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Abstract

Background: Protein phosphorylation by kinases plays crucial roles in various biological processes including signal
transduction and tumorigenesis, thus a better understanding of protein phosphorylation events in cells is
fundamental for studying protein functions and designing drugs to treat diseases caused by the malfunction of
phosphorylation. Although a large number of phosphorylation sites in proteins have been identified using high-
throughput phosphoproteomic technologies, their specific catalyzing kinases remain largely unknown. Therefore,
computational methods are urgently needed to predict the kinases that catalyze the phosphorylation of these sites.

Results: We developed KSP, a new algorithm for predicting catalyzing kinases for experimentally identified
phosphorylation sites in human proteins. KSP constructs a network based on known protein-protein interactions
and kinase-substrate relationships. Based on the network, it computes an affinity score between a phosphorylation
site and kinases, and returns the top-ranked kinases of the score as candidate catalyzing kinases. When tested on
known kinase-substrate pairs, KSP outperforms existing methods including NetworKIN, iGPS, and PKIS.

Conclusions: We developed a novel accurate tool for predicting catalyzing kinases of known phosphorylation sites.
It can work as a complementary network approach for sequence-based phosphorylation site predictors.
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Background

As a molecular switch in cellular biochemistry, protein
phosphorylation by kinases is one of the most ubiquitous
post-translational modifications (PTM). It has been esti-
mated that biological activities of 1/3 ~ 2/3 of the prote-
ome of an organism could be regulated by protein
phosphorylation [1]. Since protein phosphorylation plays
important roles in various biological processes, aber-
rances of phosphorylation systems are frequently related
to various diseases including cancer. Over the past
decade, with rapid advancement of high-throughput
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techniques, a large number of phosphorylation residual
sites have been identified and deposited in databases
such as PhosphoSitePlus [2], Phospho.ELM [3], and
HPRD [4, 5], providing good resources for researchers to
investigate the roles of phosphorylation in functional
networks of cells. However, for the majority of these
phosphorylation sites (p-sites), the cognate catalyzing ki-
nases remain unknown. For example, Phospho.ELM cur-
rently comprises 42,914 non-redundant serine,
threonine, and tyrosine p-sites in more than 11,000 pro-
tein sequences, but only ~12% of these sites have anno-
tated cognate kinases. On the other hand, kinases
comprise the putative targets of about 20% drugs on the
market [6], however, most of their substrate sites are
unknown. Clearly, prediction of the substrate sites of
kinases can help elucidate underlying mechanisms.
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Therefore, it is imperative to develop new methods to
predict catalyzing kinases for the exponentially increas-
ing number of p-sites in proteins, thereby revealing
targets of therapeutics [7-9].

Indeed, many computational methods have been de-
veloped to address the demand. These methods can be
divided into two categories. The sequence-based
methods only use flanking sequence around a p-site to
predict the catalyzing kinases [10—14]; while the com-
bined methods integrate flanking sequences around a p-
site with other types of data, such as protein disorder re-
gions, sequence similarity between kinase families, and
protein-protein interactions (PPI) to predict the catalyz-
ing kinases [11, 15-20]. Among the existing network
methods, most were developed based on the similarity
between sequences [8, 11, 15, 21, 22], and do not use
topological information of known interaction networks
[8, 22, 23]. To overcome this shortage, KSIBW adopted
a new edge clustering coefficient (NECC) to refine the
weight of PPI networks [21]. However, there remains
room of improvement to accurately capture the similar-
ity between nodes in PPI networks [21, 24].

In this study, we propose a novel combined method,
termed KSP, to predict kinases of given p-sites in pro-
teins. Firstly, we constructed an interaction network by
integrating known kinase-substrate relationships and
known PPI. Secondly, we converted the interaction net-
work into a bipartite graph consisting of two types of
nodes: kinases and non-kinase proteins, and then
assigned to each edge of the bipartite graph a weight
computed by a newly designed similarity score. In
addition, we provided complementary sequence-based
scoring methods named PWMScore (Position Weight
Matrix Score) and CBS (Clustering for BLOSUMS62 simi-
larity). Therefore, a user can perform both network-
based and combined predictions. When tested on several
p-sites with known kinases, KSP was able to accurately
predict cognate kinases for the p-sites. KSP also outper-
formed NetworKIN, iGPS, PKIS, and sequence-alone
methods on the datasets measured by the ROC (receiver
operating characteristic) curve, the F1 score (harmonic
average of the precision and recall) and the PRC
(precision-recall curve).

Results

Predicting kinase-substrate relationships

We first performed 10-fold cross-validation to evaluate
KSP on all kinase-substrate interaction pairs. If the true
kinase for a substrate protein was included in the top 10
kinases ranked by KSPScore, we count it as a true pre-
diction. The accuracy of the prediction is defined as the
ratio of the number of true predictions to the size of test
dataset. Eventually, we reached accuracies 82.9%, 84.7%,
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82.8%, 85.2%, 85.9%, 83.0%, 84.1%, 84.4%, 86.5%, 85.1%
respectively on each fold.

To evaluate the performance of KSP for specific ki-
nases, we randomly divided the p-sites of a kinase into a
training set and a positive test set using a ratio of 7:3.
The negative test set contains both p-sites of other ki-
nases and the sequences around S/T/Y residues without
known phosphorylation. The test set is formed by the
positive test set and the negative test set with a ratio of
1:1. Table 1 shows the results of predicting kinases for
the p-sites of CK2A1 and Src when the top 1, 2, ..., and
10 ranked kinases were considered. The results of
PKACA and CDK1 are listed in Additional file 2. The F1
score is the harmonic average of the precision and recall
that is a measure of a test’s accuracy. As expected, the
accuracy of the prediction decreases as the benchmark
becomes stricter (Fig. 1).

Improving sequence-based prediction of kinase-substrate
relationship

We captured the frequency and similarity features of
local sequences around p-sites using PWMScore and
CBSScore. In order to validate the performance of KSP
in improving sequence-based prediction methods (PWM
and CBS), we defined SequenceScore as the sum of nor-
malized PWMScore and normalized CBSScore, and the
OverallScore as the sum of normalized KSPScore and
SequenceScore. Moreover, as kinases of the same fam-
ilies have very similar p-sites with similar flanking local
sequences, to fully evaluate the sensitivity of KSP, we
generated a test dataset in which the negative samples
were from the substrates of the same kinase families of
CDK2 and ATM (see Additional file 3, Additional file 4,
and Additional file 8). As shown in Fig. 2, the difference
of OverallScores between positives and negatives is
much larger than that of their respective Sequence-
Scores. Thus, KSP largely improved the sequence-based
methods with its ability to distinguish between positives
and negatives more efficiently. When adding KSP, the
ROC curves show a remarkable increase in the AUROC
(the area under the ROC curve) values: CDK2 by 31.5%
and ATM by 20% (Fig. 2).

In addition, we also compared the performance of
these methods on two kinases (PKACA and PKCA) by
using 10-fold cross-validation. As shown in Fig. 3, KSP
significantly improved the sequence-based method in
terms of the AUROC values on PKACA. Similar results
were seen for PKCA (Additional file 9).

Comparison with alternative methods

Finally, we compared KSP, PWMScore and CBS with
the state-of-the-art methods NetworKIN [9, 23] and
iGPS [25] on substrates of two kinases (CDK2 and
ATM), using the same training set and test set as
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kinase: CK2A1 top 10 top 9 top 8 top 7 top 6 top 5 top 4 top 3 top 2 top 1
TP 458 453 451 447 436 426 415 389 351 274
FP 46 42 42 38 32 30 24 23 17 8
N 319 323 323 327 333 335 341 342 348 357
FN 7 12 14 18 29 39 50 76 114 191
TPR 0.984946 0.974194 0.969892 0.961290 0.937634 0916129 0.892473 0.836559 0.754839 0589247
FPR 0.126027 0.115068 0.115068 0.104110 0.087671 0.082192 0.065753 0.063014 0.046575 0.021918
TNR 0.873973 0.884932 0.884932 0.895890 0912329 0917808 0.934247 0.936986 0.953425 0.978082
FNR 0.015054 0.025806 0.030108 0.038710 0.062366 0.083871 0.107527 0.163441 0.245161 0410753
ACCURACY 0.936145 0.934940 0932530 0.932530 0.926506 0916867 0.910843 0.880723 0.842169 0.760241
PRECISION 0.908730 0915152 0914807 0.921649 0931624 0934211 0.945330 0944175 0953804 0971631
RECALL 0.984946 0.974194 0.969892 0.961290 0.937634 0916129 0.892473 0.836559 0.754839 0589247
F1 0.945304 0.943750 0.941545 0.941053 0.934620 0.925081 0918142 0.887115 0.842737 0.733601
kinase: Src top 10 top 9 top 8 top 7 top 6 top 5 top 4 top 3 top 2 top 1
P 395 394 392 389 384 372 360 328 300 214
FP 38 37 35 35 32 20 18 16 12 8
N 331 332 334 334 337 349 351 353 357 361
FN 13 14 16 19 24 36 48 80 108 194
TPR 0.968137 0.965686 0.960784 0.953431 0.941176 0911765 0.882353 0.803922 0.735294 0524510
FPR 0.102981 0.100271 0.094851 0.094851 0.086721 0.054201 0.048780 0.043360 0.032520 0.021680
TNR 0.897019 0.899729 0.905149 0.905149 0913279 0.945799 0.951220 0.956640 0.967480 0.978320
FNR 0.031863 0.034314 0.039216 0.046569 0.058824 0.088235 0.117647 0.196078 0.264706 0475490
ACCURACY 0934363 0.934363 0.934363 0.930502 0927928 0927928 0915058 0.876448 0.845560 0.740026
PRECISION 0912240 0.914153 0.918033 0.917453 0.923077 0.948980 0.952381 0.953488 0.961538 0.963964
RECALL 0.968137 0.965686 0.960784 0.953431 0.941176 0911765 0.882353 0.803922 0.735294 0524510
F1 0.939358 0.939213 0.938922 0.935096 0.932039 0.930000 0916031 0.872340 0.833333 0.679365
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Fig. 1 Vioplot of F1 Scores of the predictions in the four kinases as a whole when different number of top predictions were considered
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described above. To run iGPS on the data, we modified
the format of flanking sequence of p-sites according to
the requirement of iGPS and selected all-score output
rather than a threshold. Besides, because NetworKIN
does not use p-sites as the input in the form of 15-mers
as in PhosphoSitePlus, we tested it by inputting substrate
protein sequences and positions of p-sites. The Mini-
mum score of output was set to be 0 with Max differ-
ence set to be the default value. The details of the

output scores can be found in Additional file 3 and
Additional file 4.

As shown in Fig. 4, KSP has the most accurate predic-
tion on the two kinases compared to other methods.
Sequence-based methods including PWMScore and CBS
are not robust enough for different kinases, their per-
formance may depend on the size of validated p-sites
and the choice of negatives in the test set. Although the
combination of NetworKIN and iGPS improves AUROC
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significantly on CDK2 and slightly on ATM, it still
cannot match the precision of KSP.

Besides, for a fairer comparison, we reconstructed our
similarity bipartite graph B using the kinase-substrate
pairs collected from Phospho.ELM, which were used by
NetworKIN, iGPS and PKIS as well. After removing re-
dundant and missing data, we found that the number of
known p-sites of each kinase is too small, so we only
trained and tested on two kinase groups (CMGC group
and AGC group). The precision-recall curves of the

predictions in Fig. 5 show that KSPScore also outper-
formed NetworKIN and iGPS on the CMGC group and
the AGC group. Here, we only tested the CMGC group
on PKIS and compared it with other tools because it
could not provide predictions for AGC groups.

Discussion

Phosphorylation of proteins by kinases plays a crucial
role in protein functions in cells [26]. It is estimated that
human genome encodes 518 protein kinase genes,
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comprising 134 families. These kinases are responsible
for almost all of the human protein phosphorylation
events, which are involved with various biological pro-
cesses [27]. Therefore, it is of importance to figure out
the kinase-substrate relationships in order to understand
the molecular mechanisms underlying these biological
processes and construct phosphorylation networks [28].
Although an increasing number of p-sites have been
identified using high throughput methods, finding their
cognate kinases has become a bottleneck. Here, we show
that a network scoring tool KSP which integrates kinase-
substrate relationships and PPI is able to accurately pre-
dict cognate kinases of p-site substrates. Furthermore,
our scoring function (KSPScore) can better capture simi-
larities of kinases than commonly used similarity indices.
The aim of KSP is to predict candidate catalyzing ki-
nases of the numerous experimentally identified p-sites,
and it can be used as an assistant tool for other kinase
phosphorylation prediction software. Meanwhile, we also
provided two sequence-based methods (PWMScore and
CBSScore) to predict the kinase of a query p-site using
amino acids frequencies and BLOSUM 62 similarity, re-
spectively, and we showed that the PWM and CBS
methods could make better use of known local kinase-
specific conserved sequences to predict kinase-substrate
relationships for many kinases. Compared with the exist-
ing well-regarded methods (e.g., iGPS and NetworKIN)
[9, 23, 25], KSP presents fairly robust high-performance
in terms of the accuracy on several kinases and kinase
groups.

Although some substrate-kinase relationship predic-
tors considered other types of information like protein
disorder regions [29] as well as cell cycles, the inclusion
of these kinds of information seems to have little im-
provement for most kinases [11, 16, 18, 20, 30]. Thus,
we only consider two well-recognized features, protein
interactions and conserved local sequence around phos-
phorylation sites. Since genetic variation changes phos-
phorylation sites or their interacting kinases [31, 32],
many methods have emerged to quantify the effects of
SNVs (single nucleotide variants) on protein phosphoryl-
ation. ActiveDriver identified a specific p-site region in a
given protein that has a significantly different mutation
rate than expected, thereby finding cancer driver muta-
tions [33, 34]. MIMP and PhosphoPICK-SNP provided
tools to predict loss or gain of protein phosphorylation
sites based on methods of predicting p-sites [12, 35]. After
constructing this powerful interaction network, the next
step for us is to utilize this tool to predict the impact of
mutations on substrate-kinase relationships. Furthermore,
one potential concern is that our prediction only works
well on a few kinases due to the unbalanced distribution
of kinase information, with the availability of more data of
phosphorylation and protein interactions in the future, the
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scope of application as well as the accuracy of our
methods can be further improved.

Conclusions

In this paper, we developed a novel method, KSP, to pre-
dict catalyzing kinases of query p-sites in proteins. This
method is based on the connection relationship in a
combined phosphorylation network and outperforms
existing kinase-substrate relationship prediction tools on
multiple datasets. We believe that KSP will aid in the ef-
forts to elucidate the protein kinase regulation mecha-
nisms, especially for the kinases that have not been well
studied.

Methods

Data collection and preprocessing

Experimentally verified human p-sites with kinase infor-
mation and sequences were downloaded from the latest
PhosphoSitePlus [2] and Phospho.ELM [3]. After remov-
ing the redundant and missing data, we collected 10,198
known human kinase-substrate pairs for 370 kinases.
The detailed information of these kinases was summa-
rized in Additional file 1. In order to understand the
structure of the kinase-substrate interaction network, we
visualized it with Cytoscape [36] (see Additional file 5)
and found that the network is heterogeneous, that is, a
small number of nodes in the network have very large
numbers of connections, while most nodes have very
few connections [37, 38] (see Additional file 6). We then
constructed a new network by integrating the kinase-
substrate interaction network and the human PPI net-
work extracted from HPRD (Human Protein Reference
Database) [4, 5] by taking the union of their nodes and
edges, and deleting all the components but the largest
one. The integrated network consists of two types of
nodes: those representing the kinases; and those repre-
senting other proteins. We then conducted a statistical
analysis of the degree distribution of nodes in this
integrated network (see Additional file 7).

We retained + 7 flanking residues of p-sites of differ-
ent kinases to capture local sequence features, and only
selected those kinases with greater than 15 p-sites. After
removing duplicates for each kinase using CD-HIT [39],
we ended up with 113 kinases.

Kinase-substrate prediction score (KSPScore)

In a complex network, there are many indices between
two different nodes, including similarity indices, match-
ing indices and statistic-based indices [40]. In this study
(Fig. 6), we constructed a complex network G =(V,E;)
by combining the kinase-substrate network and the PPI
network, where nodes represent kinases and other pro-
teins, and edges represent catalytic relationships between
kinases and proteins of substrate p-sites and interactions
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among the remaining proteins. Networks are reduced to
protein interaction levels by removing the p-sites infor-
mation. By w;, ;, we denote the weight of the edge be-

KS3= "3 "> Wi Wuu Wi, Woy

vxNk vyN, v Z

Vx.vy

tween nodes i and j in G according to the number of

identified interactions.

For a given kinase k and a p-site p in a substrate pro-
tein n, we consider all neighbors of k and n in G=(V,
E)). Let N, (x € V) be the set of neighbors of x, d, (x< V)
be the degree of %, and Z; ; (i,j € V) be the set of com-
mon neighbors of i and j. We calculate the similarity
score KSPScore (k, n) between k and 7 as follows.

1. fnENNY,
KSO = wy

2. Besides, if Z; , = o,

KS1 = Z Wicv, Wyen

VkE€Zk

3. Besides, if Z,, ,# when v, € Ny NV,

KS2=> "> Wiy, Wy, 0, Wo,n

VpENk vquVp_,,

4. Besides, if Z,, , #@ whenv, E Ny N V,v, EN, NV,

KSPScore(k,n) = (KS0,KS1,KS2,KS3) x B x p(k)
(Finally, )

B=Bo, B1, B Bs)" is a parameter vector of compo-
nents fy, B1, B2 Bz which add up to 1 and p, is the
punitive function:

( logzdx - mz’niev( lngdi)) x 0.2
maxicy ( log,d;) — miniey ( logyd;)

d,<2

e > 2
pa(x) =

)

We define the KSPScore (k,n) based on the assump-
tion that correlation between two nodes in a biological
network can be further supported by interactions among
their neighbors. In order to reduce the bias to over-
studied kinases, we diminish impact of the interaction
between a kinase and a substrate protein by using the
punitive function p, and adjusting parameter § in the
KSPScore formula. By default, we set S =(0.25,0.225,
0.1875,0.1875)".

Next, we convert G into a weighted bipartite graph
B=(K,N, E,;, W), where KuN =1V, with K representing
kinases, N non-kinase proteins, E, the edges between K
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and N, and W the weights on E, defined as the KSPScore
s. Here we only connect a kinase and a non-kinase pro-
tein if their KSPScore = 0. We define the KSPScore be-
tween kinase k; and a p-site p as KSPScore(k; p) =
KSPScore(k;, n), where i=1, 2, ..., 370 and » represent
the substrate protein of p. For a query p-site we consider
all the 370 kinases, and output 10 top-ranked kinases as
possible cognate candidates.

Position weight matrix score (PWMScore)

We modeled sequence specificity of the p-sites of a kin-
ase using a position weight matrix (PWM) following the
method of MIMP [12] and constructed PWMs for 113
kinases with more than 15 p-sites. To construct a PWM,
we first generated a position frequency matrix (PFM) by
counting the occurrences of each amino acid at each
position in the multiple alignments of the p-sites of
length L, and the position profile matrix (PPM) by divid-
ing the PFM by N, the number of p-sites. Finally, the
PWMs were calculated by taking log likelihoods. For-
mally, let X be a set of N p-sites’ sequences of length
L =15, and M = (My, ;) the PWM of X, then the elements
My, ; of the PWM were calculated by

1 N
My, = log, N—kaI(XiFk)
i=1

where i=1, ..., N; j=1, ..., 15; k is one of amino acids;
and I(a = k) is an indicator function where I(a = k)= 1 if
a =k and 0 otherwise; by is the background frequency of
amino acid k.

For a query p-site p and kinase k;, we defined
PWMScore(k;, p) as the sum of the relevant values at
each position in the PWM of k; where i=1, 2, ..., 113.
For a query p-site we consider all the 113 PWMs, and
output 10 top-ranked kinases as cognate candidates.

Clustering for BLOSUM®62 similarity (CBS)

Flanking sequences around the p-sites of a kinase often
show some similarity, to use this feature for predicting
kinase-substrate relationships, we propose a KNN (k-
nearest neighbors) based clustering method. We define
the similarity score S between sequences s; and s, as

S(s1,82) = Z:i _Score(sy (i), s2(i)),

where Score(a, b) is the alignment score between amino
acids a and b according to an amino acid substitution
matrix [41] (BLOSUMG62 by default), and it is defined to
be 0 if the upstream or downstream regions of the sites
have less than 7 residues. For each p-site sequence s; (15-
mers including + 7 flanking residues around the phos-
phorylated amino acid), we find its k nearest neighbors in
the training set according to similarity score S (The larger
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the similarity score between two sequences, the closer
they are). We then calculate the CBSScore(k; s;) between
kinase k; and sequence s; as the percentage of the sites cat-
alyzed by k; in the k nearest neighbors of s;.

For the input local sequence s; of a query p-site, we
consider all the 113 kinases, and output 10 top-ranked
kinases as possible cognate candidates. We tested differ-
ent k (1%, 2.5%, 5% and 7.5% of the size of the whole
training dataset) for the kinase prediction and finally set
the default k to be 7.5% of the size of the training
dataset.
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