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Abstract

Background: Saffron crocus (Crocus sativus) is a valuable spice with medicinal uses in gynaecopathia and nervous
system diseases. Identify flowering regulatory genes plays a vital role in increasing flower numbers, thereby
resulting in high saffron yield.

Results: Two full length transcriptome gene sets of flowering and non-flowering saffron crocus were established
separately using the single-molecule real-time (SMRT) sequencing method. A total of sixteen SMRT cells generated
22.85 GB data and 75,351 full-length saffron crocus unigenes on the PacBio RS II panel and further obtained 79,028
SSRs, 72,603 lncRNAs and 25,400 alternative splicing (AS) events. Using an Illumina RNA-seq platform, an additional
fifteen corms with different flower numbers were sequenced. Many differential expression unigenes (DEGs) were
screened separately between flowering and matched non-flowering top buds with cold treatment (1677), flowering
top buds of 20 g corms and non-flowering top buds of 6 g corms (1086), and flowering and matched non-
flowering lateral buds (267). A total of 62 putative flower-related genes that played important roles in vernalization
(VRNs), gibberellins (G3OX, G2OX), photoperiod (PHYB, TEM1, PIF4), autonomous (FCA) and age (SPLs) pathways
were identified and a schematic representation of the flowering gene regulatory network in saffron crocus was
reported for the first time. After validation by real-time qPCR in 30 samples, two novel genes, PB.20221.2 (p = 0.004,
r = 0.52) and PB.38952.1 (p = 0.023, r = 0.41), showed significantly higher expression levels in flowering plants. Tissue
distribution showed specifically high expression in flower organs and time course expression analysis suggested
that the transcripts increasingly accumulated during the flower development period.

Conclusions: Full-length transcriptomes of flowering and non-flowering saffron crocus were obtained using a
combined NGS short-read and SMRT long-read sequencing approach. This report is the first to describe the
flowering gene regulatory network of saffron crocus and establishes a reference full-length transcriptome for future
studies on saffron crocus and other Iridaceae plants.
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Background
Crocus sativus L, commonly known as saffron crocus, is
prized for purple flowers that are well known for produ-
cing spice saffron from the filaments. Spice saffron is the
most valuable spice used as a fabric dye and in trad-
itional medicine with special medicinal effects of pro-
moting blood circulation, cooling blood and detoxifying,
thereby relieving depression and soothing nerves [1]. As

a valuable traditional Chinese medicine, saffron is widely
used in China and Europe. Saffron crocus blooms only
once a year and unlike most spring-blooming plants, saf-
fron crocus does not blossom until autumn. In China,
the daughter corms began to grow at the end of January
and matured at the end of May and subsequently, en-
tered a dormant period until mid-August. During the
period, the corms were dug out from the soil when the
leaves turned yellow and wilted and moved into the door
to store. Experiencing the high temperature treatment in
summer (ranged from 23 to 27 °C), the buds were
broken up from dormancy in the middle of August and
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the floral primordia began to initiate. When the average
room temperature fell to 15–17 °C in mid-autumn, most
apical buds were in blossom [2]. Basically, the corms had
1–3 apical buds and 6–10 lateral buds depending on
their weight. Each apical bud germinated 1–3 flower
primordia while lateral bud usually did not blossom. Oc-
casionally, one or more lateral buds of corms weighing
more than 30 g also blossomed. The corms weighing less
than 6 g cannot blossom. As soon as all the flowers were
picked up indoors, the corms were planted in the soils
until the new daughter corms matured in the next May.
Planting and harvesting corms as well as collecting red
stigmas from flowers, is performed manually. To pro-
duce 1 kg of dry saffron, 110,000–170,000 flowers are
harvested and 40 h of labour are needed to pick 150,000
flowers. Such labour-intensive cultivation practices make
saffron a high expensive crop with prices ranging from
$500 to $5000 per pound at wholesale and retail rates
[3]. Due to limited natural resources for saffron crocus
plants, inefficient cultivation, and low yield, saffron is be-
coming even moreexpensive and is well known as “red
gold” [3]. It is highly important to explore comprehen-
sive genetic information for breeding and improving its
biological traits.
Increasing the flower number of saffron crocus is a vi-

able way to produce more saffron to meet the ever-
increasing demand in the market [4, 5]. Research has
been conducted to investigate the factors that affect
floral development including temperature, photoperiod,
corm size, and bud position [2, 6]. We can obtain sam-
ples of different flowering quantities by controlling these
factors artificially. Therefore, C. sativa is a good material
for studying the development of flowering. Many genes
related to plant floral development have been discovered
along with the rapid development of technology in mo-
lecular biology. For example, long-day conditions can
promote Arabidopsis flowering through the function of
FLOWERING LOCUS T (FT) protein, which is consid-
ered to be the main component of “florigen” [7, 8]. The
transcription factor Flowering Locus C (FLC) is a key
regulator of the vernalization process of Arabidopsis
thaliana. The transcription factor PIF4 is a major regu-
lator of high temperature-induced flowering [9]. Using
the FT gene in Arabidopsis thaliana as a reference, Tsaf-
taris et al. cloned a CENTRORADIALIS/TERMINAL
FLOWER1 (CsatCEN/TFL1) like gene [10] and three
FT-like genes [11] from the flowers, flower buds, leaves,
and corms of saffron crocus, respectively, and further
proved that their expression patterns were tissue-specific
and depended on the flower developmental stage. Other
studies found a serial potential flower-related gene in
saffron crocus, for instance, B-class paleo AP3-like genes
(CsatAP3-like) [12], AP1-like MADS-box genes [13], B-
class floral homeotic genes PISTILLATA/GLOBOSA

[14], E-class SEPALLATA3-like MADS-box genes [15],
and CsMYB1, a transcription factor belonging to the
R2R3 family [16]. Later, NGS-based RNA-seq technology
was widely used for gene discovery, which led to the
identification and functional characterization of flower-
ing genes in various species. For example, trehalose 6-
phosphate synthase and squamosa promoter-binding
protein-like genes promoted the floral induction of apple
trees [17]. A series of genes related to the circadian clock
are important key regulators for the flower development
of hibiscus [18]. Using NGS-based RNA-seq technology,
Baba et al. [19] and Jain et al. [20] discovered the gene
expression of saffron crocus involved in apocarotenoid
biosynthesis and further explored the expression profil-
ing of zinc-finger transcription factors [21]. However,
the underlying molecular mechanism controlling and/or
affecting the number of flowers of saffron crocus has not
been determined. The genome has not been fully eluci-
dated to date, even in the whole Iridaceae family, only
de novo assembly based short-fragment transcriptome of
saffron crocus was provided by Illumina RNA-seq se-
quencing [19–21].
Recently, the third-generation sequencing platform,

SMRT sequencing, developed by PACBIO RS (Pacific Bio-
sciences of California, Menlo Park, CA, USA), was used in
transcript sequencing. The sequencing platform is good
for long reads with an averaged read length of > 10 kb,
and real length can reach 60 kb (http://www.pacb.com/
smrt-science/smrt-sequencing/read-lengths/). After cor-
rection by next generation sequence (NGS) reads and self-
correction via circular-consensus sequence (CCS) reads,
the error rate of SMRT sequencing is expected to be 1%
[22]. This technology has been applied to access complete
transcriptome data of a few plants, including Carthamus
tinctorius (safflower) [23], Cassia obtusifolia (Jue-ming-zi)
[24], Panax ginseng (Korean ginseng) [25], Salvia miltior-
rhiza (danshen) [26], Sorghum bicolor (sorghum) [27] and
Zea mays (maize) [28].
Compared with the NGS platform, PacBio Iso-Seq can

obtain a collection of high quality full-length transcripts
without assembly, which is especially important for species
without reference genome sequences. Some transcripts
might contain repeat regions, whereas transcripts of differ-
ent gene isoforms show high sequence similarity. The as-
semblies of short sequencing reads often encounter
complications without reference genome sequences. The
problem seems more severe for saffron crocus, because of
its relatively larger genome size [29] (greater than 10 Gb)
and polyploid characteristics [30] (2n = 3x = 24). Saffron
crocus consists mainly of repetitive DNA sequences, such
as retrotransposon and satellite DNA [31], resulting in par-
ticular challenges for the accuracy of short-read assembly.
The PacBio Iso-Seq technology can overcome these diffi-
culties by generating sequence information for the full
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length sequence as a single sequence read without further
assembly.
In this paper, NGS and SMRT sequencing were combined

to generate two sets of full-length transcriptomes of
flowering and non-flowering saffron crocus. Moreover,
differentially expressed full-length transcripts of flowering
and non-flowering saffron crocus were identified and
characterized.

Materials and methods
Plant materials
Saffron crocus plants were cultivated at a research farm
at South Tai Lake Agricultural Park, Huzhou (longitude
120.6° E, latitude: 30.52° N, elevation 0 m), using a two-
stage cultivation method: corms planted in soil to allow
them to grow outdoors and be cultivated indoors with-
out soil [32]. In May 2016, dormant corms were exca-
vated from the field and stored indoors for
approximately half a year until flowering.
Two sample pools were set up to establish the PacBio

Iso-seq libraries of flowering saffron crocus and non-
flowering saffron crocus separately. One sample pool
was constructed for the full-length transcript set of flow-
ering saffron crocus, which included 1) top bud tissues,
2) tuber tissues of flowering corms (5–7 mm, ≈20 g) (re-
cently differentiated flower primordia and leaf primor-
dia), 3) pistils, 4) stamens of flowering corms (≈20 g)
when colours turned from yellow to red, and 5) leaves of
flowering corms (≈20 g) when colours turned from white
to green), and 6) purple petals of flowering corms (≈20
g). The other sample pool was constructed for the full-
length transcript set of non-flowering saffron crocus,
which included 1) top bud tissues, 2) lateral bud tissues,
3) tuber tissues of non-flowering corms (5–7mm, ≈20
g), 4) leaves of non-flowering corms (≈20 g) when turned
from white to green, and 5) top bud tissues of non-
flowering corms (5–7 mm, ≈6 g) (Additional file 1: Fig-
ure S1).
Meanwhile, an additional five groups of saffron crocus

corms were prepared to construct higher-accuracy
short-read libraries using an Illumina RNA-seq method.
The sample pools included 1) top buds of flowering saf-
fron crocus corms, 2) paired top buds of non-flowering
saffron crocus corms (≈20 g) that were split into two
parts and cultivated at room temperature (20–25 °C,
flowering phenotype) and 10 °C (non-flowering pheno-
type) for 15 days, 3) lateral buds of flowering saffron
crocus corms, 4) paired lateral buds of non-flowering
saffron crocus corms (≈30 g), and 5) top buds of non-
flowering saffron crocus corms (≈6 g) (Additional file 1:
Figure S1). All five bud samples were collected when
they were 5–7 mm long. A total of 15 plants, (three
plants per group) were harvested to construct 15 Illu-
mina RNA-seq libraries.

All the samples prepared for both PacBio Iso-seq and
Illumina RNA-seq sequencing were immediately frozen
in liquid nitrogen until RNA was isolated.

RNA preparation
All tissues were ground in liquid nitrogen and total RNA
was extracted using an RNeasy@Plant Mini Kit (Qiagen
Corporation, Hilden, Germany) according to the manufac-
turer’s protocol. The isolated RNA samples were detected
using 1% agarose electrophoresis to avoid degradation and
genomic DNA contamination. RNA purity (OD 260/
280 = 2.0–2.2, A260/A280 = 1.8–2.1) was quantified using
a Nanodrop 2000 (Thermo Scientific, Waltham, MA,
USA), and the concentration of RNA samples was quanti-
fied using a Qubit 2.0 Fluorometer (Thermo Scientific,
MA, USA). RIN Integrity Number (RIN) values and 28S/
18S (28 s: 18 s > = 1.5, RIN > = 8) were measured using an
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA).

PacBio Iso-Seq library preparation and sequencing
PacBio Iso-Seq libraries of flowering and non-flowering saf-
fron crocus were constructed separately. After RNA sam-
ples were tested, total RNAs from each set of sample pools
(flowering/non-flowering saffron crocus) were mixed and
isolated for Poly (A) RNA using a Poly (A) Purist™ MAG
Kit (Invitrogen, Carlsbad, CA, USA). Poly (A) RNA was re-
verse transcribed into cDNA using a SMARTer® PCR
cDNA Synthesis Kit (Clontech, Mountain View, CA, USA)
with SMARTScribe® MMLV RT enzyme (Takara, Dalian,
China). The cDNA products were further amplified with
the optimal number of cycles using KAPA HiFi PCR Kits.
The PCR products were screened using a BluePippin® Size
Selection System (Sage Science, Beverly, MA, USA), and
three fractions containing fragments of 1–2, 2–3, and > 3
kb in length were obtained. The sorted fragments of PCR
products were amplified again using KAPA HiFi PCR Kits
to produce enough DNAs for constructing sequencing li-
braries. The PCR products were subjected to construct
SMRTBell libraries using a SMRTBell Template Prep Kit
(Pacific Biosciences, Menlo Park, CA, USA) after fragment
ends were repaired and the blunt hairpin adapters at both
ends of the DNA fragments were connected. A total of 16
SMRT cells, that is, eight SMRT cells (3 cells for the 1–2 kb
library, 3 cells for the 2–3 kb library and 2 cells for the > 3
kb library) run for each sample pool, were analysed using a
PacBio RS II platform (Pacific Biosciences, Menlo Park,
CA, USA). Figure 1a lists the workflow for the whole Pac-
Bio Iso-seq data processing.

Illumina RNA-seq library preparation, sequencing, and
Contigs assembly
Fifteen RNA samples from saffron crocus buds were used
for Illumina RNA-seq library construction and sequen-
cing. Total RNA was enriched using Oligo (dT) magnetic
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beads and randomly broken into short fragments that
were further used as a template to synthesize cDNA with
random hexamer-primers. The cDNA products were end-
repaired, A-tailed, and added with Illumina paired-end
adapters. The fragments were selected using AMPure XP
beads and PCR amplified to obtain sequencing libraries
that were qualified and paired-end sequenced with an Illu-
mina Hiseq 2000 (Illumina, San Diego, CA, USA).
The raw reads of the sequences were obtained by re-

moving adapter reads, reads with length of < 100 bp, and
reads with content of ambiguous bases ‘N’ > 5%. De novo
assembly of transcriptome sequencing without reference
genome, including steps of Inchworm, Chrysalis, and
Butterfly with default parameters was conducted using
Trinity software.

Quality control, error correction of PacBio reads and
Contigs mapping between corrected PacBio reads and
Contigs from RNA-seq
The raw data from the PacBio RS II platform were filtered
using SMRTLink software (version 4.0) to obtain Post-
Filter Polymerase reads, namely, CCS, when the adaptors,
subreads < 50 bp, polymerase reads < 50 bp and accuracy
of polymerase reads < 0.75 were deleted. CCS were further
self-corrected and filtered with the criterion of full passes
> 1 and the predicted consensus accuracy > 0.8 toobtain
high-quality reads of inserts (ROIs). ROIs were classified

into non-full-length reads and full-length reads (including
full-length non-chimeric reads and full-length chimeric
reads) based on the presence and location of 3′ primer, 5′
primer and polyA. Full-length non-chimeric reads were
corrected by the CEC algorithm and produced Unpolished
Consensus Sequences (UCS). The UCS and the remaining
ROIs were further corrected using Quiver software to ob-
tain polished high-quality isoforms (accuracy > 0.99) and
polished low-quality isoforms.
Subsequently, all Quiver-polished isoforms were

mapped to Trinity-assembled contigs from RNA-seq to
produce Trinity-corrected Pacbio Isoforms using LoR-
DEC software [33]. By aligning the Trinity-corrected
Pacbio Isoforms to contigs assembled by Trinity with a
high level of similarity (> 99% threshold), the longest
contigs were assigned to the duplication-removed and
corrected long reads (DRCLR). The DRCLR was cor-
rected to remove redundant information using CD-HIT
software (version 4.6) and regarded as Unigene.

Unigene annotation
To predict unigene function, unigenes were searched
against five databases, including Cluster of Orthologous
Groups of proteins (COG), SwissProt, NCBI non-
redundant (NR), Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG). Functional
annotation of unigenes was obtained from sequence

Fig. 1 Full-length transcriptome analysis from PacBio Iso-seq. a: The workflow for the whole PacBio Iso-seq data processing. b: distributions of
Full length (FL) non-chimaera, FL chimaera and non-FL chimaera in flowering and non-flowering saffron crocus libraries. c: Length distributions of
Quivered CCS reads, isoforms and unigenes
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similarity alignment using the BLAST algorithm with a cri-
terion of E-value <1e-10.

Prediction of coding DNA sequence and protein
All the isoforms were used to predict the coding se-
quences (CDS) and protein sequences using ANGEL
software with Arabidopsis thaliana and Phalaenopsis
equestris (orchid) genomes as the reference genomes.
The genome of the Iridaceae family has not been fully
elucidated to date [19]. Among all species with known
genomes released recently, Phalaenopsis equestris has
the most homology with saffron crocus [34].

SSR annotation and long non-coding RNA identification
SSRs (simple sequence repeats) were searched using
MISA software (version 1.0) [35]. Long non-coding
RNAs (lncRNA) were predicted according to the guiding
principles of lncRNAs pipeline (https://bitbucket.org/
arrigonialberto/lncrnas-pipeline) with PLEK (an im-
proved k-mer scheme tool) as the core algorithm [36].
PLEK is widely used to discriminate protein-coding
mRNAs and non-coding RNAs and has the ability of
predict all possible open reading frames (ORFs) and
translate the sequences into peptides.

Alternative splicing analysis and validation
The alternative splicing (AS) events were predicted
based on the BLAST alignment of DRCLR to the
Trinity-assembled contigs from RNA-seq sequencing
using default parameters. AS events were defined when
the alignment gaps were longer than 50 bp and were at
least 100 bp from the 3′ and 5′ ends [33]. The specific
AS presented in only the PacBio Iso-seq library of flow-
ering or non-flowering saffron crocus were screened
separately. To validate the accuracy of the AS detected
with PacBio Sequencing, RT-PCR of three randomly se-
lected unigenes, PB.174, PB.313 and PB.988,was per-
formed. Total RNA of saffron crocus buds was extracted
as described above. The PrimeScript II 1st Strand cDNA
Synthesis Kit (TaKaRa, Japan) and SYBR Premix Ex Taq
II (TaKaRa, Japan) were used for reverse transcription
reaction and PCR assay. Specific primers (Add-
itional file 2:Table S1) of the chosen genes were de-
signed using Primer Premier 5.0 software (Premier,
Vancouver, British Columbia, Canada) according to the
homologous sequences at the upstream and downstream
ends of all the different alternative splicing fragments.
The PCR amplification procedure included 98 °C 10 s,
56 °C 30 s, 72 °C 3min for 30 cycles and then 72 °C ex-
tended for 5 mins. PCR products were monitored by 1%
agarose gel electrophoresis. Sequencing of the PCR
products further confirmed the correctness of the
amplification.

Screening differentially expressed Unigenes and GO and
KEGG enrichment analyses
The expression levels of all the unigenes in fifteen sam-
ples were assayed based on the Illumina short reads
dataset, and reference sequences were the unigene li-
braries. Relative gene expression levels of each unigene
were determined by FPKM (fragments per kilobase of
transcript per million mapped reads) and differentially
expressed unigenes were screened using DESeq2 R with
parameter cutoff p-value < 0.05, FDR < 0.01 and fold
change ratio > 2.
Differentially expressed unigenes were also employed

for the enrichment analyses of GO and KEGG pathway
with adjusted p-value (q-value) < 0.05 serving as the
standard for significantly enriched pathway.

Validation of differentially expressed Unigenes using real-
time qRT-PCR
Twenty (8 flowering and 12 non-flowering) top buds
and ten (4 flowering and 6 non-flowering) lateral buds
of saffron crocus with various corm weighst and bud
lengths were used to validate differentially expressed
unigenes using real-time quantitative reverse transcrip-
tion PCR (qRT-PCR). Eleven differentially expressed
unigenes between flowering and non-flowering samples
were selected for validating key flower unigenes. All
buds were ground in liquid nitrogen, and total RNA was
prepared using an RNeasy@Plant Mini Kit. The Prime-
Script II 1st Strand cDNA Synthesis Kit (TaKaRa, Japan)
and SYBR Premix Ex Taq II (TaKaRa, Japan) were used
for reverse transcription reaction and qRT-PCR assay.
Specific primers of the chosen genes were designed
using Primer Premier 5.0 software (Additional file 2:
Table S2). PCR products were verified by dissociation
curves, and data were normalized with endogenous ref-
erence tubulin gene to obtain ΔCt values. Water was
used as a negative and quality control, and each sample
was measured in triplicate.

Expression analysis of the flower-related genes in tissues
and organs
The expression analysis of the flower-related genes in
different tissues and organs was performed with qRT-
PCR. Total RNA from the top and lateral buds (0.5–1
cm in length), the inner immature flowers (obtained
from top bud when it grew to 1.5–3 cm in length), the
corms, leaves, petals, stigmas, stamens and the
remaining protective sheath of the full-bloom flowers,
were extracted using an RNeasy@Plant Mini Kit and the
following reverse transcription reaction and qRT-PCR
assays were conducted according to the above descrip-
tion. The expression levels of flower-related genes in
each sample were normalized to the tubulin gene to ob-
tain ΔCt values. The top bud was used as a control
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sample, and the relative expression levels of target genes
in the other samples were analysed using the 2-ΔΔCt

method: ΔΔCt =ΔCt other sample (Ct target gene- Ct
tublin)- ΔCt control sample (Ct target gene- Ct tubulin).

Time course expression analysis of flower-related genes
during the flower development
Total RNA from four different stages of top buds from
20 g corms, including resting bud (1–2 mm in length),
early stage of shoot growth (2–5 mm in length), late
stage of shoot growth (5–10 mm in length), and stage of
visually distinguishable flower organ formation (10–15
mm), were extracted using an RNeasy@Plant Mini Kit
and the following reverse transcription reaction and
qRT-PCR assays were conducted according to the above
description.

Data availability
The raw data were uploaded to Sequence Read Archive
(SRA) (http://www.ncbi.nlm.-nih.gov/) with a reference
of PRJNA528829.

Results
Long-length Transcriptome of saffron Crocus from PacBio
Iso-seq
High-quality RNAs from top buds, tubers, pistils, sta-
mens, petals and leaves of flowering saffron crocus were
combined to acquire the PacBio Iso-seq libraries. Mean-
while, PacBio Iso-seq libraries of non-flowering saffron
crocus were constructed using leaves, lateral buds, tu-
bers, and top buds of non-flowering corms (20 g and 6
g). Multiple size-fractionated cDNA and cells (3 cells for
1–2 kb, 3 cells for 2–3 kb, 2 cells for > 3 kb) were pre-
pared to construct flowering/non-flowering Iso-seq
libraries separately. This approch avoids loading bias and
obtaining more RNA sequences representing the gene
expression profiles in flowering and non-flowering saf-
fron crocus.
A total of 22.85 Gb of clean data were obtained from

all sixteen cells with 1,325,207 raw polymerase reads and
23.9 billion nucleotides. After the adaptor and low-
quality sequences were filtered, a total of 12,433,006
subreads were obtained, among which 7,178,336 and 5,
254,670 subreads were in the libraries of flowering and
non-flowering saffron crocus, respectively (Add-
itional file 2: Table S3). High quality ROIs were further
generated from CCS after filtering with full passes and
accuracy. The numbers of ROIs from the flowering saf-
fron crocus libraries were 224,710 for 1–2 kb, 199,782
for 2–3 kb, and 106,171 for 3–6 kb, respectively, which
were more than those of the corresponding non-
flowering saffron crocus libraries (179,712 for 1–2 kb,
73,160 for 2–3 kb, 52,904 for 3–6 kb) (Additional file 2:
Table S4). In total, 394,653 (74.4%) and 252,850 (82.7%)

full-length non-chimaera reads (FL non-chimaera, full-
length reads with 3′ primer, 5′ primer and polyA reads
after chimaera was filtered) were produced from ROIs of
flowering and non-flowering saffron crocus libraries,
respectively, with average lengths of 1223 bp, 2333 bp
and 3512 bp in corresponding flowering saffron crocus
libraries and 1188 bp, 2236 bp and 3322 bp in that of
non-flowering saffron crocus libraries (Fig. 1b, Add-
itional file 2: Table S4)).
After classification and correction by Clustering for

Error Correction (CEC) and Quiver programs, 79,841
high-quality (Accuracy > 0.99) and 219,720 low-quality
polished CCS were generated from ROIs. CCS were fur-
ther corrected using the de novo assembly reads derived
from Illumina RNA-seq. Ultimately, a total of 216,419
isoform level transcripts and 75,351 unigene transcripts
were obtained after two-step CD-HIT classification of
both flowering and non-flowering PacBio libraries. The
length distribution of polished CCS, isoform and uni-
gene is shown in Fig. 1c, with a majority of sequences
ranging from 1 kb to 4 kb. The libraries of flowering and
non-flowering saffron crocus were constructed separ-
ately, and the specific isoforms in each library and the
differential expression profiles between flowering and
non-flowering saffron crocus plants were obtained. The
number of isoforms that expressed in both flowering
and non-flowering saffron crocus was 174,369, while the
number of isoforms that only expressed in flowering saf-
fron crocus (30,188) were considerably more than those
in non-flowering saffron crocus (11,862). These isoforms
may provide a novel avenue to clarify the underlying
molecular mechanism of floral development of saffron
crocus.
Total 125 mRNAs derived from saffron crocus were

reported on NCBI database at present. All the 75,351
full-length unigene transcripts were homologously
aligned with them using BLAST. The results showed
total 108 previously reported mRNAs were identified
and matched with their highly homologous sequences in
our data, with 86.4% coverage rate (Additional file 2:
Table S5). Among them, 44 unigenes have a sequence
identity of 99% or more and the identity of 88 unigenes
were more than 95%, which suggested a full-length uni-
gene database of saffron crocus with satisfactory cover-
age and accuracy was obtained in this study.

Saffron Transcriptome of short-reads from Illumina RNA-
seq
Fifteen Illumina RNA-seq libraries constructed from saf-
fron crocus with different numbers of flowers (0–3) were
sequenced to correct the polished CCS of PacBio Iso-seq
and to quantify full length transcripts obtained from
PacBio Iso-seq. After trimming process and screening
with a high quality score, a total of 745 million clean
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reads were produced from all samples. Over 575 million
short reads were successfully mapped back to the full-
length of PacBio Iso-seq with an average mapping ratio
of 77.2% (Additional file 2: Table S6), which suggested
that the full-length transcripts derived from PacBio Iso-
seq data method represented the majority of the genetic
information of both flowering and non-flowering saffron
crocus.

Functional annotations
Databases such as NR, Swiss-Prot, KEGG (Additional file 3:
Figure S2a), COG (Additional file 3: Figure S2b), and GO
(Additional file 3: Figure S2c) were used to perform func-
tional annotations to the 75,351 unigenes.
A total of 14,159 (21.9% of annotated unigenes) uni-

genes were associated with 34 pathways in KEGG path-
way analysis. A high percentage of unigenes were
assigned to “Translation” (10.3%) and “folding, sorting
and degradation” (9.3%) of the genetic information
process as well as “signal transduction” of the environ-
mental information process (9.7%) (Additional file 3: Fig-
ure S2a).
A total of 64,562 unigenes (85.7%) were successfully

matched to known sequences in at least one database.
There were 99.5% matched unigenes in the NR database,
82.0% in SwissProt, and 72.0% in COG (Additional file 3:
Figure S2d).
A total of 1193 GO terms were assigned to 33,117 uni-

genes (51.3% of annotated unigenes) with 454 biological
processes, 159 cellular components and 580 molecular
functions. In the class of biological processes, the top
three GO terms were “metabolic process”, “cellular
process”, and “single-organism process”. In the cellular
component, “cell” was dominant and then “cell part” and
“organelle”. In the class of molecular functions, a high
percentage of the unigenes were enriched in “binding”,
“catalytic activity” and “molecular function regulator”
(Additional file 3: Figure S2c).

CDS, SSR, and LncRNA prediction
The candidate coding sequence (CDS) in the PacBio
transcript isoforms was analysed by retaining only open
reading frames (ORFs ≥100 aa) using the ANGEL soft-
ware. Both Arabidopsis thaliana and Phalaenopsis
equestris genomes were used as the training sets. As
shown in Fig. 2a, 50,197 CDS were obtained from the
Arabidopsis thaliana genome with lengths ranging from
300 bp to 5400 bp and an average length of 1005 bp,
while training with Phalaenopsis equestris genomes,
ANGEL obtained a total of 289,377 predicted CDS with
lengths ranging from 300 bp to 5400 bp and an average
length of 1081 bp. Because saffron crocus is more closely
related to orchids, more comprehensive information on

encoded proteins would be obtained using orchid as the
training set.
SSRs, also known as microsatellite DNAs, have a tan-

dem repeat motif of 1–6 bp in length. The most com-
mon motifs are dinucleotide repeats, such as (CA) n and
(TG) n. The characters of high polymorphism (mainly
due to the difference in the number of tandem motifs),
stability, and reliability enable it to be an ideal molecular
marker that is widely used in such applications as gen-
etic map construction, quantitative trait locus (QTL)
mapping and genetic diversity assessment. A total of 79,
028 SSRs were identified in 34,895 unigenes (46.3% of
total unigenes), including six types of SSR: mono-
nucleotide (56,262, 71.2% of all SSRs), di-nucleotide (12,
397, 15.7%), tri-nucleotide (9411, 11.9%), tetra-
nucleotide (548, 0.7%), penta-nucleotide (165, 0.2%), and
hexa-nucleotide (245, 0.3%) (Fig. 2b); among them, 28,
993 SSRs present in compound formation.
The PLEK workflow of lncRNA-pipeline was used to

discriminate between coding and non-coding transcripts
and then identify lncRNAs using PacBio data from spe-
cies with no reference genome. To obtain more putative
lncRNA candidates for saffron crocus, 216,419 isoform
transcripts were used to predict lncRNAs in this study.
A total of 72,603 (33.5%) PacBio non-coding transcripts
were obtained and the length ranged from 194 bp to
6860 bp with an average length of 1367 bp. Similar to
other species, the length abundance is concentrated at
500–1500 bp (54,296, 74.8%) (Fig. 2c).

Alternative splicing analysis and validation
Most mRNA precursors of eukaryotic genes produce only
one mature mRNA that is thus translated to only one mo-
lecular protein. However, some mRNA precursors can pro-
duce different mRNA splice isoforms by different splicing
sites, which is known as alternative splicing (AS). AS is an
important mechanism of regulating gene expression and
producing proteome diversity. At present, it is still challen-
ging to reconstruct full-length splice isoforms using
Illumina-based transcriptome assembly [37, 38]. Splice iso-
forms with multiple introns make it difficult to identify al-
ternative splicing using short read lengths, which were
constrained by cufflink-based assemblies. One of the most
important features of PacBio Sequencing is the ability to
identify alternative splicing by directly comparing isoforms
of the same gene without de novo assembly and thus avoid-
ing artificial mistakes. Among the 75,351 unigenes identi-
fied in saffron crocus, 33.7% (25,400) have two or more
isoforms. The number of AS events ranged from 2 to 217,
and the distribution of AS events is shown in Fig. 3a. GO
enrichment analysis showed that these AS genes were
enriched in 120 pathways, with the top three being “Bind-
ing”, “Heterocyclic compound binding” and “Organic cyclic
compound binding” (Fig. 3b). It was interesting that the top
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20 pathways were involved in various binding activities of
molecular function ontology and a few AS genes were an-
notated with functions of catalytic activity and transport ac-
tivity (Additional file 2: Table S7). Only two KEGG
pathways, “Citrate cycle (TCA cycle)” and “Carbon metab-
olism”, were significantly enriched by AS genes (Fig. 3c).
Furthermore, different splicing events between flower-

ing and non-flowering saffron crocus were screened in
PacBio-Seq libraries because AS is highly tissue-specific.
A total of 42 AS events were identified in the PacBio-
Seq libraries of flowering saffron crocus only, while 28
AS events were found in those libraries of non-flowering
one (Fig. 3d, Additional file 2: Table S8). The AS events
of three randomly selected unigenes, PB.174, PB.313 and
PB.988, were validated using RT-PCR. Four, three, and
two AS events were shown in the gel electropherogram
(Fig. 3e), and the correctness of the amplification was
proved by sequencing of the PCR products.

Differentially expressed Unigenes between flowering and
non-flowering saffron Crocus corms
The expression levels of all unigenes from PacBio-Seq li-
braries in five groups of saffron crocus corms with

different flowering phenotypes were quantified using an
FPKM method based on the results of Illumina RNA-seq.
In general, when FPKM < 0.1, the gene does not express;
0.1 ≤ FPKM < 3.75, the gene is considered to be expressed
at a low level; 3.75 ≤ FPKM < 15, the gene is at a median
level; FPKM ≥15, the gene is expressed at a high level.
RNA-Seq2 software was used to screen differentially
expressed unigenes between flowering and non-flowering
saffron crocus corms, and the threshold of significance
was determined as p-value < 0.05, false discovery rate
(FDR) < 0.01 and log2 fold-change < − 1 or > 1.
The three top bud samples of flowering saffron crocus

were compared to the three matched samples of non-
flowering saffron crocus with cold treatment. A total
1677 DEGs (Additional file 2: Table S9), 70.8% (1187) of
which were up-regulated, were screened with log2 fold-
changes ranging from − 9.4 to 12.6. All the DEGs were
significantly enriched in 109 GO terms (q-value < 0.05),
in which the function of the top five pathways was on
binding and transcription factor activity with nucleic
acid. These proteins play critical roles as transcription
factors or at the transcriptional level in low temperature
stress and flowering signalling pathways (Fig. 4a).. In

Fig. 2 CDS, SSR and lncRNA analyses. a: Length distribution of CDS. b: Type distribution of SSRs. c: Length distribution of lncRNAs
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addition, 11 unigenes were specifically highly expressed
in three top buds of non-flowering saffron crocus with
cold treatment while no expression was observed in any
of the matched flowering samples. In contrast, 238 uni-
genes were highly expressed in three flowering samples
exclusively (Additional file 2: Table S10). The DEGs with
high fold-changes and strict consistency in biological re-
peat samples were ideal candidates for further larger-
scale validation.
A total of 1086 significant DEGs (Additional file 2:

Table S9), 81.7% (887) of which were up-regulated, were
identified in top buds between flowering saffron crocus
and non-flowering saffron crocus of 6 g corms, with log2

fold-changes ranging from − 14.2 to 10.6. A total of 141
GO terms were clustered, and the top 5 pathways in
each main ontology are shown in Fig. 4b. Within the cel-
lular component ontology, the DEG-coding proteins
were mainly located in the “macromolecular complex”,
“intracellular part” and “cytoplasm”. For the biological
process ontology, DEG-coding proteins were mainly in-
volved in the transcription processes, such as “regulation
of transcription, DNA-templated”, “regulation of RNA
metabolic process” and “regulation of nucleic acid-
templated transcription”. In terms of molecular function
ontology, DEG-coding proteins were binded with nucleic
acid and functioned as transcriptional regulation factors

Fig. 3 Alternative splicing (AS) analysis and validation. a: The distribution of AS event numbers. b: GO enrichment analysis of AS genes. c: KEGG
enrichment analysis of AS genes. d. Venn diagram of AS events presented in PacBio-Seq libraries of the flowering and non-flowering saffron
crocus. e. The gel electropherogram showed AS events of PB.174, PB.313, and PB.988
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(Fig. 4b). In addition, 70 and 32 unigenes were
exclusively highly expressed in all samples of large corms
of flowering saffron crocus and small corms of non-
flowering saffron crocus, respectively (Additional file 2:
Table S11).
hree paired samples of lateral buds from the same corms

of flowering and non-flowering saffron crocus were col-
lected to screen key genes that regulate the flowering of
lateral buds. A total of 267 DEGs (Additional file 2: Table
S11), 83.5% (223) of which were down-regulated, were
identified with log2 fold-changes ranging from − 8.5 to 9.4.
All 267 DEGs were assigned to 75 GO terms. The only
GO terms in the cell component ontology was “nucleus”.
The most highly enriched pathway in biological progress
ontology was “microtubule- based movement” (GO level
5), which was in the sub-grade GO level of both top 2
(“movement of cell or subcellular component”, GO level
4) and top3 (“microtubule-based process”, GO level 4)
pathways, followed by the pathway of “DNA replication”.
In the molecular function ontology, most unigenes were
highly enriched in a series of pathways from GO level 4
(hydrolase activity, acting on acid anhydrides) to GO level
7 (Nucleoside-triphosphatase (NTPase) activity). NTPases
activation may regulate the nuclear export of mRNA and

are known to be involved in defense signaling pathways
and apoptosis regulation [39] (Fig. 4c).. In addition, 15
unigenes (Additional file 2: Table S11) were highly
expressed in three lateral buds of non-flowering saffron
crocus specifically but were not expressed in lateral buds
of flowering saffron crocus. Only 7 unigenes were exclu-
sively highly expressed in lateral buds of flowering saffron
crocus (Additional file 2: Table S12). These 22 unigenes
could be preferentially used to explore the molecular
mechanism of the flowering process of lateral buds.
As for KEGG pathway analysis, although the DEGs in-

volved in each experiment are different, “plant hormone
signal transduction” was assigned by all the three com-
parable experiments, which even is the only pathway
enriched in flowering vs. non-flower lateral buds (Fig.
4c). The changes of flowering phenotype caused by nu-
tritional status (normal vs. small top buds), low
temperature stress (normal vs. cold treatment) or natural
variation (flowering vs. non-flower lateral buds) may be
involved in different pathways, but they shared the same
regulation network of plant hormones, including the re-
sponse to hormone auxin, abscisic acid and cytokinin
(for example, auxin-responsive protein IAA10-like, prob-
able indole-3-acetic acid-amido synthetase GH3.5, auxin

Fig. 4 GO and KEGG enrichment analyses of DEGs between flowering and non-flowering saffron crocus. a: GO and KEGG enrichment analyses of
DEGs between flowering top buds and matched non-flowering cold-treated top buds. b: GO and KEGG enrichment analyses of DEGs between
flowering top buds and non-flowering top buds of small corms. c: GO and KEGG enrichment analyses of DEGs between flowering lateral buds
and matched non-flowering lateral buds
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transporter-like protein 3, abscisic acid receptor PYL8-
like, two-component response regulator ARR8).
Both DEGs of normal vs. small top buds and normal

vs. cold treatment were assigned to the KEGG pathways
of “starch and sucrose metabolism” and “linoleic acid
metabolism”. It has been recognized for long time that
temperature could modify carbohydrate metabolism of
some plants by regulating starch and sugar levels [40].
Furthermore, altered carbohydrate metabolism impacted
plant biomass production, as well as flower development.
Actually, altering the expression of multiple sucrose
metabolism-related genes in tobacco, such as UGPase,
SuSy and SPS which were also found in DEGs of saffron
crocus, not only enhanced primary growth but also al-
tered flower morphology [41]. Based on the fact that
flower numbers of saffron crocus were heavily depended
on temperature and corm weight, the results of KEGG
enrichment suggested that carbohydrate metabolism
may play important roles in flower development of saf-
fron crocus.
There are many endogenous or exogenous factors af-

fecting the flowering process of saffron crocus and driv-
ing different gene expressions. Genes shared in different
pathways were initially speculated to regulate the flower-
ing process of saffron crocus. All up and down regulated
DEGs from the three comparable experiments (normal
vs. cold-treated corm; big vs. small corm; top vs. lateral
bud) were analysed using Venn software. Among all the
DEGs, only six unigenes were shared in three groups.
Unexpectedly, neither shared gene was identified in the
upregulated nor downregulated DEGs (Fig. 5a). All the
upregulated DEGs in the lateral buds of flowering saf-
fron crocus were downregulated in the top buds of flow-
ering saffron crocus and vice versa (Fig. 5b). Similar
results were found in the DEGs shared in the two
groups. For example, 78 shared DEGs (72 in two groups
and 6 in three groups) were found in the lateral bud
group and cold-treated top bud group, while only one
shared DEG had consistent expression in both groups
(Fig. 5a). Almost all shared DEGs had consistent expres-
sion in cold-treated top buds and normal/small top buds
(475/476). The results suggested that there were differ-
ent networks in regulating the flowering process of lat-
eral buds of saffron crocus, and these networks may
have been shared in the top buds.

Identification and expression analysis of flower-related
DEGs in saffron Crocus
A total of 62 DEGs were functionally annotated as puta-
tive flower-related genes (Additional file 2: Table S13)
and we analysed the expression patterns of all the tran-
scripts using RNA-seq data (Fig. 5c). We identified 39
flower-related genes (assigned with predicted gene
names) in the normal vs cold treatment group, 24 of

which were significantly highly expressed in flowering
corms. CsVRN (B3 domain-containing transcription fac-
tor) is a key gene involved in the vernalization pathway,
which may affect flower development when the saffron
crocus was treated with cold.
In the normal vs. small top buds group, 33 flower-

related genes were identified and interesting, putative
flowering time control protein (CsFCA) and squamosa
promoter-binding-like protein 12 (CsSPL12), which are
involved in autonomous and age pathways, were signifi-
cantly highly expressed in the larger corms. The decreas-
ing expression levels of CsFCA and CsSPLs may partly
explain why the small corms (weight less than 6 g) can-
not bloom. Furthermore, SPL12, strongly regulated to-
gether with CONSTANS (CO), were negatively
regulated by miR156b and miR156h, suggesting micro-
RNAs biogenesis or microRNA alteration maybe in-
volved in the process of floral initiation [42].
We identified fourteen shared flower-related DEGs in

normal vs cold treatment and normal vs. small top bud
groups. Most of them (6/14) were involved in the gib-
berellin pathway, including putative gibberellin 3-beta-
dioxygenase 1-like (CsG3OX), gibberellin-regulated pro-
tein 6-like (CsGASA6) and gibberellin-regulated protein
14 (CsGASAE) .
Only five flower-related DEGs were identified in the

flowering vs. non-flowering lateral bud groups and all of
them were significantly lower in the flowering samples.
There may be some novel genes, and even new regula-
tory pathways trigger the lateral bud bloom.
Because few flower-related gene sequences were sub-

mitted to the public database, among the 62 flower-
related DEGs that we identified in this study, only
PB.59337.3 (putative Apetala1-like MADS-box transcrip-
tion factor, assigned as CsAP1-like) was matched to
Crocus sativus. To clarify the flower-related gene regula-
tory network of saffron crocus, we plotted the schematic
representation based on the known flowering gene net-
work of Arabidopsis thaliana (Fig. 6): the flowering
process of saffron crocus, similar to most other species,
was involved in vernalization, gibberellins, photoperiod,
autonomous and age pathways.

Validation of novel flower-related genes in larger-scale
samples using real-time RT-PCR
Except for the 62 genes that are homologous to known
flowering gene sequences in public databases, we
attempted to select and validate more novel flower-related
genes in DEGs. Therefore, the fifteen samples were reclas-
sified into six flowering samples (three flowering top buds
and three flowering lateral buds) and nine non-flowering
samples (three cold-treated top buds, three small top buds
and three lateral buds) to identify DEGs using RNA-seq2
software with the same significance threshold as above.
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Thirty-three DEGs were screened out, and only 3 uni-
genes were downregulated in the flowering group
(Fig. 7a). Though the differences in DEG expression
levels in top buds were more significant than those in
lateral buds, the DEGs related to flowering processes
were likely involved in downstream pathways or com-
mon nodes in flowering regulatory networks.

Ten DEGs related to the flowering process were
selected to validate the key flowering genes using an
additional 30 saffron crocus buds. The biological pa-
rameters of saffron crocus buds were collected, in-
cluding the type of bud (top or lateral) number of
flowers (0–2), length of bud (2 mm - 5 cm), and
fresh corm weight. Real-time RT-PCR was used to

Fig. 5 Expression pattern analyses of all the DEGs in three comparable experiments. a: Venn diagram of distributions of all the DEGs (left),
upregulated DEGs (middle) and downregulated DEGs (right) in the three comparable experiments. b: The heatmap of the expression patterns of
six unigenes shared in three comparable experiments (the group of flowering lateral buds consisted of M114,M119 and M122; the group of non-
flowering lateral buds consisted of M123,M125 and M219; the normal group consisted of D1,D3 and D5; the group of cold treatment consisted of
D2,D4 and D6; the group of small top buds consisted of L11, L71 and M51). c: Heatmap of the expression patterns of 62 flower-related DEGs in
different comparable groups
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assay the expression levels of 10 unigenes in the 30
buds of saffron crocus and the correlation between
relative expression levels of each gene (ΔCT) and
biological parameters of saffron crocus buds were
analysed using a Pearson (length of bud, fresh corm
weight) or a Spearman method (type of bud, number
of flower).
The expression pattern is shown in Additional file 4:

Figure S3 and the results of the correlation analysis are
shown in Table 1. Both PB.20221.2 and PB.38952.1
were significantly correlated with flower status and
showed high expression in flowering plants (p = 0.004,
r = 0.52; p = 0.023, r = 0.41). Global alignment analysis
(https://www.ncbi.nlm.nih.gov/igblast/) showed that
PB.20221.2 and PB.38952.1 share 68% homology, and
BLASTx showed that both genes were predicted to be
heat stress transcription factor A-2b-like genes. In
addition, some unigenes may contribute to the physio-
logical development of saffron crocus; for instance,
PB.53815.1 expression was correlated with the length
of the buds (p = 0.04, r = 0.39), while PB.315.38 expres-
sion was correlated with the fresh weight of the corm
(p = 0.0 01, r = 0.50).

Expression analysis of the novel flower-related genes in
tissues and organs
The analysis of PB.20221.2 and PB.38952.1 was per-
formed on the buds, corms, immature flowers, leaves,
petals, stigmas, stamens and the remaining protective
sheath (Fig. 7b). Compared to top buds, both PB.20221.2
and PB.38952.1 were highly expressed in the immature
flowers (mean fold change = 3.13 and 2.64, respectively).
PB.20221.2 and PB.38952.1 were relatively less expressed
in lateral buds (mean fold change = 0.10 and 0.08, separ-
ately), petals (mean fold change = 0.17 and 0.15, separ-
ately), stigmas (mean fold change = 0.18 and 0.11,
separately) and stamens (mean fold change = 0.38 and
0.29, separately). PB.38952.1 was weakly expressed in
corms (mean fold change = 0.01), leaves (mean fold
change = 0.002) and protective sheath (mean fold
change = 0.003), while PB.20221.2 could be detected in
leaves (mean fold change = 0.01) and corms (mean fold
change = 0.08) with notable low expression levels but
not in protective sheath (Ct > 35).
Both genes were relatively highly expressed in imma-

ture flowers, which was similar to the expression pattern
of previously isolated flower-related genes in saffron-

Fig. 6 Schematic diagram of the flowering gene regulatory network in saffron crocus. Genes marked in red are identified first in this study. Genes
marked in grey and inside circles are important key flower-related genes that have not been identified at present
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CsatFT2, CsatFT3, CsatCEN/TFL1 [10, 13] and AP1/
FUL In addition, PB.20221.2 and PB.38952.1 were rela-
tively more highly expressed in the various tissues of
flower organs (petals, stigmas, stamens) than in other or-
gans (corms, leaves, sheath), which suggested a potential
function in flower development.

Time course expression analysis of novel flower-related
genes during flower development
To understand the variations of PB.20221.2 and PB.38952.1
expression at different stages of floral organ development,
we performed a quantitation of the transcripts in top buds
from the dormant period to the start of the flowering sea-
son (Additional file 5: Figure S4). As shown in Fig. 7c,
PB.20221.2 showed a fluctuation in the expression levels
with the maximum expression during the stage of visually

distinguishable flower organ formation (mean fold change =
8.62). The transcripts of PB.38952.1 remained constant
from the stage of resting bud to the early stage of shoot
growth (mean fold change = 1.31), began to accumulate at
the late stage of shoot growth (mean fold change = 17.60)
and largely increased at the stage of visually distinguishable
flower organ formation (mean fold change = 23.79).
Taken together, the expression data in different tissues,

organs and different floral development stages suggest that
PB.20221.2 and PB.38952.1, probably had the function of
promoting floral organ formation and development and
were new flower-related genes worthy of further study in
the regulatory network of the flowering pathway. The nu-
cleotide sequences of PB20221.2 and PB38952.1 were car-
ried out alignment with Web BLAST-blastX on NCBI
database to characterize them and the listing protein

Fig. 7 Validation of novel flower-related genes using RT-PCR. a: heatmap of the expression patterns of 33 DEGs between flowering samples and
non-flowering samples. b: The relative expression levels of PB.20221.2 and PB.38952.1 compared to the top buds were performed on lateral buds
(LB), immature flowers (IF), petals, stigmas, stamens corms, protective sheath and leaves. c: The relative expression levels of PB.20221.2 and
PB.38952.1 compared to the resting top buds were performed on the top buds during the period of flower development
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sequences were downloaded and screened for Phylogenetic
analysis. The deduced amino acid sequences of PB20221.2
and PB38952.1 were aligned with the selected listing pro-
tein sequences using the multiple sequence alignment pro-
gram ClustalX and phylogenetic tree were constructed with
MEGA-X software using neighborjoining-method with
1000 bootstrap replicates. Aligning with homologous
sequences from 38 different species, Phylogenetic studies
revealed that PB20221.2 and PB38952.1 belonged to heat
stress transcription factor family (HSF) and clustered in
HSF-A2b sub-family (Additional file 6: Figure S5), indicat-
ing they were probably associated with the regulation of
heat stress in flowering process of saffron crocus and fur-
ther studies were needed to investigate their specific
functions.

Discussion
Comprehensive, high-quality, full-length transcriptome
sequences were presented for saffron crocus using
SMRT technology in this study. A total of 75,351 full-
length saffron crocus unigenes were identified with an
average length of 2049 bp in the flowering saffron crocus
library and 1802 bp in the non-flowering library. Among
these unigenes, 64,562 (85.7%) were functionally anno-
tated. Based on RNA-seq data, Baba et al. identified 64,
438 transcripts with an average length of 609 bp and a
functional annotation ratio of 58.5% (37,696) [19]. Sub-
sequently, Jain et al. found 105,269 transcripts with an
average length of 1047 bp [20], and 54% of them were
functionally annotated. Basically, illumina RNA-seq can
obtain higher coverage of genome and more transcripts
than SMRT-Seq due to relatively higher sequencing
depth. Our results further confirmed that SMRT-seq
was more effective in recovering full-length transcripts
[22]. The higher functional annotation ratio of unigenes
in our study suggested that SMRT-seq data could

provide higher accuracy and more effective information
on saffron crocus transcriptomes.
Based on the PacBio-seq platform, 79,028 SSRs were

identified in 34,895 unigenes (46.3% of total unigenes) in
this study, which was considerably more than that pre-
dicted in the Illumina platform (16,721 SSRs identified
in 13,407 transcripts). As popular molecular markers,
SSRs are widely used for determining genetic variations,
and the most important advantage is locus specificity,
which is highly suitable for allopolyploid species, such as
saffron crocus [43]. It should be noted that the status of
genetic variation in saffron crocus is still controversial
since several studies provided contrasting results [44].
Thus, the novel candidate SSRs of saffron crocus may
provide pools to explore new alternative SSRs. In
addition, the comprehensive CDS, lncRNAs and AS pre-
diction of saffron crocus were reported for the first time
in this study.
PacBio Iso-Seq libraries of flowering and non-flowering

saffron crocus were constructed separately to identify as
many candidate genes as possible without missing flower-
ing suppressor genes that are expressed in non-flowering
corms only. More unigenes were identified exclusively in
flowering saffron crocus (30,188) than in non-flowering
saffron crocus (11,862). This result suggested that saffron
crocus plants might have additional genes to regulate
floral development. The result might also indicate that
suppressor genes for floral development may exist in some
tissues of non-flowering saffron crocus only. The individ-
ual PacBio Iso-Seq library of flowering and non-flowering
saffron crocus facilitated the clarification of specific AS in
each library. AS functioned to regulate gene expression by
introducing a premature termination codon andled to spe-
cial RNA splicing isoform degradation. Increased AS was
found in various plants with the application of high-
throughput sequencing while the biological significance of

Table 1 Correlation analyses between expression levels of flower-related candidate genes and biological parameters of saffron
crocus buds

Gene ID Bud type Flower type Bud length Corm weight

p-value r p-value r p-value r p-value r

PB.20221.2 0.92 0.02 0.004* −0.52 0.20 0.24 0.67 −0.08

PB.38952.1 0.62 −0.09 0.023* −0.41 0.26 0.21 0.08 −0.33

PB.73324.1 0.647 0.09 0.187 −0.25 0.14 0.28 0.61 0.10

PB.53835.3 0.20 −0.24 0.563 −0.11 0.64 0.09 0.38 −0.17

PB.35355.1 0.46 0.14 0.97 −0.01 0.80 −0.05 0.90 −0.02

PB.64256.1 0.39 −0.16 0.74 −0.06 0.89 0.03 0.37 −0.17

PB.65202.1 1.00 0.00 0.23 −0.23 0.20 −0.24 0.79 −0.05

PB.38803.3 0.53 −0.12 0.61 −0.10 0.35 0.18 0.72 −0.07

PB.53815.1 0.72 0.07 0.46 −0.14 0.04** −0.39 0.10 −0.31

PB.315.38 0.41 −0.16 0.26 −0.21 0.66 −0.08 0.001** −0.563

*, ** denote the significant correlation at the 0.05 level analyzed by Spearman method and Pearson method, respectively
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most AS events was not determined. Recent research has
demonstrated the direct function of AS in controlling the
initiation and timing of flowering [45]. A total of 25,400
AS events in the full-length transcriptome were identified,
and 42 and 28 AS events were identified in the flowering
and non-flowering libraries, respectively.
The underlying molecular mechanism for lateral buds

of saffron crocus to flower was possibly different from
top buds. The GO and KEGG pathway analyses of DEGs
in lateral buds suggested potential genetic variation of
flowering lateral buds, based on the enriched pathways
of “cell cycle”, “meiosis”, “mismatch repair”, “DNA repli-
cation” and “nucleoside-triphosphatase activity”. The
DEGs in top buds were found to function at transcrip-
tional levels as well as in the signal pathways responding
to hormones, nutrients, and other environments. Fur-
thermore, the DEGs in lateral buds were completely dif-
ferent from top buds. The six shared DEGs were
expressed in opposite trends between lateral and top
buds. Saffron crocus multiplies by means of corms, but
corm multiplication does not generate genome variation,
except for occasional somatic mutations. However,
phenotypic variations of flowers have been frequently
observed in saffron crocus, as demonstrated by different
numbers of stigmas, different aspects of tepals or bloom-
ing in lateral buds [30, 46]. As the genetic variability in
saffron crocus is still under debate, whether the pheno-
type variations are influenced by genetic variability or
the environment warrants further investigation [47].
In this study, PB.20221.2 and PB.38952.1 were signifi-

cantly correlated with flowering quantities and were sug-
gested as flower-related genes. Phylogenetic analysis
showed both genes encoded for HSF-A2b. Heat stress
transcription factor family are the terminal components
of a signal transduction chain mediating the activation
of genes responsive to heat stress, including more than
twenty members and classified as A, B and C in plants.
HSF-A2 is a strong transcription activator through inter-
acting with heat shock proteins (HSPs) during long-term
heat stress [48]. Heat stress-regulated flowering was re-
cently recognized as a floral transition pathway [49], to-
gether with the fact that HSP family was required for
floral meristem formation [50]. Thus, as the central
regulator of HSP expression, HSF-A2 may play import-
ant roles in the induction of inflorescence meristem for-
mation. In fact, all the corms of saffron crocus can
blossom only after enough heat accumulation of high
temperature higher than 23 °C, which also consistent
with our results.
In conclusion, full-length transcriptomes of flowering

and non-flowering saffron crocus were obtained using a
combined NGS short-read and SMRT long-read sequen-
cing approach. This method enables the generation of
predicted comprehensive databases of AS, lncRNA, SSR,

CDS, and DEGs in samples with phenotypic differences
in flowering traits. These results were used to further
identify genes related to flowering, including 62 genes
homologous to known flowering gene sequences in pub-
lic databases and novel flower-related genes,such as
PB.20221.2 and PB.38952.1. Our study represents a first
step to establish a reference full-length transcriptome for
future studies of the gene atlas of saffron crocus and
other species in the Iridaceae family. In the future, these
genes, which are closely related to the number of flowers
selected out in this study, maybe used as biomarkers for
screening multi-flowering varieties and monitoring the
optimal environmental conditions in field production.
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