Mol Biol. 2015;22(3):256–64.

14. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of
linear and novel circular forms of an INK4/ARF-associated non-coding RNA
correlates with atherosclerosis risk. PLoS Genet. 2010;6(12):e1001233.

15. Lukiw W. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet.
2013;4:307.

16. Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-
Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. Correlation of circular
RNA abundance with proliferation-exemplified with colorectal and
ovarian cancer, idiopathic lung fibrosis, and normal human tissues.
Sci Rep. 2015;5:8057.

17. Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y. Circular RNA ITCH
has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin
pathway. Oncotarget. 2015;6(8):6001–13.

18. Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J. Using circular RNA
as a novel type of biomarker in the screening of gastric cancer. Clin Chim
Acta. 2015;444:132–6.

19. Parpura V, Verkhratsky A. Homeostatic function of astrocytes: ca(2+) and
Na(+) signalling. Transl Neurosci. 2012;3(4):334–44.

20. Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte.
J Neuroimmune Pharmacol. 2013;8(4):824–39.

21. Tsacopoulos M, Magistretti PJ. Metabolic coupling between glia and
neurons. J Neurosci. 1996;16(3):877–85.

22. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates
aerobic glycolysis: a mechanism coupling neuronal activity to glucose
utilization. Proc Natl Acad Sci. 1994;91(22):10625–9.

23. Sekar S, McDonald J, Cuyugan L, Aldrich J, Kurdoglu A, Adkins J,
Serrano G, Beach TG, Craig DW, Valla J, et al. Alzheimer’s disease is
associated with altered expression of genes involved in immune
response and mitochondrial processes in astrocytes. Neurobiol Aging.
2015;36(2):583–91.

24. Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary
sequence-mediated exon circularization. Cell. 2014;159(1):134–47.

25. Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de
novo circular RNA identification. Genome Biol. 2015;16:4–014. 0571-0573

26. Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry
CE, Laurent LC, Salzman J. Statistically based splicing detection reveals
neural enrichment and tissue-specific induction of circular RNA during
human fetal development. Genome Biol. 2015;16:126. 015-0690-0695

27. Glazar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs.
RNA (New York, NY). 2014;20(11):1666–70.

28. Xu T, Wu J, Han P, Zhao Z, Song X. Circular RNA expression profiles and
features in human tissues: a study using RNA-seq data. BMC Genomics.
2017;18(Suppl 6):680.

29. Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA
prediction tools. Nucleic Acids Res. 2016;44(6):e58.

30. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets
in drosophila. Genome Biol. 2003;5(1):R1.

31. Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R. Fast and effective
prediction of microRNA/target duplexes. RNA. 2004;10(10):1507–17.

32. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence
microRNAs using deep sequencing data. Nucleic Acids Res. 2014;
42(D1):D68–73.

33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T. Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res.
2003;13(11):2498–504.

34. Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong
HC, Wei TY, Tu SJ, et al. miRTarBase 2016: updates to the experimentally
validated miRNA-target interactions database. Nucleic Acids Res. 2016;
44(D1):D239–47.

35. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA
target sites in mammalian mRNAs. elife. 2015;4

36. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

37. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate
immunity. Trends Immunol. 2007;28(3):138–45.

38. Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: a cytokine to
remember. J Immunol. 2012;189(9):4213–9.

Sekar et al. BMC Genomics  (2018) 19:340 Page 10 of 11



39. Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer.
Cancer Res. 2013;73(18):5609–12.

40. Dropcho EJ, Chen YT, Posner JB, Old LJ. Cloning of a brain protein identified
by autoantibodies from a patient with paraneoplastic cerebellar
degeneration. Proc Natl Acad Sci U S A. 1987;84(13):4552–6.

41. Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Walker DG, Caselli
RJ, Kukull WA, McKeel D, Morris JC, et al. Gene expression profiles in
anatomically and functionally distinct regions of the normal aged human
brain. Physiol Genomics. 2007;28(3):311–22.

42. Chen GH, Wang YJ, Qin S, Yang QG, Zhou JN, Liu RY. Age-related spatial
cognitive impairment is correlated with increase of synaptotagmin 1 in
dorsal hippocampus in SAMP8 mice. Neurobiol Aging. 2007;28(4):611–8.

43. Zhou X, Sun L, Bracko O, Choi JW, Jia Y, Nana AL, Brady OA, Hernandez JCC,
Nishimura N, Seeley WW, et al. Impaired prosaposin lysosomal trafficking in
frontotemporal lobar degeneration due to progranulin mutations. Nat
Commun. 2017;8:15277.

44. Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K, Tiang Z,
Lee DP, Chua W, Luu TD. A landscape of circular RNA expression in the human
heart. Cardiovasc Res. 2016;113(3):298-309.

45. Zeng X, Lin W, Guo M, Zou Q. A comprehensive overview and evaluation of
circular RNA detection tools. PLoS Comput Biol. 2017;13(6):e1005420.

46. Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental
challenges. Nat Rev Genet. 2016;17(11):679–92.

47. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P,
Grimm SA, Perou CM, et al. MapSplice: accurate mapping of RNA-seq reads for
splice junction discovery. Nucleic Acids Res. 2010;38(18):e178.

48. Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, Rätsch G, Goldman N,
Hubbard TJ, Harrow J, Guigó R. Systematic evaluation of spliced alignment
programs for RNA-seq data. Nat Methods. 2013;10(12):1185–91.

49. FastQC: A Quality Control tool for High Throughput Sequence Data
[http://www.bioinformatics.babraham.ac.uk/projects/fastqc/].

50. Seqtk: a fast and lightweight tool for processing FASTA or FASTQ sequences
[https://github.com/lh3/seqtk].

51. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D.
The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.

52. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics (Oxford, England). 2010;26(6):841–2.

53. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013;29(1):15–21.

54. Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, Lue L, Roher AE,
Dugger BN, Maarouf C. Arizona study of aging and neurodegenerative
disorders and brain and body donation program. Neuropathology. 2015;
35(4):354–89.

Sekar et al. BMC Genomics  (2018) 19:340 Page 11 of 11

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/lh3/seqtk

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	CircRNA detection in PC astrocytes
	MiRNA target prediction and delineation of circRNA-miRNA-mRNA regulatory networks
	Pathway analysis
	Lack of circRNA differential expression in AD PC astrocytes

	Discussion
	Conclusions
	Methods
	Sample acquisition, library preparation and paired-end sequencing
	Data analysis
	miRNA target prediction
	circRNA-miRNA-mRNA network construction
	Pathway analysis


	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

