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Abstract
Background Tumor cells exhibit a heightened susceptibility to lysosomal-dependent cell death (LCD) compared 
to normal cells. However, the role of LCD-related genes (LCD-RGs) in Osteosarcoma (OS) remains unelucidated. This 
study aimed to elucidate the role of LCD-RGs and their mechanisms in OS using several existing OS related datasets, 
including TCGA-OS, GSE16088, GSE14359, GSE21257 and GSE162454.

Results Analysis identified a total of 8,629 DEGs1, 2,777 DEGs2 and 21 intersection genes. Importantly, two 
biomarkers (ATP6V0D1 and HDAC6) linked to OS prognosis were identified to establish the prognostic model. 
Significant differences in risk scores for OS survival were observed between high and low-risk cohorts. Additionally, 
scores of dendritic cells (DC), immature DCs and γδT cells differed significantly between the two risk cohorts. 
Cell annotations from GSE162454 encompassed eight types (myeloid cells, osteoblastic OS cells and plasma 
cells). ATP6V0D1 was found to be significantly over-expressed in myeloid cells and osteoclasts, while HDAC6 was 
under-expressed across all cell types. Moreover, single-cell trajectory mapping revealed that myeloid cells and 
osteoclasts differentiated first, underscoring their pivotal role in patients with OS. Furthermore, ATP6V0D1 expression 
progressively decreased with time.

Conclusions A new prognostic model for OS, associated with LCD-RGs, was developed and validated, offering a fresh 
perspective for exploring the association between LCD and OS.
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Introduction
Osteosarcoma (OS) represents a highly aggressive malig-
nant bone tumour, predominantly affecting children 
under nine years old, with an incidence of 2.3 new cases 
per million in the past decade [1]. Commonly located in 
the long bones, particularly around the knee, OS mani-
fests with symptoms such as severe pain, bone swelling 
and, in some cases, pathologic fractures [2]. Approxi-
mately 25% of patients are diagnosed with metastatic 
disease, with the lung being the most frequent site of 
metastasis [3]. Despite notable advancements in treat-
ment, including the introduction of neoadjuvant and 
adjuvant chemotherapy in the 1970s, progress in disease-
free recurrence and overall survival has plateaued since 
the 1980s [4]. Moreover, patients with metastatic disease 
face a grim prognosis, with a 5-year overall survival rate 
ranging from 10–30% [5]. The turn of the 21st century 
witnessed significant advancements in the understand-
ing of OS biology, owing to the widespread availability 
of technologies for comprehensive molecular profiling 
and well-annotated tissue banks [6]. Consequently, there 
is a growing need to identify novel prognostic biomark-
ers that could enhance the survival outcomes of patients 
with OS and unveil novel therapeutic avenues.

Lysosomes, single-membrane cellular organelles, play 
crucial roles in macromolecular degradation, plasma 
membrane repair, antigen presentation, cell surface 
receptor recycling and apoptotic signalling [7]. The integ-
rity of lysosomal membranes is pivotal for cellular fate 
as an alteration in membrane permeability leads to the 
release of various lysosomal enzymes, mainly cathep-
sins, into the cytoplasm, leading to the degradation of 
crucial cellular components and/or activation of apop-
totic pathways, which is defined as lysosomal-dependent 
cell death (LCD) and characterized by the rupture of the 
lysosome [8, 9]. Studies report that cancer cells with lyso-
somes exhibiting weaker membrane stability than normal 
cells are more susceptible to lysosomal membrane per-
meabilization (LMP) and consequent LCD [10, 11]. For 
instance, Jiang et al. demonstrated that the accumula-
tion of lysosomes, which are subject to increased levels 
of LMP, facilitates the apoptosis of cells in acute myeloid 
leukaemia [12]. However, the exact role of LCD in the 
progression of OS remains unclear. Targeting lysosomes 
to induce LCD presents a promising strategy for can-
cer treatment [13], underscoring the urgency to explore 
LCD-related genes (LCD-RGs) and associated molecular 
mechanisms in OS.

Herein, leveraging OS-related data from public data-
bases, we employed bioinformatics methodologies to 
identify prognostic biomarkers associated with LCD in 
patients with OS. Subsequently, we developed a novel 
prognostic model to elucidate the biological pathways 
underlying these prognostic genes and their relationship 

with clinical characteristics, immune microenvironment 
and drug sensitivity. Furthermore, we delved into the 
functional roles of these biomarkers through single-cell 
analysis, aiming to unveil novel immunotherapy and tar-
geted therapy strategies, thereby offering a new perspec-
tive for improving the prognosis of patients with OS.

Materials and methods
Data source
OS dataset was obtained from The Cancer Genome Atlas 
(TCGA) database (https://portal.gdc.cancer.gov/), com-
prising 84 patient samples with overall survival. These 
were divided into training and testing sets in a 5: 5 ratio, 
with 42 patients each. Additionally, datasets GSE16088 
(GPL96), GSE14359 (GPL96), GSE21257 (GPL10295) and 
GSE162454 (GPL24676) were retrieved from the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/), with sample types labelled as tumor. 
The GSE16088 contained 14 OS samples and six control 
samples, and GSE14359 included eight lung metastasis 
and 10 non-metastasis patients with OS. The GSE21257 
dataset provided 53 patient samples for external valida-
tion, while the single-cell dataset GSE162454 included 6 
OS tumour tissues. A total of 220 LCD-RGs were sourced 
from previously published literature [14]. The specific 
flowchart of the study was shown in Fig. 1.

Differentially expressed genes (DEGs) screening and gene 
enrichment analysis
Differential expression analysis identified DEGs1 
between OS and control cohorts in GSE16088 and 
DEGs2 between metastasis and non-metastasis patients 
with OS in GSE14359, utilising the limma package (v 
3.48.3) [15], with a criteria of adj.P < 0.05 and|log2FC| ≥ 
0.5. Intersection genes were determined by overlapping 
DEGs1, DEGs2 and LCD-RGs. A protein-protein inter-
action (PPI) network was constructed using the STRING 
website (https://string-db.org) based on these intersec-
tion genes. Furthermore, Gene Ontology (GO), encom-
passing Cellular Components (CC), Molecular Functions 
(MF) and Biological Process (BP), along with Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis, were 
performed using the cluster Profilerpackage (v 4.0.2) [16] 
to elucidate the functional roles of intersection genes.

Construction and validation of prognostic model
Using the intersection genes, univariate Cox regression 
analysis (survival package, v 3.2–13) [17] and least abso-
lute shrinkage and selection operator (LASSO) regres-
sion analysis (glmnet package, v 4.1-3) [18] were utilized 
to select prognostic genes as biomarkers in the training 
set. Risk scores were computed using the formula.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org
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risk score =

n∑

i=1

(coefi*Xi) ′

where Coef and X represent coefficients and gene expres-
sions, respectively. A prognostic model was developed 
and evaluated using the proportional hazards (PH) 
assumption test. Samples from the training set were 
stratified into high- and low-risk cohorts based on the 
median risk score, and risk curves and biomarker expres-
sion heatmaps were generated using the ggplot2 package 
(v 3.3.5) [19]. Additionally, Kaplan-Meier (K-M) survival 
curves were plotted for both cohorts of the training set 
using the survminer package (v 0.4.9). To further ensure 
the validity of our risk model, receiver operating char-
acteristic (ROC) curves were constructed for 1, 3 and 
5 years, and area under the curves (AUC) values were 
computed using survivalROC (v 1.0.3) [20]. Validation 
of the prognostic model was performed using the testing 
set and GSE21257. Moreover, biomarkers expression in 
tumour and normal cohorts of GSE16088 and in metas-
tasis and non-metastasis patients with OS of GSE14359 
was analysed and compared using box plots.

Correlation analysis of clinical characteristics and 
construction of nomogram
The distribution of risk scores among five clinical char-
acteristics (status, age, gender, race and metastatic) was 
assessed using the Wilcoxon test. Subsequently, univari-
ate Cox regression analysis was conducted for risk score 

and the five clinical characteristics, with factors having 
P < 0.05 included in multivariate Cox regression analysis 
to identify independent prognostic factors. A nomogram 
was constructed based on these factors, and survival 
rates at 1, 3 and 5 years were predicted. The predictive 
performance of the nomogram was evaluated using cali-
bration and ROC curves.

Enrichment analysis of risk cohorts
Gene set enrichment analysis (GSEA) was performed 
based on log2FC, with threshold settings of|NES| > 1, 
NOMP < 0.05 and q < 0.25 for all genes in risk cohorts. 
Enrichment of GO terms (background gene set: c5.go.
v7.4.entrez.gmt) and KEGG pathways (background gene 
set: c2.cp.kegg.v7.4.entrez.gmt) associated with genes in 
risk cohorts were conducted using the clusterProfiler and 
org.Hs.eg.db packages (v 3.13.0).

Immune-related analysis and drug prediction
The single sample GSEA (ssGSEA) algorithm was 
employed to determine the percentage of 24 types of 
infiltrating immune cells. Differences in the percent-
age of infiltrating immune cells between two cohorts 
were assessed using the Wilcoxon test. Spearman cor-
relation analysis was utilised to examine the relationship 
between risk scores and significantly different immune 
cell populations. Additionally, the expression level of 
immune checkpoints in risk cohorts and their correla-
tion with risk scores and differentially expressed immune 

Fig. 1 The flowchart for this study. GSE, gene expression omnibus series; DEGs, differentially expressed genes; PPI, protein-protein interaction; LCD-RGs, 
lysosomal-dependent cell death-related genes; LASSO, least absolute shrinkage and selection operator; TCGA-OS, The Cancer Genome Atlas-osteosarco-
ma; K-M, Kaplan-Meier; ROC, receiver operating characteristic; GSEA, gene set enrichment analysis; TF, transcription factor
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checkpoints were investigated using Wilcoxon and Spear-
man analyses, respectively. The half maximal inhibitory 
concentration (IC50) values of 198 anticancer drugs were 
computed and compared based on the Genomics of Drug 
Sensitivity in Cancer (GDSC) database (https://www.can-
cerrxgene.org/) through oncoPredict (v 0.2).

Single-cell analysis
Initially, single-cell data were evaluated, and low-qual-
ity cells were filtered out using the Seurat package (v 
4.1.0) [15] with parameters set at min.cells = 3 and min.
features = 200. The vst method of FindVariableFeatures 
function was applied to identify highly variable genes for 
downstream analysis. Subsequently, principal compo-
nent analysis (PCA) downscaling was conducted to select 
principal components (PCs) after calibration by harmony 
(v 0.1.1) [21]. Unsupervised clustering analysis was then 
performed on the filtered cells using the FindNeighbors 
and FindClusters functions, and the results were visu-
alised using t-SNE. Clusters were annotated based on 
cell annotations combined with marker genes from the 
CellMark database. Next, the expression of biomark-
ers in different cell types was analysed and illustrated 
using UMAP and violin plots. Finally, pseudo-temporal 
analysis was conducted using the Monocle 2 algorithm 
in Monocle (v 2.24.1) [22] to project different types of 
core cells onto a root and construct single-cell trajec-
tory maps of biomarkers. Based on the CellPhone DB 
database, the number of interacting ligand-receptors and 
multimers between various cell subtypes were computed 
and filtered to perform cellular communication analysis 
of single-cell data with a screening threshold of P ≤ 0.05, 
log2mean (Molecule 1 and 2) ≥ 0.1. Additionally, tran-
scription factor (TF) activity in different cell types was 
calculated using Dorothea (v 1.7.2) [23].

Statistical analysis
All analyses were conducted using the R programming 
language, with statistical significance set at P < 0.05.

Results
Identification and function analysis of DEGs
A total of 8,629 DEGs1 (3,686 upregulated and 4,943 
downregulated) and 2,777 DEGs2 (1,484 upregulated 
and 1,293 downregulated) were identified in GSE16088 
and GSE14359, respectively (Fig.  2A-B). By overlapping 
DEGs1, DEGs2 and LCD-RGs, 21 intersection genes 
were obtained (Fig. 2C), and the PPI network illustrated 
interactions among these 21 genes (Fig.  2D). For exam-
ple, ATP6V0D1 interacted with LAMP1 and CTSD. 
Functional enrichment analysis revealed associations 
of intersection genes with 394 GO BP terms (e.g. ‘lyso-
some localization’, ‘lysosomal transport’, ‘vacuolar trans-
port’), 63 GO CC terms (e.g. ‘lysosomal membrane’, ‘lytic 

vacuole membrane’, ‘vacuolar membrane’) and 64 GO MF 
terms (e.g. ‘sterol transporter activity’, ‘peptidase activa-
tor activity’, ‘endopeptidase activity’) (Fig. 2E). Addition-
ally, eight functional pathways were enriched in KEGG, 
including ‘lysosomes’, ‘apoptosis’ and ‘autophagy’.

Construction, evaluation and validation of the prognostic 
model
Two prognostic genes (ATP6V0D1 and HDAC6) were 
identified as biomarkers through univariate Cox and 
LASSO regression analyses based on the 21 intersection 
genes (Fig.  3A-B). The prognostic model passed the PH 
assumption test (P = 0.217), and risk scores were com-
puted accordingly (Fig. 3C). Subsequently, risk curves and 
heatmap of gene expression in risk cohorts were gener-
ated based on risk scores (Fig. 2D). The risk score formula 
was determined as risk score = -4.24×ATP6V0D1+-
2.20×HDAC6. K-M curves indicated a worse prognosis 
for patients with OS in the high-risk cohort (P = 0.047) 
(Fig.  3E), and the AUC values of ROC curves exceeded 
0.6 at 1–5 years in the training set, indicating the valuable 
predictive performance of the prognostic model (Fig. 3F). 
Furthermore, expression levels of biomarkers revealed 
higher ATP6V0D1 expression in both metastatic and 
tumour samples, while HDAC6 expression was higher in 
normal as well as metastatic samples (Fig. 3G-H).

Additionally, the prognostic model was validated 
using the testing set from TARGET-OS and GSE21257. 
Distribution of risk scores and survival time, as well 
as a heatmap of biomarker expression, were displayed 
for high- and low-risk cohorts in the testing set and 
GSE21257, respectively (Fig. 4A-B). K-M curves demon-
strated higher survival probability for patients with OS in 
both the testing set and GSE21257, consistent with the 
training set (Fig. 4C-D). AUC values exceeding 0.6 at 1, 3 
and 5 years in both the testing set and validation set indi-
cated satisfactory predictive performance of the prognos-
tic model (Fig. 4E-F).

Distinct survival status and GSEA for risk cohorts
Significant differences in risk scores were observed in 
patient survival status for risk cohorts (Fig. S1A). More-
over, the distribution difference of patients from two risk 
cohorts in various clinical characteristics revealed higher 
mortality in the high-risk cohort compared to the low-
risk cohort (Fig. S1B). Disease at diagnosis and risk score 
were identified as independent prognostic factors via Cox 
regression to construct a nomogram (Fig.  5A-C). Cali-
bration and ROC curves suggested favourable prediction 
accuracy of the nomogram (Fig. 5D-E). GSEA conducted 
on both risk cohorts yielded 63 GO enrichment profiles 
and seven KEGG pathways (Fig.  6), indicating enrich-
ment in various biological processes and pathways such 
‘keratinocyte differentiation’, ‘odorant binding’ and ‘Mhc 

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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Fig. 2 Identification and function analysis of DEGs. (A) Volcano plot (left) and heatmap (right) of DEGs1 between OS and control cohorts in GSE16088. 
(B) Volcano plot (left) and heatmap (right) of DEGs2 between metastasis and non-metastasis patients with OS in GSE14359. (C) Venn diagram displays 
the 21 intersection genes on overlapping DEGs1 from GSE16088, DEGs2 from GSE14359 and LCD-related genes. (D) The PPI network of 21 intersection 
genes. (E) Functional enrichment results for 21 intersection genes. DEGs, differentially expressed genes; OS, osteosarcoma; LCD, lysosomal-dependent 
cell death, PPI, protein-protein interaction
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Fig. 3 Construction of prognostic models. (A) The forest plot of univariate Cox analysis. (B) LASSO regression analysis for biomarkers. (C) PH assumption 
test. (D) Risk curve and heat map of gene expressions in high- and low-risk cohorts of the training set. (E) Kaplan–Meier curves for the high- and low-risk 
cohorts in the training set. (F) ROC curve in the training set. (G-H) The expression levels of ATP6V0D1 and HDAC6 in GSE16088 (G) and GSE14359 (H). 
LASSO, least absolute shrinkage and selection operator; PH, proportional hazards; ROC, receiver operating characteristic; HR, hazard ratio; lower 95%CI 
and upper 95%CI represent the 95% confidence intervals of the risk values
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Fig. 4 Validation of prognostic risk models. (A-B) Distribution of risk score and survival time, and heat map of biomarkers’ expression in the high- and low-
risk cohorts in the testing (A) and GSE21257 (B) sets. (C-D) Kaplan–Meier curves in the testing (C) and GSE21257 (D) sets. (E-F) ROC curves in the testing 
(E) and GSE21257 (F) sets. ROC, receiver operating characteristic
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Class I protein binding’. Furthermore, GSEA of KEGG 
showed enrichment in ‘pentose phosphate pathway’ ‘pro-
tein export’ and ‘steroid hormone biosynthesis’.

Immune microenvironment and anticancer drug 
prediction
Differential analysis of immune cells revealed statistically 
significant differences in dendritic cells (DCs), immature 
DCs (iDCs) and γδT cells (Tgd) between high and low-
risk cohorts, suggesting potential roles of these immune 

cells in OS (Fig.  7A). Meanwhile, spearman correlation 
analysis indicated a significant association between risk 
scores and these three differential immune cells (Fig. 7B). 
Additionally, all immune checkpoints exhibited signifi-
cant differences between the two cohorts, with CD274, 
IDO1, LAG3, PVR and TIGIT significantly correlated 
with risk score (|cor| > 0.3, Fig.  7C-D). Among the 198 
anticancer drugs analysed, 168 showed significant dif-
ferences between the risk cohorts, with the high-risk 
exhibiting greater sensitivity to two drugs (BI-2536_1086 

Fig. 5 Construction and validation for the nomogram. (A) The forest plot of univariate Cox analysis. (B) The forest plot of multivariate Cox analysis. (C) A 
nomogram based on independent prognostic factors. (D) Calibration curves for the nomogram. (E) ROC curves: 1-year (top), 3-year (middle) and 5-year 
(bottom)
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Fig. 6 GSEA results for the high and low-risk cohorts. (A) GO enrichment profiles. (B) KEGG pathways. GSEA, gene set enrichment analysis; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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and SB505124_1194), while the low-risk cohort showed 
greater sensitivity to 166 drugs (Fig. 7E).

Importance of myeloid cells and osteoclasts in patients 
with OS
An overview and filtration conditions of six samples from 
GSE162454 are presented in Table S1. Subsequently, 
2000 highly variable genes were selected (Fig. S2), and 
PC30 was chosen for subsequent analysis (Fig. 8A). Cells 
were clustered into 13 classes using t-SNE (Fig. 8B) and 

annotated into eight types (myeloid cells, NK/T cells, 
osteoblastic OS cells, plasma cells, Cancer-associated 
fibroblasts (CAFs), B cells, endothelial cells, osteoclasts 
(OCs)) based on marker genes (Fig.  8C-D). Analy-
sis of biomarker expression across different cell types 
revealed significant overexpression of ATP6V0D1 in 
myeloid cells and osteoclasts, while HDAC6 was under 
expressed across all cell types (Fig.  9A). Furthermore, 
the single-cell trajectory map indicated that myeloid 
cells and osteoclasts were the first cells to differentiate, 

Fig. 7 Immune microenvironment and drug sensitivity. (A) Box plot of immune cell percentage in high- and low-risk cohorts. (B) Scatter plot of correla-
tion of risk scores and differential immune cells. (C) Relative expression of immune checkpoints in the high- and low-risk cohorts. (D) The correlation of 
risk score and differential immune checkpoints. (E) Drug sensitivity results for the high- and low-risk cohorts
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suggesting their crucial importance in patients with OS 
(Fig. 9B). Notably, the expression of ATP6V0D1 progres-
sively decreased over time (Fig. 9C). We identified a total 
of 38 ligand-receptor and multimeric interactions, such 
as LAMP1_FAM3C, between osteoblastic OS cells and 
OCs (Fig. 10A). Myeloid cells appeared to have a closer 
communication with other cell types, including osteo-
blastic OS cells, OCs and endothelial cells (Fig.  10B-C). 
Analysis of TF activity across different cell types revealed 
high expression of most TFs in endothelial cells and 
CAFs, suggesting potential influences on OS progression 
(Fig. 10D).

Discussion
OS stands out as a highly lethal and metastatic malignant 
bone tumour. Tumor cell lysosomes, owing to their deli-
cate nature compared to normal cell lysosomes, exhibit 
heightened susceptibility to LMP, potentially leading to 
LCD. While the correlation between LCD and tumour 

is established, there remains a dearth of research explor-
ing the connection between LCD and OS. Thus, delv-
ing into the molecular mechanisms of LCD within OS 
holds promise for enhancing the prognostic outlook for 
patients with OS. In this study, we curated LCD-RGs 
from existing literature and identified DEGs through 
differential expression analysis. To further explore and 
enhance the predictive capacity of DEGs, we identified 
LCD-RGs (HDAC6 and ATP6V0D1) associated with OS 
as potential biomarkers. Leveraging LASSO and univari-
ate Cox regression analyses, we constructed a prognostic 
model featuring an LCD-related gene signature.

Histone deacetylase 6 (HDAC6) has been implicated 
in various diseases, including neurological diseases 
[24], heart diseases [25] and inflammatory diseases [26]. 
Moreover, emerging evidence underscores its involve-
ment in tumorigenesis and metastasis. For instance, Ying 
et al. demonstrated that downregulation of HDAC6 sup-
pressed proliferation, migration, invasion and apoptosis 

Fig. 8 Acquisition of cell types. PCA results. (A) PCA of the dataset before correction (left), PCA of the dataset after batch correction (middle) and the 
standard deviation results (right). (B) High-quality cell clustering results. (C) Expression of marker genes in different cell clusters (up) and cell types (down). 
(D) High-quality cell annotation results. PCA, principal component analysis
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resistance in HPV-positive cervical cancer cells, inhibit-
ing the growth and metastasis of xenograft tumours in 
vivo [27]. HDAC6 has exhibited oncogenic properties 
across several cancer types, including endometrial can-
cer [28], breast cancer [29], and esophageal cancer [30]. 
While research on the association between HDAC6 
and OS remains limited, discussions on HDAC6 inhibi-
tors for OS treatment hint at a potential link, offering a 
novel therapeutic avenue. For instance, Jun et al. demon-
strated that WT161 (an HDAC6 inhibitor) inhibited OS 
cell growth and enhanced apoptosis, synergizing with 
5-FU in killing OS cells in vitro and in vivo [31]. How-
ever, robust large-scale studies are imperative to estab-
lish a direct correlation between HDAC6 expression and 
clinical outcomes in patients with OS. Our findings indi-
cate an association between HDAC6 expression and LCD 
in terms of the prognosis of patients with OS. Further-
more, Xu et al. provided evidence suggesting HDAC6’s 
pivotal role in cancer immunomodulation. Their study 
showcased heightened M2 macrophage infiltration in 
HDAC6-overexpressing colon cancer tissues, elucidat-
ing the HDAC6-TAK1-ADAM17 regulatory axis in sil-
6R release and macrophage polarization in colon cancer 
[32]. Further investigation is warranted to delineate the 
pathway through which HDAC6 impacts OS progression 
via LCD and modulates immunological processes.

As encoding a protein crucial in forming vacuolar 
ATPase (V-ATPase) [33], V-type proton ATPase subunit 
d1 (ATP6V0D1) has been implicated in various cancer 
hallmarks, particularly invasion and metastasis. Inhi-
bition of V-ATPase emerges as a potential anti-cancer 
therapeutic strategy [34]. V-ATPases are closely associ-
ated with autophagy [35, 36] and the endocytic uptake 
of extracellular fluid, which are significant pathways 
supplying nutrients to cancers [37]. The overexpression 
of V-ATPases correlated positively with invasion and 
metastasis. For example, Sennoune et al. demonstrated 
greater V-ATPase activity in highly metastatic breast 
cancer cells compared to lowly metastatic ones, with 
V-ATPase inhibitors reducing invasion and migration in 
highly metastatic cells [38]. In this research, we revealed 
elevated ATP6V0D1 expression in both metastatic and 
tumour samples compared to normal ones. Besides, the 
result shown in the heatmap of ATP6VOD1 expression 
in the high-and low-risk cohorts aligns with recent find-
ings, which have demonstrated that ATP6V0D1 serves as 
a protective for OS [39, 40]. Therefore, the ATP6V0D1 
may react actively as a protective factor inhibiting 
tumour growth and progression through disruption of 
pH homeostasis, suggesting a possible defending mecha-
nism against tumour. Chen et al. found that ATP6V0D1-
mediated inhibition of the signal transducer and activator 
of transcription 3 (STAT3) increases alkaliptosis in 

Fig. 9 Pseudo-temporal analysis of biomarkers in single cells. (A) Biomarker expression in different cell types. (B) The single-cell trajectory map for eight 
cell types. (C) Pseudo-temporal trajectories for biomarkers
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Fig. 10 Analysis of cellular communication and transcription factors regulation in different cell types. (A) Scatter plot of ligand-receptor and multimeric 
interactions inter-cells. (B) Cell-cell interactions. (C) Cell-cell interactions in single cells. (D) The expression of transcription factors with significantly differ-
ent activities in different cell types

 



Page 14 of 17Wu et al. BMC Genomics          (2024) 25:379 

pancreatic ductal adenocarcinoma cells and a high 
expression of ATP6V0D1 correlates with prolonged sur-
vival of patients with this carcinoma [41]. The induc-
tion of alkaliptosis, a type of regulated cell death driven 
by intracellular alkalization, plays an important role in 
tumor immunity and inflammatory response [42]. Mean-
while, it has been proved that caspase-8 (a well charac-
terized initiator of apoptosis) can block the assembly of 
functional V-ATPase through binding to the V0 domain 
of V-ATPase, but not the V1domain, which leads to lyso-
somes alkalinization and, eventually, may induce LMP 
[43]. However, while ATP6V0D1 serves as a prognostic 
biomarker for OS, its direct impact on OS progression 
remains uncertain, necessitating further exploration. Fur-
thermore, to further understand the contextual roles of 
different V-ATPase isoforms will in tumour biology is of 
benefit in precision medicine research.

Further analysis of clinical characteristics identified 
metastatic status as a pivotal variable influencing out-
comes in patients with OS. To enhance survival predic-
tion, we developed a nomogram integrating risk score 
with disease at diagnosis. The performance of this nomo-
gram was assessed through time ROC curves at 1, 3 and 5 
years, along with calibration plots, demonstrating a satis-
factory fit of predicted and observed outcomes, affirming 
the predictive capability of our model.

The tumour microenvironment (TME), comprising cel-
lular and acellular components, can reprogram tumour 
initiation, growth, invasion, metastasis and response 
to therapy [44]. Immune infiltration within the tumour 
microenvironment plays a crucial role in cancer progres-
sion and clinical prognosis [45]. Thus, understanding the 
tumour environment is essential for identifying immune 
modifiers of cancer progression and developing immuno-
therapies, offering insights into OS treatment strategies 
[46]. In our study, utilising the ssGSEA algorithm and 
Wilcoxon test, we elucidated the composition of immune 
cells within the OS TME across two cohorts. Addition-
ally, we found that higher levels of Tgds, alongside lower 
levels of DCs and iDCs, correlated with the high-risk 
cohort exhibiting poorer prognosis among patients with 
OS, indicating an association between LCD-related risk 
and immune characteristics.

DCs are a family of professional antigen-presenting 
cells, which play a crucial role in initiating innate and 
adaptive immune responses against pathogens and 
tumour cells [47]. Muraro et al. reported a lower pheno-
type expression of maturation markers of the DCs, which 
were co-cultured with the OS cell lines, implying that OS 
highly interferes with an in vitro DCs immune function 
as antigen-presenting cells [48]. Generally, mature DCs 
have been traditionally associated with immune stimula-
tion, while iDCs have been associated with immunosup-
pression and tolerogenicity. However, evidence indicates 

that the specific subset type and maturation status of 
DCs influence the characteristics of immune responses 
and subsequently impact cancer prognosis [49, 50]. Simi-
larly, Tgds, vital components of tumour effector cells, 
exert dual roles in tumour immunity. are divided into two 
primary subsets in humans based on their T cell recep-
tors: Vδ1 T cells and Vδ2 T cells [51]. Moreover, Tgds 
contribute to immunosurveillance against tumours, For 
instance, Cordova et al. demonstrated that Tgds rep-
resent the major lymphocyte population infiltrating 
melanoma, where both Vδ1 T cells and the Vδ2 T cells 
are involved, and kill melanoma cells [52]. Additionally, 
Aggarwal et al. concluded that Tgds enhance immune 
surveillance via macrophage infiltration and improve 
antigen presentation [53]. However, tumour infiltrating 
Tgds have also been demonstrated to promote tumor 
development and metastasis [54]. For instance, Ma et al. 
observed significantly increased Tgd expression in breast 
tumor tissues (43 of 46 tumor samples) compared to 
normal breast tissues (2 of 46 normal samples), wherein 
the number of tumor-infiltrating Tgds positively corre-
lated with advanced tumor stages, but inversely with the 
overall survival of patients with breast cancer [55]. Over-
all, unrevealing the complex interplay between immune 
cells and their subsets within the OS tumour microen-
vironment is crucial for developing effective therapeu-
tic strategies and improving patient outcomes. Further 
investigation into the underlying mechanisms governing 
these interactions is warranted to advance our under-
standing of OS pathogenesis and treatment.

Tumor cells often activate immune checkpoint path-
ways to suppress antitumor immune responses, evad-
ing immunosurveillance and promoting progression 
[56]. The advent of immune checkpoint inhibitors has 
revolutionised treatment approaches for various malig-
nancies [57], presenting a promising avenue for the 
therapeutic management of OS, which has seen little 
progress in decades. Currently, mono- or dual-therapy 
with checkpoint inhibitors in OS has failed to yield sig-
nificant anti-tumour efficacy and, on the other hand, 
most patients treated with immune checkpoint inhibitors 
exhibit limited responses [58]. In our study, we observed 
significantly higher expression levels of CD274, ID01, 
LAG3, PVR and TIGIT in the low-risk cohort, suggest-
ing that patients in this category may exhibit enhanced 
immunoreactivity to immune checkpoint inhibitors. 
Clarifying the availability and validity of predictive bio-
markers, along with identifying new prognostic bio-
markers through clinical studies of immune checkpoint 
inhibitors in OS, holds the potential for informing treat-
ment paradigms.

Furthermore, we identified differential drug sensi-
tivities based on the risk categorization associated with 
the two LCD-RGs. The high-risk cohort demonstrated 
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greater sensitivity to two drugs (BI-2536_1086 and 
SB505124_1194), while the low-risk cohort exhibited 
enhanced sensitivity to 166 drugs (Fig.  9E), providing 
potential drug alternatives tailored to each risk cohort.

Finally, to understand the functions and interactions 
of the prognostic-related LCD-RGs at the cellular level, 
we categorised cells into eight types through cluster 
analysis and annotation combined with marker genes. 
These comprised four non-immune cells (i.e., osteoblas-
tic OS cells, plasma cells, CAFs, endothelial cells) and 
four immune cells. Our findings revealed a progressive 
decrease in ATP6V0D1 expression over time, suggesting 
a greater role for ATPV0D1 in myeloid cells and osteo-
clasts, as evidenced by pseudotime analysis. This per-
spective offers novel insights for identifying precision 
therapeutic targets.

Conclusions
This study introduces and validates a unique prognos-
tic model based on the LCD-RGs (ATP6V0D1 and 
HDAC6) for OS. We demonstrate a significant associa-
tion between risk categorization based on LDC-RGs with 
patient survival, underscoring the clinical relevance of 
our model. Furthermore, we delve into the complex asso-
ciation between immune cell infiltration in the TME and 
differentiated risk cohorts based on LCD-RGs, providing 
valuable insights for tailoring immunotherapeutic strate-
gies. Additionally, our analysis of drug sensitivities within 
different risk cohorts offers promising avenues for preci-
sion medicine. Moreover, through analysis at the cellu-
lar level, we revealed the interactions of LCD-RGs with 
cells of the TME, offering fresh perspectives on precision 
medicine approaches in OS treatment. However, this 
study has several limitations: (1) Our analytical approach 
primarily relies on bioinformatics, necessitating biologi-
cal experiments in subsequent research to validate our 
findings. (2) The limited sample size of the dataset we 
utilised underscores the need for expanded research 
scopes in follow-up studies to consolidate evidence and 
enhance the predictive reliability of our model. (3) Lastly, 
elucidating the exact mechanisms through which LCD-
RGs modulate immune cells in the TME and drug sen-
sitivity necessitates further extensive research. Therefore, 
a comprehensive investigation to unravel the intricate 
interactions between LCD-RGs and OS pathogenesis is 
essential.
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