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Abstract
Background  Gastric cancer (GC) is one of the most common malignant tumors worldwide. Nevertheless, GC still 
lacks effective diagnosed and monitoring method and treating targets. This study used multi omics data to explore 
novel biomarkers and immune therapy targets around sphingolipids metabolism genes (SMGs).

Method  LASSO regression analysis was performed to filter prognostic and differently expression SMGs among 
TCGA and GTEx data. Risk score model and Kaplan-Meier were built to validate the prognostic SMG signature and 
prognostic nomogram was further constructed. The biological functions of SMG signature were annotated via multi 
omics. The heterogeneity landscape of immune microenvironment in GC was explored. qRT-PCR was performed to 
validate the expression level of SMG signature. Competing endogenous RNA regulatory network was established to 
explore the molecular regulatory mechanisms.

Result  3-SMGs prognostic signature (GLA, LAMC1, TRAF2) and related nomogram were constructed combing 
several clinical characterizes. The expression difference and diagnostic value were validated by PCR data. Multi omics 
data reveals 3-SMG signature affects cell cycle and death via several signaling pathways to regulate GC progression. 
Overexpression of 3-SMG signature influenced various immune cell infiltration in GC microenvironment. RBP-SMGs-
miRNA-mRNAs/lncRNAs regulatory network was built to annotate regulatory system.

Conclusion  Upregulated 3-SMGs signature are excellent predictive diagnosed and prognostic biomarkers, providing 
a new perspective for future GC immunotherapy.
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Introduction
Globally, the incidence and mortality rates of gastric can-
cer continue to remain alarmingly high, imposing a sig-
nificant burden on both society and the economy [1]. The 
burden imposed by gastric cancer underscores the urgent 
need for comprehensive strategies and initiatives aimed 
at prevention, early detection, and effective treatments.

The development of immune-targeted therapy has 
opened a new chapter in the treatment of gastric cancer. 
Immunotherapy works by boosting the body’s immune 
system to effectively attack and destroy cancer cells [2]. 
However, the development of immunotherapy is still lim-
ited by drug resistance and intolerance in the process [3]. 
It is urgent for us to explore new therapeutic targets in 
order to overcome these challenges and further advance 
immunotherapy.

Sphingolipids are a class of lipids with biological activi-
ties that play a crucial role in maintaining the struc-
tural integrity and functionality of cell membranes [4]. 
These molecules are composed of a sphingosine back-
bone, a fatty acid chain, and a polar head group. They 
are involved in various cellular processes, including cell 
adhesion, signal transduction, and lipid rafts formation. 
Recent studies have found that sphingolipid metabolism 
and downstream signaling pathways are closely asso-
ciated with the proliferation, metastasis, and immune 
response of malignant tumors [5]. Researches about 
precise mechanisms underlying these associations may 
uncover novel therapeutic targets for gastric cancer 
therapy.

In this study, we aim to utilize machine learning to 
screen prognostic-related sphingolipid metabolism genes 
(SMG) to identify novel prognostic and screening bio-
markers of sphingolipid metabolism genes in GC for clin-
ical application. We construct a gastric cancer prognosis 
model from The Cancer Genome Atlas (TCGA) database 
and normalized RNA-seq data from the Genotype-Tissue 

Expression (GTEx) data portal as well as clinical samples. 
Then, we perform multi-omics functional analysis to 
identify their biological functions and immune infiltra-
tion landscape, which can provide new insights for clini-
cal diagnosis, monitoring, and novel adjuvant therapies. 
The study flow-chart is shown in Fig. 1.

Materials and methods
Public database retrieval and clinical samples acquisition
The gene expression profiles and clinical information 
of gastric cancer patients by The Cancer Genome Atlas 
(TCGA) database (https://genome-cancer.ucsc.edu/) and 
normalized RNA-seq data from the Genotype-Tissue 
Expression (GTEx) data portal (https://www.gtexpor-
tal.org/home/index.html). The immortal human stom-
ach cell line GES-1, human GC cell lines (SGC-7903, 
MGC-803) were purchased from the Shanghai Institute 
of Biochemistry and Cell Biology, Chinese Academy of 
Sciences, China. The clinical GC tissues, paired adja-
cent nontumorous tissues (5  cm away from the edge of 
GC tissue) were collected from 40 newly diagnostic adult 
patients with advanced GC received gastrectomy from 
The First Affiliated Hospital of Ningbo University, China, 
between 2022 and 2023. All patients participate in the 
study voluntarily and underwent curative intent resection 
excluding other malignant tumors. All procedures abide 
by the Declaration of Helsinki principles and our study is 
approved by the Ethics Committee of the First Affiliated 
Hospital of Ningbo University (No. KY2024KY1515).

Identification of three prognostic-related SMGs via 
machine learning
Differentially expressed SMGs were identified by Stu-
dent’s t-test. Least absolute shrinkage and selection 
operator (LASSO) regression analysis was performed 
via “glmnet [V 4.1.7]” in R software [V 4.2.1] and ten-
fold cross-validation was used to determine the penalty 

Fig. 1  Flow chart of this study
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regularization parameter λ [6, 7]. Overall survival ben-
efit was assessed by Kaplan–Meier analysis to filter the 
core genes. Then, univariate regression and multivariate 
COX regression model was constructed to identify and 
compute the coefficients of the core genes to build risk 
score model. Risk score = CoefSMG1 * ExpressionSMG1 + 
CoefSMG2 * ExpressionSMG2 + CoefSMG3 * ExpressionSMG3 
for each patient.

Construction and validation prognostic nomogram model
As mentioned before, the risk factors in the multivari-
ate regression and risk score model were incorporated 
into the prognostic model. R package survival [V3.3.1], 
and rms [V 6.3-0] were performed to build the 1-, 3- 
and 5-year overall survival time (OS) prediction nomo-
gram model and calibration curves. Concordance index 
(C-index) was calculated to estimate the discrimination 
of nomogram. The calibration curves lie on the diago-
nal 45-degree line suggesting an ideal nomogram model. 
Decision curve analysis (DCA) curves were generated to 
evaluate the clinical benefit of our model.

Evaluation of the diagnostic value of SMGs in GC
Receiver operating characteristic (ROC) curve analysis 
was performed to assess the diagnostic values of prog-
nostic-related SMGs in TCGA GC cohorts. Combina-
tion diagnosis was conducted to improve the diagnostic 
effect. Clinical samples were used to validate the results.

Analysis of gene mutation of prognostic-related SMGs
Mutation data was obtained from cBioPortal (https://
www.cbioportal.org/), an online tool for cancer genomics 
[8]. Stomach Adenocarcinoma (TCGA, PanCancer Atlas) 
was chosen and genetic alternation, cancer subtypes, 
methylation, copy number alterations (CNAs) were ana-
lyzed. MethSurv is a web tool of detecting multivariable 
survival analysis using DNA methylation data, which was 
performed to investigate the methylation level of SMGs 
and prognosis [9].

Biological function annotation by multi-omics
GeneMANIA prediction server (https://genemania.org/) 
is an interactive network exploration portal for infer-
ring and visualizing interesting genes [10]. These inter-
active genes were input into STRING V12.0 (https://
cn.string-db.org/) to establish protein-protein interac-
tion (PPI) network [11]. Interactions of high confidence 
(score ≥ 0.700) were considered.

The competing endogenous RNAs (ceRNAs) hypoth-
esis supposes a reciprocal modulation of ceRNA tran-
script and of the interacting miRNAs [12]. The miRNAs 
targeted to the core SMGs and downstream mRNAs 
were predicted by DIANA-TarBase 8.0 [13]. The long 

non-coding RNAs (lncRNAs) binding to miRNAs were 
detected via DIANA-LncBase v3 [14].

KEGG pathway enrichment analysis, gene ontology 
(GO) classification and Gene Set Enrichment Analysis 
(GSEA) were used to explore the biological functions 
and visualized via R packages “clusterProfiler [V 4.4.4]” 
and “ggplot2”. P value < 0.05 and False Discovery Rates 
(FDR) < 0.25 represent statistically significant difference.

Immunity analysis of prognostic-related SMGs
The relationships between the expression level of prog-
nostic-related SMGs and immune cell infiltrations 
were analysed by R packages “GSVA (1.46.0)” and “esti-
mate (1.0.13)” with the default parameters [15]. Tumor 
Immunization Single Cell Center (TISCH, http://tisch.
comp-genomics.org/home/), a single-cell RNA sequenc-
ing database about tumor microenvironment, was per-
formed to investigate the purity and immune infiltration 
of prognostic-related SMGs in GC [16].

Establishment of competing endogenous RNA regulatory 
network
The competing endogenous RNA regulatory network 
was built on the basis of prognostic-related SMGs. The 
miRNAs targeted to the prognostic-related SMGs were 
acquired from TarBase v.9 (https://dianalab.e-ce.uth.gr/
tarbasev9) [17]. The modules such as “high experimental 
throughput”, “direct experimental type”, “high confidence 
miRNAs only”, “primary interactions only” were selected 
to refine results with high stringency. Subsequently, the 
potential associations between miRNAs and mRNAs, 
long noncoding RNAs (lncRNAs) were explored using 
starBase (https://rnasysu.com/encori/index.php) [18]. 
The recommend parameters were set to filter high strin-
gency results: CLIP Data ≥ 3, pan-Cancer ≥ 5. Likewise, 
RNA binding protein (RBP) interacted with prognostic-
related SMGs was screened using the “RBP-Disease”, 
“RBP-mRNA” modules in starBase as well. CLIP Data ≥ 5 
and pan-Cancer ≥ 5 were deemed as high stringency.

Expression validation by quantitative real-time PCR (qRT-
PCR)
The separated tissue was preserved by immediate immer-
sion in RNA save solution (Biological Industries, Israel) 
in an Eppendorf tube and frozen immediately by immer-
sion in liquid nitrogen for further RNA isolation. All 
of the RNA was extracted from cells and tissues using 
TRIzol reagents (Ambion, Carlsbad, CA, USA) based on 
instructions provided by the kit manual. Total RNA was 
used as a template and reverse transcribed to cDNA with 
a GoScript Reverse Transcription (RT) System (Promega, 
Madison, WI, USA) according to the manufacturer’s 
instructions [19]. Then, qRT-PCR detection was per-
formed via GoTaq qPCR Master Mix (Promega) whose 
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conditions were as follows: 95°C for 5 min, followed by 
40 cycles of 94°C for 15 s, 52°C for 30 s, and 72°C for 30 s. 
GAPDH mRNA was chosen to normalize and the primer 
sequences were as follows: GLA: forward, 5’-​G​C​C​C​C​T​G​
A​G​G​T​T​A​A​T​C​T​T​A​A-3’, reverse, 5’- ​A​A​C​T​G​T​T​C​C​C​G​T​
T​G​A​G​A​C​T​C-3’; LAMC1: forward, 5’- ​G​C​C​T​T​C​C​T​G​A​
C​C​G​A​C​T​A​C​A​A​C​A​A​C-3’, reverse, 5’- ​G​C​G​G​C​T​G​G​T​G​
T​G​G​A​A​C​T​T​G​A​G-3’; TRAF2: forward, 5’- ​G​A​T​G​G​G​G​
G​T​C​T​T​C​A​T​C​T​G-3’, reverse, 5’-​C​G​T​A​G​G​T​G​G​A​T​G​C​C​
T​C​C-3’; GAPDH: forward, 5’-​A​C​C​C​A​C​T​C​C​T​C​C​A​C​C​
T​T​T​G​A​C-3’, reverse, 5’-​T​G​T​T​G​C​T​G​T​A​G​C​C​A​A​A​T​T​C​
G​T​T-3’. ΔCt method was used to quantify (ΔCt = Ctgene- 
CtGAPDH). A higher ΔCt value means a lower expression 
level.

Statistical analysis
Analyses in this study were flexibly chosen R software 
(version 4.2.1), cytoscape (version 3.10.1) or GraphPad 
(version 8.02), and their support packages were as men-
tioned before. P < 0.05 was considered to indicate a sig-
nificant difference.

Results
Construction 3-SMGs signature via LASSO regression 
analysis
97 SMGs were selected (Supplementary Table 1) and 67 
SMGs were identified as differentially expressed SMGs 
by Student’s t-test shown in supplementary Fig. 1 (Fig S1) 
using TCGA and GTEx samples. For the LASSO regres-
sion analysis, 7 candidate genes (ARSK, CREM, GLA, 
KIT, LAMC1, PSAPL1, TRAF2) were screened from 
the 67 SMGs in TCGA GC cohorts in Fig.  2A-B. Then, 
Kaplan–Meier analysis was performed and 3 OS related 
SMGs were filtered including GLA, LAMC1, TRAF2 
(Fig.  2C-E). Co-expression network analysis suggested 
that the expression level of these SMGs was closely 
related with risk scores in Fig. 2F.

Clinical correlation and survival analysis of 3-SMGs 
signature
As the potential significance of 3-SMGs, the clinical 
values were further dig out. ROC curves were built to 
calculate the area under the curve (AUC). The results 
suggested that GLA, LAMC1, TRAF2 can serve as 
valuable diagnostic markers with clinical application 
(Fig. 3A-B). Univariate analysis and multivariate analysis 
Cox regression were performed according to the TCGA 
GC cohort (Table  1). Based on this result, the risk fac-
tor model was established: Risk score = 0.786* GLA 
exp + 1.296 * LAMC1 exp + 0.771* TRAF2 exp. Subse-
quently, samples of TCGA GC cohort were divided into 
high and low group in line with the risk score (Fig. 3C). 
Kaplan–Meier analysis indicated that higher risk scores 
accompanied with bad outcome (Fig.  3D, P = 0.005). 

Finally, the prognostic nomogram was constructed 
shown in Fig. 3E. The C-index of the nomogram model 
was 0.678 (0.652–0.703), which had a well accuracy illus-
trated by the calibration curves in Fig.  3F. The 1-year, 
3-year, 5-year DCA curves for the risk score model and 
prognostic nomogram were presented in Fig.  3G-I, 
implying superior clinical usefulness of the models.

Biological function exploration of 3-SMGs signature
Genomics data from cBioPortal provided a detailed 
structural description of the cancer genome. The altera-
tion frequency, CNA of GLA, LAMC1, TRAF2 in sev-
eral subtypes of gastric cancer was revealed in Fig. 4A-C. 
Likewise, methylation level was also analyzed shown 
in Fig.  4D-F. Phosphorylated mutation sites of GLA, 
LAMC1, TRAF2 were displayed in Fig. 4G-I. Moreover, 
the relationships between methylation level and survival 
were detected via MethSurv tool, which implied that 
GLA and LAMC1 methylation associated to GC overall 
survival time (Fig. 4J-K).

Then, 3-SMGs was uploaded in GeneMAINA as hub 
genes and gene interactions network including other 20 
genes was built (Fig. 5A). Subsequently, these genes were 
input into String and constructed PPI network (Fig. 5B). 
Furthermore, these proteins were used to perform 
KEGG, Go enrichment analysis, which displayed that the 
function of these proteins were focused on several signal-
ing pathways and cell death (Fig. 5C). GSEA enrichment 
analysis disclosed that these proteins influenced cell cycle 
especially mitotic phase checkpoints (Fig. 5D). In general, 
3-SMGs signature may affect cell cycle and death via sev-
eral signaling pathways to regulate GC progression.

Immune infiltration landscape of 3-SMGs signature
In consideration of altered immune profile may affect 
tumor progression and patient survival, the relationship 
between 3-SMG signature and immune cell infiltration 
in GC microenvironment is essential to investigate [20]. 
Our results found that the expression of GLA, LAMC1, 
TRAF2 correlated to several immune cells in TCGA GC 
cohort (Fig.  6A-C). Meanwhile, the expression of GLA, 
LAMC1, TRAF2 and immune score, estimate score, 
stromal score of each sample was estimated displayed 
in lollipop plot (Fig. 6D-F). Moreover, tumor purity and 
composition, spatial distribution of immune cells were 
evaluated via single-cell RNA (scRNA) sequencing by 
TISCH using GSE134520 and GSE167297 in Fig.  6G-N. 
All of the results revealed that the set of 3-SMG signature 
were closely linked with various immune cells infiltration 
in GC microenvironment.

Establishment of ceRNA regulatory network
CeRNA is generally considered to form regulatory net-
works controlling important biological functions and 
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processes in tumorigenesis so the roles of 3-SMGs signa-
ture naturally caught our attention [21]. MiRNAs bind-
ing to 3-SMGs were retrieved using Tarbase v.9 database 
and two miRNAs, miR-103a-3p, miR-15b-5p, were co-
targeted by GLA, LAMC1, TRAF2. Similarly, the down-
stream mRNA, lncRNA targets of both miRNAs were 
screened as well. Totally 25 mRNAs, 4 lncRNAs were 
selected.

As a crucial component of upstream regulator, GC-
specific RBPs were investigated and there were 19, 8 eli-
gible RBPs for LAMC1 and TRAF2. Finally, the ceRNA 

regulatory network was built by cytoscape software in 
Fig. 7.

Expression level validation by qRT-PCR
Cells and clinical samples were used for validating the 
expression level and clinical significance of 3-SMGs sig-
nature. All of 3-SMGs were overexpression in GC cells 
shown in Fig.  8A-C (*P < 0.05, **P < 0.01, ***P < 0.001). 
Furthermore, the expression level of 3-SMGs were upreg-
ulated in GC tissues compared to paracarcinoma tissues 
in Fig. 8D-F (P < 0.05), which was consistent with the cell 
line results. The baseline characteristics of the patient 

Fig. 2  Identification of prognostic related SMGs signature. (A) Ten-time cross‐validation for tuning parameter selection in the LASSO model of TCGA GC 
cohort. (B) Coefficient profiles of LASSO model. (C-E) Kaplan-Meier analysis of the expression of GLA (C), LAMC1 (D), TRAF2 (E) in TCGA GC cohort. (F) Co-
expression correlation between 3-SMGs signature and prognostic SMGs
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was showed in Sup Table 2. Meanwhile, the ROC curves 
of GLA, LAMC1, TRAF2 were built in Fig.  8G and 
combined diagnosis was applied to improve diagnosis 
accuracy in Fig. 8H. All of the results suggested that over-
expression 3-SMGs signature were potential GC diagnos-
tic and prognostic biomarkers.

Discussion
Even to this day, gastric cancer still causes high number 
of cancer-related deaths worldwide, which is of utmost 
importance for us to explore novel targets to screen, 
monitor and targeting therapy [22, 23]. Sphingolipids 
metabolism is a crucial progress of cell growth, prolifera-
tion, apoptosis and emerging evidence point out its roles 
in meditating tumor initiation, signaling and develop-
ment [24]. As fewer reports of relationship of sphingolip-
ids metabolism and GC, our study systemically integrates 
multi-omics data to illustrate the unique characteristics 
of SMGs in GC, aiming at providing theoretical supports 
and clinical application targets.

In this study, 67 SMGs were firstly identified as differ-
entially expressed SMGs. Then, LASSO regression analy-
sis was performed to filter 3 prognostic related SMGs 
including GLA, LAMC1, TRAF2. GLA is a vital gene 
regulating glycosphingolipid metabolism and mutation 
of GLA can cause glycosphingolipid accumulation and 
life-threatening, multi-organ complications [25]. The 
influence of overexpression GLA in malignant tumors 
even in GC remains unknown. Recent researches have 
proven LAMC1 is a critical prognostic factor and poten-
tial target in several tumors, which is a promising target 
for future therapy [26, 27]. It has been convinced that 
TRAF2 promote M2-polarized tumor-related macro-
phage infiltration, cancer progression and angiogenesis 
and by decreasing autophagy in clear cell renal cell car-
cinoma [28]. All evidence also indicated the importance 
of 3-SMGs and the significance of them is worthy to dig 
out. Our PCR data further proved these overexpression 
level and diagnosed value. Going further, we evaluated 
prognostic values and constructed risk model and novel 
prognostic nomogram according to TCGA cohort, which 
is worthy for validating in future, prospective, multi-cen-
ter clinical trials.

Then, multi-omics data was used to examine the bio-
logical functions of 3-SMGs signature. Genomic data 
reveals the alteration frequency, CNA and methylation 
level of 3-SMGs. As mentioned before, the mutation of 
GLA can trigger decreased/absent α-galactosidase activ-
ity even fabry disease. Meanwhile, enzyme activity and 
substrate/byproduct accumulation are important in 
tumor diagnosis and disease-monitoring biomarkers, 
which implies the future application of GLA [29]. It has 
been proven that LAMC1 rarely methylated in breast 
cancer but our result illustrated the role of LAMC1 
methylation in GC outcome, which suggests the prog-
nostic significance of LAMC1 as well [30]. Subsequently, 
gene, proteins interact networks were built and biologi-
cal functions were analyzed. Our results showed that 
3-SMGs signature correlated to cell cycle and death via 

Fig. 3  Clinical values explorations of 3-SMGs. (A) Diagnostic value of 
GLA, LAMC1, TRAF2 in TCGA and GTEx cohorts. (B) Combing diagnosis of 
3-SMGs in TCGA and GTEx cohorts. (C) Distribution of risk scores between 
high- and low- risk groups in TCGA GC cohort. (D) Kaplan-Meier analysis of 
risk model. (E) Construction of prognostic nomogram based on risk score. 
(F) The 1, 3, and 5, year calibration plots of the overall survival nomogram 
model. (G-I) The 1, 3, and 5, year DCA curves of the nomogram
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several signaling pathways to GC initiation and progres-
sion, which provides directions for further molecular bio-
logical research.

As targeted and immune therapies receive more and 
more attentions, it is pivotal to understand the immune 
landscape of tumor microenvironment and host immu-
nity for combining chemotherapy with immunotherapy 
[31]. Spitzel M found that expression of GLA correlated 
to dysregulation of immune response in fabry disease, 
prompting its role in immunotherapy response [32]. 
Similarly, recent research pointed out that overexpres-
sion LAMC1 took part in the immune response and 
immune infiltration in diabetic kidney disease according 
to the immunohistochemistry results, which indicates 
the unique role of LAMC1 in the immune therapy in the 
future [33]. Wu’s study revealed LILRB3 regulated T-cell 
antitumor immune responses through the TRAF2-cFLIP-
NF-κB signaling axis, which can be reversed via block-
ing TRAF2 signaling with antagonizing antibodies [34]. 
In this study, the association between 3-SMGs signature 
and GC microenvironment was further deeply excavated, 
offering new insights into the future GC immunity and 

how this information can be harnessed towards effective 
personalized immunotherapy strategies.

Increasing investigations of miRNA regulatory mecha-
nisms in tumors have been greatly expanded by recent 
findings of ceRNA network, which is the main mecha-
nism of mRNAs and lncRNAs in human cancers [35]. At 
the same time, given the role of RBPs in cancer emerges, 
the synergic or competitive ability of RBPs to interact 
with various downstream RNAs make it an appropriate 
group to be selectively dysregulated in cancer [36]. Our 
research provided an innovatively prospect about inte-
grating both regulatory mechanisms and built a novel 
RBP-SMGs-miRNA-mRNAs/lncRNAs regulatory net-
work. Interestingly, the co-target such as lncRNA FGD5-
S1, ZNF622 may be important targets for future studies 
and GC therapy.

There are still some limitations in our study. Truly, the 
result of the diagnostic AUC in validation cohort is con-
sistent with the public data but it is not as high as the test 
cohort in TCGA and GTEx. We suppose the fold changes 
may possibly be the minor discrepancy between the qRT-
PCR expression levels and high-throughput sequenc-
ing themselves in the sensitivity and specificity [37–38]. 

Table 1  Univariate analysis and multivariate analysis cox regression in TCGA GC cohort
Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value
Age 367 1.022 (1.005–1.039) 0.009 1.037 (1.017–1.057) < 0.001
Histologic grade 361
G1 10 Reference
G2 134 1.648 (0.400–6.787) 0.489
G3 217 2.174 (0.535–8.832) 0.278
Gender 370
Female 133 Reference
Male 237 1.267 (0.891–1.804) 0.188
Stage I 50 Reference Reference
Stage II 110 1.551 (0.782–3.078) 0.209 1.529 (0.516–4.528) 0.443
Stage III 149 2.381 (1.256–4.515) 0.008 1.487 (0.360–6.139) 0.583
Stage IV 38 3.991 (1.944–8.192) < 0.001 3.317 (0.764–14.410) 0.110
Pathologic T stage 362
T1 18 Reference Reference
T2 78 6.725 (0.913–49.524) 0.061 3.606 (0.451–28.806) 0.226
T3 167 9.548 (1.326–68.748) 0.025 4.013 (0.449–35.894) 0.214
T4 99 9.634 (1.323–70.151) 0.025 3.851 (0.417–35.570) 0.235
Pathologic N stage 352
N0 107 Reference Reference
N1 97 1.629 (1.001–2.649) 0.049 1.220 (0.600–2.480) 0.583
N2 74 1.655 (0.979–2.797) 0.060 1.447 (0.607–3.449) 0.404
N3 74 2.709 (1.669–4.396) < 0.001 1.847 (0.779–4.376) 0.163
Pathologic M stage 352
M0 327 Reference Reference
M1 25 2.254 (1.295–3.924) 0.004 1.255 (0.537–2.936) 0.600
GLA 370 0.799 (0.615–1.039) 0.094 0.786 (0.556–1.109) 0.170
LAMC1 370 1.226 (1.047–1.435) 0.011 1.296 (1.089–1.543) 0.004
TRAF2 370 0.768 (0.590–0.999) 0.049 0.771 (0.541–1.098) 0.150
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Fig. 4  Genomic analysis of 3-SMGs. (A-C) Alteration frequency, CNA of GLA (A), LAMC1 (B), TRAF2 (C) in GC subtypes. (D-F) Association between methyla-
tion level and alteration of GLA (D), LAMC1 (E), TRAF2 (F) in GC. (G-I) Phosphorylated mutation sites of GLA, LAMC1, TRAF2. (J-K) Lower methylation level 
of GLA, LAMC1 correlated with bad overall survival time of GC
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Nevertheless, the diagnostic efficiency of 3-SMGs signa-
ture is much better than traditional tumor biomarkers 
such as carcinoembryonic antigen (CEA), carbohydrate 
antigens 19 − 9 (CA19-9), CA125 [39]. Thus, we believe 
this 3-SMGs signature still has promising future with a 
low-cost by PCR. Likewise, though our nomogram has an 
amazing AUC in prognosis, clinical monitor even treat-
ment decisions should be guided by both nomogram and 
entry criteria especially in tumor recrudesce patients 
rather than merely nomogram estimated risk [40]. In 
summary, large randomized clinical trials are essential to 
confirm the superiority of our model.

In conclusion, upregulated 3-SMGs signature are 
excellent predictive diagnosed and prognostic bio-
markers, providing a new perspective for future GC 
immunotherapy.

Fig. 5  Proteomics analysis and biofunction investigation. (A) The top 20 genes associated with 3-SMGs using GeneMANIA. (B) Construction of PPI net-
work using top 20 genes. (C) KEGG and Go enrichment analysis of PPI network. (D) GSEA analysis of PPI network
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Fig. 6  Immune cell infiltration landscape of 3-SMG signature. (A-C) The lollipop diagram of the expression of GLA, LAMC1, TRAF2 and immune cell 
infiltration. (D-F) The stromal score, estimate score, immune score of different expression level of GLA, LAMC1, TRAF2 in TCGA cohort. (G-I) Annotation 
of GLA, LAMC1, TRAF2 expression in various cells from STAD_GSE134520. (J-L) Annotation of GLA, LAMC1, TRAF2 expression in various cells from STAD_
GSE167297. (M-N) Distribution proportion of various immune cells in STAD_GSE134520 and STAD_GSE167297 cohorts
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