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Abstract
Background Mosaic loss of chromosome Y (LOY) in leukocytes is the most prevalent somatic aneuploidy in aging 
humans. Men with LOY have increased risks of all-cause mortality and the major causes of death, including many 
forms of cancer. It has been suggested that the association between LOY and disease risk depends on what type of 
leukocyte is affected with Y loss, with prostate cancer patients showing higher levels of LOY in CD4 + T lymphocytes. 
In previous studies, Y loss has however been observed at relatively low levels in this cell type. This motivated us to 
investigate whether specific subsets of CD4 + T lymphocytes are particularly affected by LOY. Publicly available, T 
lymphocyte enriched, single-cell RNA sequencing datasets from patients with liver, lung or colorectal cancer were 
used to study how LOY affects different subtypes of T lymphocyte. To validate the observations from the public data, 
we also generated a single-cell RNA sequencing dataset comprised of 23 PBMC samples and 32 CD4 + T lymphocytes 
enriched samples.

Results Regulatory T cells had significantly more LOY than any other studied T lymphocytes subtype. Furthermore, 
LOY in regulatory T cells increased the ratio of regulatory T cells compared with other T lymphocyte subtypes, 
indicating an effect of Y loss on lymphocyte differentiation. This was supported by developmental trajectory analysis 
of CD4 + T lymphocytes culminating in the regulatory T cells cluster most heavily affected by LOY. Finally, we identify 
dysregulation of 465 genes in regulatory T cells with Y loss, many involved in the immunosuppressive functions and 
development of regulatory T cells.

Conclusions Here, we show that regulatory T cells are particularly affected by Y loss, resulting in an increased fraction 
of regulatory T cells and dysregulated immune functions. Considering that regulatory T cells plays a critical role in the 
process of immunosuppression; this enrichment for regulatory T cells with LOY might contribute to the increased risk 
for cancer observed among men with Y loss in leukocytes.
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Background
Loss of chromosome Y from hematological progeni-
tors results in mosaic loss of chromosome Y (LOY) in 
circulating leukocytes, representing the most prevalent 
somatic mutation in general populations [1–3]. Affected 
men have an increased risk for mortality and morbidity 
[4, 5], including all major causes of death such as cardio-
vascular disease [5–7], cancer [2, 4, 8], Alzheimer’s dis-
ease [9]. The link between Y loss in blood and disease in 
other organs is currently being explored, with evidence 
emerging for direct causality related to the LOY condi-
tion. It has for instance been shown that LOY: (I) affects 
the distribution of blood cell types [10, 11], (II) leads to 
dysregulation of almost 500 autosomal genes in a cell 
type dependent manner [12], (III) reduces the abundance 
of immunoprotein CD99 on the surface of cells, a pro-
tein crucial for regulating the permeability of blood ves-
sels [13], (IV) induce fibrosis of internal organs and organ 
dysfunction in murine models [7], (V) is linked to an 
expansion of low-density neutrophils during COVID-19 
infection [14]. Furthermore, we have previously shown 
that the impact of LOY on disease risk depends on which 
leukocyte subset is affected by Y loss [12]. Specifically 
patients with Alzheimer’s disease had more LOY in NK 
cells, while patients with prostate cancer displayed higher 
levels of LOY in granulocytes as well as CD4 + T lympho-
cytes [12]. This however results in an enigma: Y loss in 
CD4 + T lymphocytes is associated with increased risk of 
cancer, yet LOY occurs at relatively low levels in CD4 + T 
lymphocytes compared with other leukocytes [3, 12, 13].

Regulatory T cells (Tregs) are a highly specialized sub-
type of CD4 + T lymphocytes, constituting less than 10% 
of circulating CD4 + cells [15, 16]. Hence, the total popu-
lation of peripheral blood mononuclear cells (PBMC) 
contains an even smaller fraction of Tregs, which can be 
difficult to discern from other CD4 + T lymphocytes in 
single-cell experiments [15, 16]. Yet, Tregs play a criti-
cal role in the regulation of immune functions by per-
forming immunosuppression, a balancing act as not to 
suppress a necessary immune response [17]. Thus, Treg 
dysregulation has been linked to processes such as long-
term inflammation, tissue damage and increased fibrosis 
[18]. Tregs also contributes to tumour development by 
directly inhibiting the immune response of surround-
ing effector cells [19, 20]. Considering the major impact 
of this rare CD4 + subset, we sought to investigate how 
the heterogeneity of CD4 + T lymphocytes is affected by 
LOY. Especially, since it was recently shown that tumours 
with LOY can influence the distribution, expression and 
function of T lymphocytes, inducing an immunosuppres-
sive microenvironment that support tumour growth [21]. 
One of these effects was a higher portion of Tregs in the 
microenvironment of Y loss bladder cancers [21]. Here, 
we leverage the power of single-cell RNA sequencing 

(scRNAseq) in multiple datasets, as well as T lymphocyte 
enrichment, to study how Y loss influences the develop-
mental trajectory, distribution and gene expression of 
this rare leukocyte population.

Results
Distribution of LOY in T lymphocyte subsets
To investigate the distribution of LOY cells in CD4 + T 
lymphocytes we collected three public scRNAseq datas-
ets containing fluorescence-activated cell sorted (FACS) 
T lymphocytes from cancer patients, with samples 
taken from tumour, healthy tissue and blood [22–24]. 
After standard pre-processing and clustering 21,709 
cells remained, out of which 8,647 originated from male 
donors. Known marker genes were used to assign cell 
types (Supplementary Fig.  9A) to each cluster (Supple-
mentary Fig. 9B) based on all 21,709 cells. The abundance 
of reads from the male specific region of the Y chromo-
some (MSY) was thereafter used to assign LOY status 
to each of the 8,647 cells from male donors. Due to the 
nature of the dataset, some cells from female donors 
also had MSY reads. Thus, the expression from MSY in 
female cells was considered as technical noise and used 
as a threshold when estimating the LOY status of single-
cells from men. For each cell type the percentage of LOY-
cells was calculated, showing LOY at marginal levels for 
the majority of the T lymphocytes. Strikingly, Tregs had 
a significant elevation of LOY with a close to three times 
higher occurrence of Y loss compared to other types of 
T lymphocytes (Wilcoxon signed-rank test: p = 0.00061, 
Fig. 1A).

Given the observation that Tregs are the main carriers 
of LOY in the public datasets, we sought to investigate if 
Y loss might influence the distribution of T lymphocyte 
subtypes. First we used linear regression to test whether 
the fraction of Tregs (relative to the total number of 
CD4 + T lymphocytes) in each subject was associ-
ated with the percentage of LOY in Tregs. This analysis 
showed that subjects with higher levels of LOY in Tregs 
had a larger fraction of Tregs compared with other sub-
jects (Coeff = 2.622, p = 0.033965). Next, we evaluated 
this result in a model adjusting for relevant confounding 
factors such as dataset and individual. In support of the 
unadjusted model, a negative binomial model showed 
that the number of cells within each cell type was signifi-
cantly associated with the level of LOY (GLM: LR = 6.591, 
Df = 1, p = 0.01025). Other significant confounders 
included cell type, as well as the interaction between Y 
loss and cell type (Supplementary Table 2). Finally, we 
also investigated how LOY varied between the sampled 
tissues (Fig.  1B). While LOY-cells were identified in all 
cell types and tissues, Tregs and CD8 + T lymphocytes 
with LOY were principally absent from normal tissue. To 
test the association between Y loss and sampled tissue, 
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a quasibinomial model was used. This test confirmed 
that the level of LOY varied between tissues (GLM: 
LR = 8.426, Df = 2, p = 0.014804), as well as cell type, can-
cer type and the interactions between cell type, cancer 
type and tissue (Supplementary Table 3). Together, these 
results suggest that LOY in T lymphocytes might influ-
ence the distribution of T lymphocyte subsets. To further 
investigate a potential effect from Y loss on T lymphocyte 
development, we generated a larger scRNAseq dataset 
from an independent cohort as described below.

Validation of LOY distribution in an independent cohort
We performed scRNAseq on peripheral blood mono-
nuclear cells (PBMCs), from freshly collected blood 
samples, from 55 males in the EpiHealth, UCAN and 
the UAD cohort (see methods). Enrichment for CD4 + T 
lymphocytes was performed in 32 of these (from the 
EpiHealth and UCAN cohorts) prior to sequencing to 
achieve a larger fraction of Tregs in the studied cell popu-
lation. After standard QC of the scRNAseq data, the final 
dataset consisted of all 55 samples and 213,619 single-
cells, grouped into 27 clusters based on RNA expression 
profiles (Supplementary Fig.  10A). The major cell type 
in each cluster was identified combining two different 
machine learning approaches, CIPR and singleCellNet. 

Both classification tools were trained on publicly avail-
able datasets (see methods) and used to predict the most 
likely cell type of each cluster. The final cell type classi-
fication was generated using the resulting predictions 
combined with manual curation based on the expression 
of known marker genes (Supplementary Fig. 10B). Next, 
LOY status was estimated for each cell separately, clas-
sifying cells without any MSY reads as LOY-cells. This 
method considers all reads within transcripts from MSY 
genes, unlike our previously published method, which 
only considered spliced RNA [12]. By applying a pub-
lished benchmarking method for LOY scoring [25] that 
considers the overall MSY gene expression in each clus-
ter, we found that our new method of LOY calling had 
considerably improved accuracy (Supplementary Figs.  1 
& 2).

The frequency of LOY was thereafter characterized in 
the different types of studied leukocytes (Fig. 2A). In line 
with previous results, NK cells and monocytes exhibited 
the highest percentage of Y loss in individual samples 
[3, 12, 13]. However, Tregs had the highest median LOY 
value (17.91%) of all cell types in the validation dataset 
(Fig.  2A), replicating the observation from the public 
dataset (Fig.  1A). Furthermore, Tregs showed a signifi-
cantly higher LOY fraction than other T cells (Wilcoxon 

Fig. 1 (A) Boxplot showing the overall percentage of LOY in different T lymphocyte subsets, in each studied subject of the public datasets. Each dot cor-
responds to the LOY frequency of one patient, color-coded for each cell type. (B) Similar boxplot as in A, stratified by tissue of origin for T lymphocytes 
as indicated. Peripheral, Normal and Tumour indicates peripheral blood, normal tissue adjacent to tumour and tumour tissue, respectively. Note that the 
dots here marks outliers, and has therefore been coloured red to differentiate them from the dots in A
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signed-rank test: p = 1.139e-10, Fig. 2B) and was the only 
CD4 + subset to harbour more than 5.12% LOY-cells, in 
any of the studied subject. Interestingly, the tools applied 
for cell clustering identified two separate Treg clusters 
(Supplementary Fig.  10). When further investigated, 
CTLA4 expression was found as a major differentiating 
factor between the Treg clusters. The CTLA4 gene is 
expressed on all mature Tregs and is a known regulator of 
Treg homeostasis [26, 27].

Overall, the 8,752 Tregs consisted of 6,975 
CTLA4 + and 1,777 CTLA4- cells, and a significant differ-
ence in LOY level was found between the two Treg clus-
ters (Wilcoxon signed-rank test: p = 0.00743). The higher 
frequency of LOY in CTLA4 + cells could suggest that Y 
loss is influencing the differentiation process of Tregs.

LOY as a determinant of CD4 + T lymphocyte cell fate
To replicate the finding from the public datasets that 
LOY could influence the differentiation of T lymphocytes 
towards a Treg phenotype, we used a similar approach in 
the validation dataset. First, linear regression was used 
to show that the level of LOY in Tregs was positively 
associated with the fraction of Tregs (Coeff = 0.0394, 
p = 0.00743). Next, a quasibinomial model was used to 
establish this result while adjusting for confounders 

(LR = 5.63, Df = 1 p = 0.0176167). Significant confound-
ers in the model was cell type, whether the sample was 
CD4 + enriched and interactions between LOY and cell 
type, as well as cell type and CD4 + enrichment (Supple-
mentary Table 4). Overall, these results independently 
support the observation from the public datasets that 
LOY influence Treg abundance. Given this observation, 
we sought to investigate the hypothesis that Y loss could 
be affecting the development of CD4 + T lymphocytes by 
pushing them towards a Treg phenotype. Developmen-
tal trajectories for CD4 + T lymphocytes were estimated 
with pseudotime as a measurement for cell differen-
tiation (Fig. 3). The most differentiated CD4 + cells com-
prised of CTLA4 + Tregs and adjacent T-helper cells, 
creating a trajectory suggesting a differentiation of naive 
T lymphocytes with Y loss into CTLA4 + Tregs via the 
CTLA4- subtype.

LOY associated transcriptional effects (LATE) in Tregs
Differential expression analysis was used to study 
changes in autosomal gene expression, referred to as 
LOY associated transcriptional effects (LATE), in Tregs 
with Y loss. For the CTLA4- subset of Tregs, only 23 
LATE genes were identified (Supplementary Table 5). 
In contrast, analysis of the CTLA4 + subset of Tregs 

Fig. 2 (A) Boxplot showing the percentage of LOY in the studied leukocytes of the validation dataset. Each dot represents the value of one sample. 
Median values are marked with black lines, where Tregs have the highest median of any studied cell type. (B) Subset of A; specifically the T lymphocytes
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identified 465 LATE genes, most of which were autoso-
mal genes (Supplementary Table 6). The list of differen-
tially expressed genes contains many that are involved 
in the normal functions of immune cells, including 
S100A11 (logFC = -0.25, adjusted p-value = 8.9e-20), 
ANXA1 (logFC = -0.18, adjusted p-value = 4.6e-14), 
TIGIT (logFC = 0.11, adjusted p-value = 0.00011) and 
FOXP3 (logFC = 0.10, adjusted p-value = 0.00015). Gene 
Set Enrichment Analysis (GSEA) found no gene sets 
for the CTLA4- Treg subset, while the CTLA4 + subset 
yielded 41 significantly (p < 0.001, Supplementary Table 
7) differentiated gene sets. The 20 most significant gene 
sets from the CTLA4 + analysis were also grouped fur-
ther into functional categories (Fig.  4, Supplementary 
Fig. 11). All significantly upregulated gene sets shared a 
core of upregulated ribosomal proteins (RPs). In contrast, 
the downregulated gene sets mainly consisted of genes 
involved in cell migration and locomotion.

Discussion
Previous studies have established that LOY is associ-
ated with the distribution of different types of blood cells 
[10–12, 14]. Furthermore, it has been shown that the 

type of leukocyte affected with LOY might be relevant for 
disease risks, with LOY in specifically CD4 + T lympho-
cytes being associated with increased risk for prostate 
cancer [12]. However, LOY occurs at considerably lower 
frequency in CD4 + T lymphocytes than other leukocytes 
[3, 12, 13]. Thus, we investigated here if Y loss dispro-
portionally affects certain subsets of T lymphocytes. In 
both the public and validation datasets, we found that 
Tregs had significantly more LOY than any other studied 
CD4 + T lymphocyte subset. Additionally, higher levels of 
LOY in Tregs was also positively associated with a higher 
frequency of Tregs compared with other CD4 + cells. This 
suggests that Y loss might impact the distribution of T 
lymphocytes, by pushing naive T lymphocytes towards 
a Treg phenotype. Alternatively, CD4 + T lymphocytes 
affected by LOY could undergo apoptosis, with the 
enrichment for LOY Tregs being due to a lower suscep-
tibility for this apoptosis. However, analysis of develop-
mental trajectories in the validation dataset support the 
first hypothesis; since it predicts trajectories culminating 
in the Treg cluster, which has the highest frequency of 
LOY-cells. Overall, our data suggest that Y loss influence 

Fig. 3 Illustration of the distribution of LOY in different types of CD4 + T lymphocytes, as well as their developmental trajectories. The full UMAP can be 
seen in Supplementary Fig. 10B. (A) The distribution of the identified cell types. (B) The LOY status of the cells in A, with LOY-cells being marked red. (C) 
Developmental trajectory of CD4 + T lymphocytes. Colour denotes pseudotime, with more developed cells being brighter. The lines indicate the sug-
gested trajectories from naive to more differentiated CD4 + cells.
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the differentiation of CD4 + T lymphocytes, resulting in 
an enrichment of Tregs with LOY.

LATE analysis in CTLA4 + Tregs identified 465 dys-
regulated genes, and the GSEA identified 41 gene sets 
describing two major effects associated with Y loss. First, 
the increased expression of RPs identified in LOY Tregs 
indicates that these cells are upregulating production 
of ribosomes. Interestingly, losing the Y chromosome 
involves losing RPS4Y1, coding for a ribosomal sub-
unit, and located in the MSY. Its X chromosome homo-
log, RPS4X, escapes X-inactivation, suggesting that the 
expression of two copies is necessary to maintain dos-
age [28]. Deletion of ribosomal proteins can activate the 

mTOR pathway and disrupts ribosomal assembly, result-
ing in RP upregulation [29] and transcriptional dysregu-
lation [30]. Thus, the loss of RPS4Y1 could explain the 
observed upregulation of RPs, and might contribute to 
465 LATE genes found in LOY Tregs. The second major 
effect identified by the GSEA was several gene sets linked 
with cell motility. This could be attributed to CD99, a 
gene located in the pseudoautosomal region that will have 
one copy lost as an effect of Y loss [31]. Studies have pre-
viously reported downregulation of CD99 in LOY-cells, 
as well as a decreased cell surface abundance of CD99, as 
an effect of Y loss [12, 13]. While a decreased motility of 
leukocytes with LOY could impair their normal immune 

Fig. 4 The top 20 categories from the gene set enrichment analysis. Categories within the left and right frames were upregulated and downregulated, 
respectively. The coloured clusters to the left indicate the same branch of the gene ontology (GO) tree. Dot size and colour indicates gene count and 
P-value, respectively
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functions, it might also influence the varying distribution 
of LOY-cells in different tissues observed in the public 
dataset. Here, normal tissue neighbouring tumours was 
depleted of Tregs and CD8 + T lymphocytes with Y loss, 
compared with high levels of LOY found in blood and 
tumour tissue. Tumours are known to recruit suppressive 
immune cells [19, 20], and it is therefore possible that 
Tregs with Y loss might be concentrated in the tumour 
microenvironment due to decreased mobility.

In addition to major effects identified by GSEA, cer-
tain genes dysregulated in Tregs with LOY should be 
highlighted. First, both S100A11 and ANXA1 genes are 
downregulated as an effect of Y loss. They encode pro-
teins that forms a complex capable of regulating the 
EGFR pathway [32–34], with S100A11 also being a part 
of the TGF-beta signalling pathway [35]. In specifically T 
lymphocytes, ANXA1 is conversely an important modu-
lator of proinflammatory functions [36], with evidence of 
ANXA1 decreasing the risk of atherosclerosis in humans 
[37]. ANXA1 knockout in mouse models lead to chronic 
inflammation, including lung fibrosis, sepsis, rheumatoid 
arthritis and atherosclerotic lesion formation [38]. Thus, 
downregulation of ANXA1 in Tregs with Y loss could 
severely limit their normal functions, and in extension 
inhibit an inflammatory response.

Another interesting gene that is upregulated in Tregs 
with LOY is TIGIT, an immunosuppressive receptor 
found on tumour-infiltrating NK cells, CD8+, CD4 + and 
regulatory T cells, with highest abundance in the lat-
ter [39]. The TIGIT receptor inhibits immune function 
by binding with higher affinity to CD155 and CD112 
than their usual receptor CD226 [39, 40]. While the 
CD226 binding would enhance T lymphocyte and NK 
cell activation, TIGIT binding instead actively supress 
immune functions of these cells [41–43]. However, in 
Tregs, TIGIT is a marker for stability, promoting their 
immunosuppressive functions further [44]. Addition-
ally, an increased TIGIT to CD226 ratio in the tumour 
microenvironment has been associated with a higher 
frequency of activated Tregs, as well as an unfavourable 
prognosis [45]. Since differential expression was anal-
ysed in the PBMC based validation dataset, it does not 
present tumour microenvironment and cancer type spe-
cific effects, which could be interesting aspects in future 
studies.

Finally, FOXP3 was upregulated in LOY Tregs, a major 
determinant for Treg development and their immuno-
suppressive activity [46]. Loss of function mutations in 
FOXP3 has previously been associated with hyperac-
tive T lymphocytes, as well as fatal immunodysregula-
tion [47]. FOXP3 exerts genome wide regulation of gene 
expression [48], including promotion of CTLA4 [49], 
which might be related to the increased level of LOY in 
the CTLA4 + Treg subset observed here. Since FOXP3 

drives Treg development [46], its upregulation in LOY-
cells provides a possible mechanism by which Y loss 
could influence CD4 + T lymphocyte development.

Conclusions
Here we suggest a possible mechanism to help explain 
why men with hematopoietic Y loss may have an 
increased risk of tumour development in other organs. 
Taken together, our data indicate that LOY could drive 
the development of CD4 + T lymphocytes towards a 
regulatory phenotype, leading to enrichment of Tregs 
with Y loss. Differential expression analysis further high-
light genes involved in the immunosuppressive func-
tions of these regulatory cells, potentially linked with the 
increased vulnerability for cancer previously observed in 
men affected with LOY.

Methods.

Collection and sequencing
The patient cohort selected for enrichment of CD4 + leu-
kocytes included 30 male participants from the Epide-
miology for health study (EpiHealth) and 2 males from 
the Uppsala-Umeå Comprehensive Cancer Consortium 
(UCAN). 32  ml of blood was collected into four BD 
Vacutainer® CPT™ Mononuclear Cell Preparation Tubes 
(BD), and PBMCs were isolated following the manufac-
turer’s instructions. The PBMCs were then washed with 
PBS and cell number and viability were estimated with 
EVE™ Automated Cell Counter (NanoEnTek) using try-
pan blue. CD4 + T lymphocytes were enriched from the 
PBMCs using CD4 + T Cell Isolation Kit human (Milte-
nyi Biotec) according to the manufacturer’s instructions. 
Enriched CD4 + T-cells were then diluted to a concentra-
tion of 106 cells/ml in PBS with 0.04% BSA with a cell via-
bility of > 90%. scRNAseq libraries of CD4 + T-cells were 
generated using Chromium Next GEM Single Cell 3’ 
Reagent kit v3.1 (10x Genomics) according to the manu-
facturer’s instructions. The single-cell libraries were then 
sequenced using the NovaSeq 6000 and v1.5 sequencing 
chemistry (Illumina Inc.). The single-cell library prepara-
tion and sequencing were performed at the Science for 
Life technology platform SNP&SEQ, Uppsala University, 
Sweden. Additionally, 23 scRNAseq datasets derived 
from PBMCs from the Uppsala Alzheimer’s Disease 
cohort (UAD) were used as validation. Sample prepara-
tion was the same as above except for the CD4 + T Cell 
enrichment. Overview of participants and their clinical 
characteristics can be seen in Supplementary Table 1.

Pre-processing, mapping and LOY cell identification
Each sequenced sample was mapped using the Cell 
Ranger pipeline (v. 6.0 10X Genomics) and standard set-
tings. Following this, the velocyto software was used, 
counting reads from expressed transcripts and also 
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counting intronic reads as well as reads in the untrans-
lated regions. Generated count matrices from both soft-
ware were read into an R environment for further study. 
To identify cells with LOY, all generated count matrices 
were used and cells showing no reads mapping to the 
male specific Y were considered to be LOY cells. In con-
trast to previous methods, this included any MSY reads 
identified by velocyto as well as cell ranger. This was 
benchmarked using an established method recommend-
ing that each cluster has a score of at least 250 expression 
from MSY to call LOY-status [25]. The new approach 
scored higher than 250 in all clusters (Supplementary 
Fig. 1`), which would not be the case with previous meth-
ods (Supplementary Fig. 2).

Data harmonization and quality control
Unless specified otherwise, the following analysis steps 
were performed in R version 4.0.4, using Seurat version 
4.0.1, on the UPPMAX Bianca computational cluster. 
Two criteria were used to exclude low quality cells, the 
number of expressed features and the percent mitochon-
drial reads. Cells were required to have more than 500, 
but less than 3000 expressed features, as well as less than 
13% of all reads being mitochondrial. These thresholds 
were chosen based on the variable distribution (Supple-
mentary Fig.  3). The count matrix was thereafter nor-
malized using SCTransform (version 0.3.2), regressing 
out effects based on percent mitochondrial reads. The 
samples were thereafter integrated, based on 3000 fea-
tures and one sample (SF-2212-EPH001) as reference. 
The integration functions were chosen to account for the 
SCTransform. In addition to SCTransform, log-based 
normalization was also done using Seurats Normalize-
Data function with default settings. The log-based nor-
malization is preferred when investigating differentially 
expressed genes, as advised by the team behind Seurat. 
After calculating principal components, batch effects 
introduced by sampling and sorting were removed using 
Harmony (version 1.0). The number of harmonized prin-
cipal components to use for clustering was thereafter 
chosen based on an Elbowplot (Supplementary Fig.  4). 
Clustering was performed on the 22 first principle com-
ponents with 0.9 resolution.

Cell type identification
The classification of cell type identity was guided by 
two tools, CIPR (version 0.1.0) and singleCellNet (ver-
sion 0.1.0). CIPR was run on marker genes, calculated 
using the FindAllMarkers function on log-normalized 
data. The Presorted PBMC single-cell RNAseq data-
set, hsrnaseq, was used as reference. The resulting CIPR 
classification can be seen in Supplementary Fig.  5A. 
SingleCellNet was trained using data from Zheng et 
al. [50], available through the 10X Genomics Datasets 

database. The training dataset was filtered (200 < num-
ber of features < 1500 & percent mitochondrial < 5%) 
and normalized according to the main dataset. It was 
then trained (nTopGenes = 10, nRand = 70, nTrees = 1000, 
nTopGenePairs = 25) and prediction scores tested 
(nrand = 50). Thereafter, singleCellNet classification was 
run (nqRand = 50) on the log-normalized main data. The 
singleCellNet classification can be seen in Supplementary 
Fig.  5B, where the most commonly predicted cell type 
per cluster was used as identity for the entire cluster. The 
cell identities suggested by each tool were used to guide 
cell type classification, which ultimately was decided 
based on the expression of known marker genes in each 
cluster. These known marker genes included CD4, FHIT 
and CCR7 for Naïve CD4 + T lymphocytes, with FHIT 
and CCR7 negative as Helper T cells. CD4, FOXP3, 
IL2RA and TIGIT for Tregs, which were further sepa-
rated by CTLA4. CD8 for Cytotoxic T cells, while NKG7 
and GNLY indicated NK cells. Classical monocytes were 
identified by FCN1 and CD14, with non-classical mono-
cytes defined by the addition of FCGR3A. B-lymphocytes 
by CD19 and VPREB3. Additional clusters, exhibiting 
gene expression profiles not indicating any of the above 
marker genes, were classified as unidentified.

Differential expression analysis
Genes differentially expressed due to LOY were found 
with the Limma-trend algorithm. This was done per cell 
type, and included genes expressed in at least 10% of cells 
in the studied cell type. Using the Limma R package (ver-
sion 3.46.0), the model matrix was defined with LOY sta-
tus and sample origin specified as covariates. The model 
was thereafter fitted on the Log-normalized expression 
data with default settings, as well as LOY status set as 
the coefficient of interest and Benjamini-Hochberg as 
p-value adjustment method.

Gene set enrichment analysis
Fold changes for all genes, calculated using the limma 
package (see differential expression analysis), was col-
lected. Genes on the male specific region of the Y chro-
mosome were removed. After this, clusterProfiler 
(version 4.2.2) was used with fold changes for each gene, 
tested by the limma package, as a metric to calculate the 
enrichment of all gene sets present in the “Biological 
process” category of the gene ontology resource (http://
geneontology.org/). Clustering for categories was per-
formed using the pairwise_termsim function from the 
enrichplot R package (version 1.13.1.992).

Developmental trajectories
The cells defined as Naïve CD4 + T lymphocytes, Helper 
T cells and Tregs were selected to estimate develop-
mental trajectories. To avoid an issue with overfitting, 

http://geneontology.org/
http://geneontology.org/
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the number of cells was randomly decreased by a factor 
of 10 using the sample function in R. The seed was set 
to 14 for this step. The SeuratWrapper package (version 
0.3.0) was thereafter used in R (version 4.1.3) to trans-
form the sampled SeuratObject into a CellDataSet object 
used by Monocle3 (version 1.0.0), which was used to pre-
dict developmental trajectories. Monocle3 was run on 
the UMAP previously constructed, using the Louvain 
clustering method. The cluster designated as Y_73 was 
thereafter used as the root. Prior to running the devel-
opmental trajectory analysis, the random generator seed 
was set to 1477.

Public dataset
The three public datasets were collected via their cor-
responding GEO catalogues, GSE98638, GSE99254 
and GSE108989. They were processed similarly to 
as described above, with the exception of the steps 
described here. The analysis was performed in R ver-
sion 4.1.3 with Seurat version 4.1.0. Any step prior to 
integration was performed independently for each data-
set. Firstly, low quality cells were filtered based on the 
number of expressed features (nFeats) and UMI count 
(nUMI). nFeats was used instead of percent mitochon-
drial read as this was not available for the public datasets. 
The thresholds were chosen based on the correspond-
ing distribution (Supplementary Fig.  6) for liver cancer 
(2300 < nFeats < 4400; 3e5 < nUMI < 1.2e6), lung cancer 
(1800 < nFeats < 5200; 2e5 < nUMI < 1e6) and colorectal 
cancer (1800 < nFeats < 5200; 2e5 < nUMI < 1e6). Metadata 
was thereafter collected for the cells that passed filter-
ing via the identifier assigned to each cell by the original 
authors. Except for the numbers identifying the patient of 
origin for each cell, combinations of letters could be used 
to discern the sampled tissue and sorting. In addition to 
P, T and N denoting peripheral blood, tumor tissue and 
normal adjacent tissue, TR, TC and TH identified Tregs, 
cytotoxic T cells and T helper cells, respectively. Other 
identifiers were not present in all three datasets; these 
cells were therefore excluded. To classify LOY-status, the 
sex of each original sample was identified by comparing 
the expression of MSY genes. The list of Y located genes 
was collected using the BioMart package (version 2.40.0) 
on Ensembl (version 99). While the sex of each patient 
was clear, some females cells still expressed MSY genes. 
Considering the female MSY expression background 
noise, a threshold was created at the 95th quantile of total 
MSY expression in specifically female cells with any MSY 
expression. Additionally, most female MSY expression 
was from a single MSY gene. Thus, any male cells with a 
total MSY expression less than this threshold, as well as 
expression from only one or less MSY gene, were classi-
fied as LOY (Supplementary Fig. 7). After normalization 
using SCTransform (version 0.3.3). The three datasets 

were integrated, followed by the calculation of principal 
components. Harmony was used to remove batch effects 
attributed to patients and tissue of origin.

The first 15 dimensions from Harmony, chosen based 
on elbow plot (Supplementary Fig.  8), were finally used 
to cluster the cells to a resolution of 0.6. Due to the poor 
performance on this dataset by both cell type classifica-
tion algorithms, the cell type of each cluster was manu-
ally designated based on only the expression of known 
marker genes.

Statistics
To test if LOY was more common in Tregs than other 
T lymphocytes, Wilcoxon signed-rank test was used to 
compare the difference between LOY percentage values 
from the sample. For the validation dataset this was first 
done between Tregs and other T lymphocytes to reduce 
the number of tests performed, thereafter testing the 
difference between the Treg subsets. When comparing 
the Treg versus other CD4 + T lymphocytes abundance, 
non-parametric linear regression was used via the mblm 
package (version 0.12.1). A non-parametric model was 
necessary as the variables were not normally distrib-
uted. Further models to test the association between 
LOY-level and other factors such as cell type and tis-
sue was run either as an quasibinomial model with R’s 
glm function or a negative binomial model run with 
the MASS package (version 7.3–55). The negative bino-
mial model was used for the LOY to cell type test in the 
public datasets to account for additional data structures 
and sorting. Quasi models was also necessary to handle 
high levels of residual deviance. The produced models 
were run as a type 3 ANOVA using the car package (ver-
sion 3.0–10 and version 3.0–12 for the validation and 
public datasets, respectively), with contrasts defined as 
options(contrasts = c(“contr.sum”, “contr.poly”)). See Sup-
plementary Tables 2–4 for full models.
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