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Abstract
Most proteins exert their functions by interacting with other proteins, making the identification of protein-protein 
interactions (PPI) crucial for understanding biological activities, pathological mechanisms, and clinical therapies. 
Developing effective and reliable computational methods for predicting PPI can significantly reduce the time-
consuming and labor-intensive associated traditional biological experiments. However, accurately identifying the 
specific categories of protein-protein interactions and improving the prediction accuracy of the computational 
methods remain dual challenges. To tackle these challenges, we proposed a novel graph neural network method 
called GNNGL-PPI for multi-category prediction of PPI based on global graphs and local subgraphs. GNNGL-PPI 
consisted of two main components: using Graph Isomorphism Network (GIN) to extract global graph features from 
PPI network graph, and employing GIN As Kernel (GIN-AK) to extract local subgraph features from the subgraphs 
of protein vertices. Additionally, considering the imbalanced distribution of samples in each category within 
the benchmark datasets, we introduced an Asymmetric Loss (ASL) function to further enhance the predictive 
performance of the method. Through evaluations on six benchmark test sets formed by three different dataset 
partitioning algorithms (Random, BFS, DFS), GNNGL-PPI outperformed the state-of-the-art multi-category prediction 
methods of PPI, as measured by the comprehensive performance evaluation metric F1-measure. Furthermore, 
interpretability analysis confirmed the effectiveness of GNNGL-PPI as a reliable multi-category prediction method 
for predicting protein-protein interactions.
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Introduction
Protein-protein interactions (PPI) play a crucial role in 
various biological processes within cells. Identifying PPI 
is of great significance in advancing research across mul-
tiple life science fields, including medical diagnosis, drug 
design, and disease treatment [1]. Currently, the meth-
ods for identifying PPI can be broadly categorized into 
traditional biological experimental methods and com-
putational methods. Traditional biological experimen-
tal methods primarily involve techniques such as yeast 
two-hybrid [2], protein chips [3], and synthetic lethal 
analysis [4]. However, these methods suffer from several 
disadvantages, including being time-consuming, labor-
intensive, and requiring high financial resources [5]. To 
overcome these disadvantages, the computational meth-
ods for PPI prediction have developed rapidly. Neverthe-
less, these computational methods face dual challenges. 
Firstly, they need to accurately identify multiple specific 
categories of PPI. Secondly, they must achieve the desired 
predictive performance.

In recent years, the computational methods for predict-
ing PPI have transitioned from docking-based methods 
to machine learning and deep learning-based methods. 
Docking-based methods [6] are capable of effectively 
predicting PPI, but they require high-quality protein 
3D structures and significant computational resources. 
Additionally, they operate at a slower prediction speed, 
which cannot keep pace with the demands of processing 
massive data. Machine learning and deep learning meth-
ods, on the other hand, have exhibited better perfor-
mance in handling large amounts of data [7–10]. These 
methods can utilize both protein sequence and structural 
data. Machine learning-based methods [9, 11, 12] rely on 
protein sequence or structural features, utilizing models 
like SVM [10, 13, 14] and random forest [15] to predict 
PPI. Although these methods have displayed good pre-
dictive performance, they cannot automatically extract 
deep-level features of PPI from the original sequences 
or structures of proteins. This creates bottlenecks that 
hamper improvements in predictive performance. How-
ever, the emergence of deep learning models, such as 
multi-layer neural networks, has provided better model 
prediction performance and pointed researchers towards 
breakthroughs in addressing the performance bottle-
necks encountered by machine learning techniques [16].

Methods for predicting PPI using deep learning tech-
niques leverage protein sequences, structures, and PPI 
networks. Deep learning techniques such as deep neu-
ral networks (DNN) [17], convolutional neural net-
works (CNN) [18], recurrent neural networks (RNN) 
[19], attention mechanisms [20], and graph neural net-
works (GNN) [21] are employed to extract deep-level 
features from proteins and PPI networks. DNN-based 
methods extract protein features through multi-layer 

neural networks to directly predict PPI [22, 23] or employ 
machine learning models for PPI prediction [24]. CNN 
and RNN-based methods focus on extracting local fea-
tures and long-range dependency features from pro-
tein sequences, respectively. For instance, LSTM-PHV 
method [8] and other related approaches [25] leveraged 
the LSTM (Long Short-Term Memory) model to capture 
long-range dependency features in protein sequences. 
Methods like ADH-PPI [26] and DCSE [27] integrated 
CNN and RNN to extract both local and long-range 
features from protein sequences, which were then com-
bined to predict PPI. Attention mechanisms have also 
been widely utilized to identify key sequence features in 
protein sequences [23, 26, 28]. While these DNN, CNN, 
RNN, and attention-based methods primarily focused 
on protein sequence features, they often overlooked the 
structural features of proteins and the hidden interaction 
features present in PPI networks. To address these limi-
tations, GNN-based methods have emerged. However, 
incorporating protein structures into these methods has 
been challenging due to the slow exploration of protein 
3D structures. With the advent of protein 3D structure 
prediction tools like AlphaFold [29] and ColabFold [30], 
obtaining monomer protein 3D structures has become 
easier. This has led to rapid advancements in research 
that utilizes GNN to extract protein structural features 
for predicting PPI, either independently or in combina-
tion with protein sequence features. For instance, the 
method proposed in reference [31] directly employed 
the GCN/GAT model to extract the structural features 
from two interacting proteins. These features were then 
concatenated and used to predict PPI. TAGPPI method 
[32] combined TextCNN and GAT to extract sequence 
and structural features from protein sequences and con-
tact maps, respectively. The extracted features were fused 
before being passed through a fully connected (FC) layer 
to predict PPI. Other methods introduced interaction 
features by constructing a PPI network graph where pro-
teins served as vertices and interactions served as edges. 
GNN was then used to extract interaction features from 
this graph, ultimately predicting PPI. Methods such as 
S-VGAE [33], HIGH-PPI [34], and Topsy-Turvy [35] uti-
lized PPI network graphs along with protein sequences or 
structures as vertex features. GNN was applied for binary 
classification to determine whether there was an interac-
tion between vertices in the graph. The aforementioned 
methods treated PPI as a binary classification task and did 
not identify specific interaction categories between pro-
teins. However, methods like PIPR [36], GNN-PPI [37], 
SemiGNN-PPI [38], and AFTGAN [39] have been devel-
oped to predict PPI into multi-category. PIPR utilized a 
Siemens residual current convolutional neural network 
(RCNN) to extract local features and contextual informa-
tion from protein sequences. GNN-PPI, SemiGNN, and 
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AFTGAN leveraged GNN to learn deep-level features 
from PPI networks, enabling multi-category prediction. 
Although these methods extracted protein sequence fea-
tures and PPI network graph features for multi-category 
PPI prediction, research in this area was still in its early 
stages. The performance of the models was somewhat 
below user expectations. Therefore, proposing an effi-
cient and effective model for multi-category prediction of 
PPI presents significant challenges.

In this study, we proposed a novel graph neural net-
work method, called GNNGL-PPI, for predicting multi-
category of protein-protein interactions. GNNGL-PPI 
utilized a combination of global graph and local subgraph 
features. Specifically, we used Graph Isomorphism Net-
work (GIN) to extract global graph features from PPI 
network graphs. Additionally, we employed GIN-AK to 
extract local subgraph features from subgraphs contain-
ing protein vertices in the PPI network graphs. Simulta-
neously, to address the issue of imbalanced samples for 
each category in the benchmark dataset, we introduced 
an Asymmetric Loss (ASL) Function. This loss function 
helped enhance the predictive performance of the model 
by assigning different weights to different categories 
based on their prevalence. We evaluated the model on 
six standard test sets created using three different dataset 
partitioning algorithms (Random, BFS, DFS). GNNGL-
PPI consistently outperformed the state-of-the-art meth-
ods for multi-category prediction of PPI, as measured 
by the comprehensive evaluation metric F1-measure. 
Furthermore, we conducted interpretability analysis to 
validate the effectiveness of GNNGL-PPI. Experimen-
tal results confirmed that GNNGL-PPI was a reliable 
method for predicting multi-category of PPI.

Materials and methods
Datasets
In this study, we approached protein-protein inter-
actions prediction as a multi-category task, encom-
passing seven PPI categories: Reaction, Binding, 
Post-translational modification (Ptmod), Activation, 

Inhibition, Catalysis, and Expression. Each protein-
protein interaction pair is assigned to at least one of 
these categories. For example, the interaction category 
between protein 9606.ENSP00000005257 (RalA) and 
protein 9606.ENSP00000202677 (RalGAP A2) is Inhi-
bition (PMID: 34767674), while the interaction cat-
egory protein 9606.ENSP00000003100 (Cyp51) and 
protein 9606.ENSP00000240055 (NF-YB) is Activation 
(PMID:27438,727). To evaluate the performance of the 
model, we utilized two benchmark datasets, SHS27k and 
SHS148k, which were consistent with the dataset used in 
the GNN-PPI [37] method and exhibited sequence con-
sistency of less than 40% in each dataset. These datasets 
consisted of 7624 (1690 proteins) and 44,488 (5189 pro-
teins) protein-protein interaction pairs, respectively. The 
number and occupation ratio of samples for the seven 
PPI categories generated by these protein-protein inter-
action pairs were shown in Table 1. It was evident from 
Table 1 that the number of samples for the seven PPI cat-
egories was imbalanced. During the training and testing 
of the model, we also employed the Random, Breath First 
Search (BFS), and Depth First Search (DFS) algorithms 
proposed by the GNN-PPI method to partition the 
SHS27k and SHS148k datasets. For detailed information 
on the data partitioning algorithms for the Random, BFS, 
and DFS, please refer to the GNN-PPI method.

PPI network graph formation and protein features
PPI network graph formation

Assuming a set of proteins P={p_1,p_2,…,p_n } with 
n as the number of proteins, each protein acted as a 
vertex in the PPI network graph. The interaction cat-
egory between p_i and p_j was represented as edge e_ij 
(1≤i,j≤n). Different protein-protein interaction categories 
made up the category space D={D_1,…,D_t } (t=7) of the 
dataset, where t is the number of PPI categories. If there 
was an interaction between p_i and p_j of a certain cat-
egory, the corresponding position in the adjacent matrix 
representing the PPI network graph was assigned a value 
of 1, otherwise, it was assigned a value of 0.

Protein features
We employed the pre-trained model MASSA [40] to 
capture high-level and more fine-grained features. This 
pre-trained model leveraged multi-modal protein data, 
including protein sequences, structures, gene ontology 
annotations, motifs, and region positions, to derive com-
prehensive protein features. Unlike previous research, 
which mainly focused on protein features derived from 
protein sequences such as Position-Specific Scoring 
Matrix (PSSM) [41] or Hidden Markov Models (HMM) 
[42] matrix, or treated protein sequences as natural lan-
guage processing (NLP) [43] tasks to extract protein 
sequence features. However, these researches yielded 

Table 1 Number and occupation ratio of samples for seven 
categories of protein-protein interactions
PPI Categories SHS27K SHS148K

Number of 
Samples

Occu-
pation 
Ratio

Number of 
Samples

Occu-
pation 
Ratio

Reaction 3164 18.22% 18,067 17.71%
Binding 4017 23.13% 23,448 22.98%
Ptmod 1303 7.50% 9336 9.15%
Activation 3297 18.98% 18,910 18.53%
Inhibition 1407 8.10% 8987 8.81%
Catalysis 3492 20.11% 19,871 19.47%
Expression 687 3.96% 3419 3.35%
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relatively singular protein features and did not fully 
encompass other biochemical information pertaining to 
proteins.

Proposed model
To begin with, we input the multimodal data of pro-
teins, such as sequences, structures, and Go annotations, 
into the pre-trained model MASSA and obtained the 
512-dimensional protein pre-training features. Next, we 
embedded the pre-trained features using a layer of lin-
ear transformation. Finally, we used the embedded fea-
tures as the protein vertex features in the PPI network 
(Fig. 1A).

The extraction of high-level features in the PPI network 
graph can be divided into two main parts, as shown in 
Fig. 1B and C: global graph features extraction and local 
subgraph features extraction. In the global graph features 
extraction part, we utilized one layer of GIN followed by 
two FC layers. ReLU activation function [44] was applied 
in the FC layers. To ensure stable model training, batch 
normalization function was employed in the last layer to 
normalize the extracted features and obtained the global 
graph features of the PPI network graph. Moving on to 
the local subgraph features extraction section: firstly, we 

selected a protein vertex as the center and included all 
vertices within a path distance of K from that the center 
vertex. This formed a subgraph of the protein. Secondly, 
we used the GIN-AK to extract the features from the sub-
graph. GIN-AK incorporated two distinct processes to 
extract global features and centroid features of the sub-
graph, respectively. These features were then combined 
to obtain the final local subgraph features. To extract the 
global features of the subgraph, we input both the sub-
graph and protein features into a single layer of GIN. The 
output features of GIN were then fed into a FC layer (gat-
ing unit) with a sigmoid activation function, resulting 
in the global features of the subgraph. For the centroid 
features of the subgraph, we first calculated the path dis-
tance between the vertices in the subgraph. The obtained 
path distance matrix was then processed using the same 
gating unit to obtain the centroid features. Finally, we 
concatenated the global features and centroid features of 
the subgraph, applied batch normalization, and obtained 
the local subgraph features. The global graph features and 
local subgraph features were concatenated to form the 
vertex features in the PPI network graph. It was impor-
tant to note that ReLU activation function was used in 
the gating unit during the subgraph features extraction 

Fig. 1 The architecture review of GNNGL-PPI. (A) We utilized the pre-training model MASSA to obtain the comprehensive protein features based on 
multimodal data such as protein structures, sequences, and gene ontology annotations. (B) GIN-AK extracted the global features and centroid features of 
subgraphs through two different processes, and then added these extracted features to obtain the final local subgraph features. (C) The extracted global 
features from the PPI network graph through GIN and the extracted local subgraph features by GIN-AK were concatenated to obtain the high-level fea-
tures of vertices in the PPI network, i.e., protein features. We multiplied the features of proteins themselves and their interacting proteins and sent them 
into the multilayer perceptron (MLP) to complete multi-category prediction of protein-protein interactions
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process. Furthermore, to prevent gradient vanishing and 
enhance model stability during training, a dropout layer 
was added to the gating unit.

In order to predict multi-category of PPI, we first mul-
tiplied the features of the protein itself and its interacting 
protein. The resulting multiplied features were then fed 
into a FC layer. The output of the FC layer was a 7-dimen-
sional matrix. Finally, by applying the sigmoid function to 
the 7-dimensional matrix, we completed the multi-cate-
gory prediction of PPI.

GIN-AK
GNN have proven to be an effective framework for topol-
ogy representation learning. GIN is widely regarded as 
the most repressive GNN [45], but it still faces limitation 
in breaking through the first-order Weisfeiler-Leman iso-
morphism testing [46, 47]. To overcome this limitation, 
a subgraph operation had been introduced based on 
GIN. This approach updated vertex information by using 
the feature of the subgraph of vertex, rather than rely-
ing solely on the neighboring vertex feature information. 
This transformation reduced the complexity of the graph 
feature problem to a smaller and simpler subgraph fea-
ture problem. The resulting GIN model was called GIN-
AK (GIN As Kernel). In the process of updating vertices 
using graph convolutional operations, each vertex aggre-
gates information directly from neighboring vertices in a 
star operation. The star operation 
Star (v) forms a graph that can be defined as formu-

lar (1). The specific update method for vertices in GIN is 
shown in formula 2.

 Star (v) = (N1 (v) , {(v, j) ∈ ε|j ∈ N (v)}) (1)

 h
(l+1)
v = GIN (l)

(
Star(l) (v)

)
, ∀v ∈ V, l = 0, . . . , L− 1 (2)

The limitation of graph convolutional operations lies in 
their inability to differentiate between graphs that pos-
sess the same vertex degree but exhibit different struc-
tures. In order to address this issue, we proposed the 
utilization of a subgraph encoder, denoted as G [Nk (v)]
, to substitute the Star (v) operation. This replacement 
significantly enhanced the expressive capabilities of the 
graph convolutional operation. The subgraph encoder 
G [Nk (v)] facilitated the update of vertex features by 
constructing subgraph features within a k  -hop egonet 
centered around the vertex v . This update process was 
displayed in formula (3), which specifically outlined the 
procedure for updating vertices in GIN-AK.

 h
(l+1)
v = GIN (l)

(
G(l) [Nk (v)]

)
, ∀v ∈ V, , l = 0, . . . , L− 1 (3)

In GIN-AK, a k  -hop propagation mechanism was 
employed to acquire the subgraph surrounding each ver-
tex. Additionally, the path distance between each ver-
tex and the centroid of its corresponding subgraph was 
computed. This information enhanced the vertex features 
and contributed to the overall improvement of graph 
convolutional expressiveness. To capture the nonlinear 
transformations of global features and centroid features 
of the subgraph, gating units were introduced. Finally, 
the global features and centroid features of the subgraph 
were obtained using formula (4) and (5), respectively.

 h
(l+1)|subgraph
v = Sigmoid

(
d
(l)
v|j

)
�GIN

(l) (
G(l) [Nk (v)]

)
 (4)

 h
(l+1)|centroid
v = Sigmoid

(
d
(l+1)
v|j

)
� Emb (v|G(l+1) [Nk (v)]) (5)

Among them, d(l+1)
v|j represented the path distance matrix 

from vertex v  to vertex j  in the l +1-layer, and �  rep-
resented element wise multiplication. Combining the 
global features and centroid features of the subgraph, the 
update process of vertex h(l+1)

v  was shown in formula (6).

 h(l+1)
v = SUM(h(l+1)|subgraph

v , h(l+1)|centroid
v ) (6)

GIN-AK improved the expressiveness of graph convolu-
tional operation through the use of subgraphs instead of 
star graphs. This enhancement allowed GIN-AK to cap-
ture underlying structural features in PPI network, lead-
ing to the improved performance in predicting different 
categories of protein-protein interactions.

ASL
In this study, PPI prediction was regarded as a multi-cat-
egory classification task. However, the dataset (Table  1) 
used was imbalanced, which means that there were more 
samples corresponding to some categories compared to 
others. This can affect the performance evaluation of the 
model since it might focus more on the majority classes 
and ignore the minority classes. To address this problem, 
we introduced the Asymmetric Loss (ASL) [48] function.

In multi-category imbalanced datasets, using symmet-
ric loss functions like Focal Loss [49], BCE Loss [50], or 
Cross Entropy [51] may not effectively learn some fea-
tures from positive samples. These loss functions tend 
to focus more on negative samples than positive samples 
[48], which can be suboptimal. For example, in Focal Loss 
function (formula 8), when using the same γ  for multi-
category training, it may eliminate the gradient of sparse 
positive samples. Among them, p = σ (z) is the output 
probability of the model, γ  is the focusing parameter, L+ 
and L−  represent the positive and negative loss parts, 
respectively.
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{
L+ = (1− p)γlog (p)

L− = pγlog (1− p)
 (8)

Therefore, in ASL, the focusing parameters of the loss 
function are decoupled into positive focusing parameter 
γ+  and negative focusing parameter γ− . This allows for 
asymmetric focusing, enabling better control the effect 
of positive and negative samples on the loss function. In 
addition, considering the asymmetric focusing param-
eters in ASL, there are shortcomings in some cases where 
there are not enough negative samples. In ASL, another 
asymmetric mechanism of probability translation is fur-
ther proposed, as shown in formula (9).

 pm = max (p −m, 0)  (9)

m  represents an adjustable probability margin. 
Through the above two adjustments, the final 
definition of ASL is shown in formula (10). 

ASL =

{
L+ = (1− p)γ+log (p)

L− = (pm)
γ−log (1− pm)

 (10)

By employing ASL to dynamically regulate the degree of 
asymmetry throughout the entire training process, the 
selection of hyperparameters is simplified. This effec-
tively balances the focus of the network on positive and 
negative samples, ultimately improving the accuracy of 
multi-category prediction.

Model training
We trained our model for 400 epochs using the Adam 
optimizer [52] with a batch size of 1024 and an initial 
learning rate of 0.01. To optimize the training process, 
we implemented a learning rate decay function, set the 
patience to 20, and stopped training when the model did 
not reduce its loss after 20 epochs. To prevent overfitting, 
we used a dropout rate of 0.2 in the local subgraph fea-
tures extraction part and 0.5 in the global graph features 
extraction section. In the local subgraph features extrac-
tion part, we set k  in k -hop to 1, extracted the 1-hop 
subgraph as the input graph of GIN-AK, and used ASL 
with a probability margin m  of 0.05. For asymmetric 
focusing, we set γ+  to 1 and γ−  to 0, as recommended 
by ASL.

Evaluation metrics
In this study, we regarded PPI prediction as a multi-cat-
egory classification task. The dataset used in our study 

had an imbalanced distribution of samples across dif-
ferent categories. To effectively evaluate the model’s 
performance on this imbalanced dataset, we employed 
F1-measure as the evaluation metric. F1-measure is a 
widely-used evaluation metric for imbalanced datasets 
because it takes into account both precision and recall, 
providing a balanced measure of model performance 
[53].

 
precision =

TP

TP + FP

 
recall =

TP

TP + FN

 
F1−measure =

2 ∗ precision ∗ recall
precision+ recall

Among them, TP, FP, TN, and FN represent the number 
of predicted true positive, false positive, true negative, 
and false negative samples, respectively.

Results and discussion
Multimodal pre-training features offer a better 
representation of protein
The predictive performance of a model is directly influ-
enced by the quality of its input features. In this study, we 
aimed to select high-quality features for protein vertices 
in the PPI network. To achieve this, we compared the 
sequence features of proteins with features obtained from 
the latest multimodal pre-training model of proteins. 
Experimental results presented in Table 2 exhibited that 
multimodal pre-training features can more effectively 
represent proteins. The sequence features used in our 
study were derived from the GNN-PPI method, a clas-
sic approach for predicting PPI. These sequence features 
consisted of 13 dimensions, with the first 5 dimensions 
capturing the co-occurrence similarity features of amino 
acids, and the remaining 8 dimensions representing the 
similarity features of electrostatic and hydrophobic inter-
actions between amino acids. Through a combination 
of one layer of CNN and linear transformation, these 
13-dimensional sequence features were transformed into 
512-dimensional sequence features, which were utilized 
in our study. For the multimodal pre-training features, 
we employed the latest and more refined pre-training 
model called MASSA. This model leverages protein data 
from various modalities including protein sequences, 

Table 2 Performance comparison between multimodal pre-training features and sequence features
Feature SHS27k SHS148K

Random (%) BFS (%) DFS (%) Random (%) BFS (%) DFS (%)
Sequence features 88.21± 0.47 63.26± 3.70 74.31± 3.44 91.98± 0.20 65.50± 4.59 82.24± 0.73
MASSA 88.99± 0.80 70.34± 0.67 78.32± 1.60 92.52± 0.17 69.99± 4.60 83.19± 1.26
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structures, gene ontology annotations, motifs, and region 
positions to extract comprehensive protein features at a 
higher level. Subsequently, we constructed a GIN model 
and used the protein sequence features as well as the 
multimodal pre-training features as vertex features in the 
PPI network graph to predict PPI.

In the case of the SHS27K dataset, the GIN model 
based on multimodal pre-trained features exhibited the 
improved performance under three different dataset par-
titioning algorithms (Random, BFS, and DFS). Specifi-
cally, the F1-measure increased by approximately 0.7%, 
7%, and 4%, respectively. As for the SHS148K dataset, the 
GIN network based on multimodal pre-trained features 
performed improvements of 1%, 4%, and 1% under the 
Random, BFS, and DFS algorithms, respectively. These 
experimental findings indicated that when using graph 
neural networks for predicting PPI, multimodal pre-
trained features offered a better representation of protein 
compared to sequence features alone.

Local subgraph features can enhance the performance of 
the model
In this study, we proposed a novel operation for updating 
vertex information in GIN. Instead of directly aggregating 
information from neighboring vertices in a star opera-
tion, we updated the vertex information through the fea-
tures of the vertex’s subgraph. To assess the contribution 
of local subgraph features to the model’s performance, we 
conducted ablation experiments based on global graph 
features, local subgraph features, and their combined fea-
tures. The global graph features were extracted directly 
using the GIN model, while the local subgraph features 
were extracted using the GIN-AK. The combined fea-
tures were obtained by fusing global graph features and 
local subgraph features. Experimental results presented 
in Table  3 indicated that, based solely on global graph 
features and local subgraph features, the latter performed 
approximately 5% better than the former for the BFS par-
titioning algorithm on both SHS27K and SHS148K data-
sets, while they exhibited similar performance under the 
other two partitioning algorithms. However, after com-
bining global graph features and local subgraph features, 
the combined model showed better performance than the 
global graph features-based and local subgraph features-
based models under the two partitioning algorithms 
(Random and DFS) of the SHS148K dataset and all par-
titioning algorithms of the SHS27K dataset. Although the 

F1-measure of the combined model was 1% lower than 
that of the local subgraph features-based model under 
the BFS partitioning algorithm of the SHS148K dataset, 
these findings still showed that incorporating local sub-
graph features on the basis of global graph features could 
enhance the model’s performance.

Selection of parameter k in k-hop
To select the most effective parameter k in k-hop, we 
conducted experiments on the SHS27K dataset using 
both k values of 1 and 2. Experiment results, as presented 
in Table 4, showed that a k value of 1 outperformed the 
alternative. Due to the significant computational cost 
associated with calculating subgraphs for all vertices, 
we decided against conducting further experiments on 
the SHS27K dataset where the k value was greater than 
or equal to 3. Additionally, given the large size of the 
SHS148K dataset, it was not feasible to perform sub-
graph calculation experiments with a k value greater than 
or equal to 2 on our device. As a result, we ultimately set-
tled on a k value of 1.

The impact of ASL on the performance of the model
In the previous experiments, we utilized the BCE loss 
function, which is a type of symmetric loss function that 
does not address the issue of imbalanced sample sizes 
with different interaction categories in the dataset. To 
address this limitation, we introduced the ASL and con-
ducted some experiments using it. Experimental results 
presented in Table 5 revealed that, under the three par-
titioning algorithms (Random, BFS, and DFS) on both 
SHS27K and SHS148K datasets, the model based on 
ASL achieved higher F1-measure than the model based 
on the BCE loss function. Specifically, in the SHS27K 
dataset, F1-measure increased by approximately 0.20%, 
2%, and 0.15%, respectively, while in the SHS148K data-
set, F1-measure increased by approximately 1%, 1%, and 
2%, respectively. These results illustrated that utilizing 
the ASL can effectively enhance the performance of the 
model on imbalanced datasets.

Table 3 Performance comparison of global graph, subgraph, and their combined features
Feature SHS27k SHS148K

Random (%) BFS (%) DFS (%) Random (%) BFS (%) DFS (%)
Subgraph 89.15± 0.69 74.08± 0.32 77.76± 2.55 90.84± 0.32 75.97± 3.64 82.87± 0.52
Global Graph 88.99± 0.80 70.34± 0.67 78.32± 1.60 92.52± 0.17 69.99± 4.60 83.19± 1.26
Combination 90.04± 0.55 76.08± 1.22 79.67± 4.05 92.76± 0.17 74.62± 4.35 84.47± 1.20

Table 4 Performance comparison of different k values based on 
SHS27K
k-hop SHS27K

Random (%) BFS (%) DFS (%)
1-hop 90.23± 0.31 78.51± 5.25 79.81± 3.43
2-hop 90.25± 0.25 68.29± 5.58 76.18± 1.19
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Performance comparison of GNNGL-PPI with the state-of-
the-art methods
In this study, GNNGL-PPI exhibited good performance 
across three different partitioning algorithms on the 
SHS27K and SHS148K datasets. To comprehensively 
assess its performance, we conducted a comparison with 
two machine learning methods, including Random For-
est (RF) and Logistic Regression (LR), as well as four 
deep learning methods like PIPR, GNN-PPI, LDMGNN 
[54], and SemiGNN-PPI. Experimental results (Table  6) 
showed that GNNGL-PPI consistently outperformed 
these state-of-the-art methods in terms of F1-measure 
under all three partitioning algorithms on both datasets. 
These findings affirmed the reliability of GNNGL-PPI as 
a PPI predictor.

Performance comparison between GNNGL-PPI and 
state-of-the-art methods under the multi-classification 
evaluation metrics
In addition to using binary classification evaluation 
metrics, we further utilized multi-classification evalu-
ation metrics such as Weighted precision, Weighted 
recall, Weighted f1-score, Macro precision, Macro 
recall, Macro f1-score, Micro precision, Micro recall, 
and Micro f1-score to evaluate the model’s performance. 
Experimental results (Table  7) showed that GNNGL-
PPI exhibited superior performance compared to other 
state-of-the-art methods. These outcomes highlighted 
the effectiveness of GNNGL-PPI in predicting the multi-
category of PPI.

Performance comparison of some statistical tests between 
GNNGL-PPI and state-of-the-art methods
In this study, we dealt with an imbalanced dataset where 
the number of samples across different categories var-
ied. To accurately evaluate the model’s performance on 
this imbalanced dataset, we opted for the F1 metric as it 

provided a more accurate reflection of the model’s true 
performance. Consequently, we conducted some statis-
tical tests on the F1 metric of three methods including 
GNNPPI, LDMGN, and GNNGL-PPI using three distinct 
partitioning algorithms on both SHS27K and SHS148K 
datasets. Experiment results, as shown in Table  8, indi-
cated that GNNGL-PPI exhibited slightly superior per-
formance across two statistical testing metrics compared 
to two other state-of-the-art methods.

Statistical analysis of prediction accuracy of GNNGL-PPI 
and GNN-PPI under different interaction categories
Table  6 showed that the GNNGL-PPI method outper-
formed other state-of-the-art methods for comparison 
under three different partitioning algorithms on both 
the SHS27K and SHS148K datasets. To further evaluate 
the predictive performance of GNNGL-PPI across dif-
ferent interaction categories, we compared its prediction 
accuracy with the GNN-PPI method under the BFS parti-
tioning algorithm using the SHS27K dataset (Fig. 2). Sta-
tistical analysis revealed that for the interaction category 
Reaction with 3164 samples (Table 1), after being divided 
by the BFS algorithm, 613 test samples were obtained. 
GNNGL-PPI correctly predicted 496 of the 569 samples 
it identified, yielding an accuracy of 80.91% (Fig. 2a). In 
comparison, GNN-PPI correctly predicted 434 of the 
510 samples, achieving an accuracy of 70.79%. Similarly, 
for the Binding, Ptmod, Activation, Inhibition, Cataly-
sis, and Expression categories, GNNGL-PPI achieved a 
higher accuracy (within parentheses) than that of GNN-
PPI (85.19%, 71.55%), (86.02%, 71.55%), (84.35%, 81.42%), 
(86.67%, 85.74%), (87.47%, 74.94%), and (42.55%, 28.72%), 
respectively (Fig. 2b). In all interaction categories except 
for Action and Inhibition, GNNGL-PPI exhibited clas-
sification accuracy that was more than 10% higher than 
that of GNN-PPI. Notably, under the Expression cat-
egory, there were only 94 test samples. Despite this, 

Table 5 Performance comparison of asymmetric (ASL) and symmetric (BCE) loss functions
Loss Function SHS27k SHS148K

Random (%) BFS (%) DFS (%) Random (%) BFS (%) DFS (%)
BCE 90.04± 0.55 76.08± 1.22 79.67± 4.05 92.76± 0.17 74.62± 4.35 84.47± 1.20
ASL 90.23± 0.31 78.51± 5.25 79.81± 3.43 93.34± 0.12 75.14± 2.63 86.07± 1.05

Table 6 Performance comparison of GNNGL-PPI with the state-of-the-art methods
Method SHS27k SHS148K

Random (%) BFS (%) DFS (%) Random (%) BFS (%) DFS (%)
RF 78.45± 0.08 37.67± 1.57 35.55± 2.22 82.10± 0.20 38.96± 1.94 43.26± 3.43
LR 71.55± 0.93 43.06± 5.05 48.51± 1.87 67.00± 0.07 47.45± 1.42 51.09± 2.09
PIPR 83.31± 0.75 44.48± 4.44 57.80± 3.24 90.05± 2.59 61.83± 10.23 63.98± 0.76
GNN-PPI 87.91± 0.39 63.81± 1.79 74.72± 5.26 92.26± 0.10 71.37± 5.33 82.67± 0.85
LDMGNN 89.34± 0.44 74.56± 3.03 78.20± 2.69 92.38± 0.08 73.98± 5.51 83.79± 0.95
SemiGNN-PPI 89.51± 0.46 72.15± 2.87 78.32± 3.15 92.40± 0.22 71.78± 3.56 85.45± 1.17
GNNGL-PPI 90.23± 0.31 78.51± 5.25 79.81± 3.43 93.34± 0.12 75.14± 2.63 86.07± 1.05
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GNNGL-PPI and GNN-PPI correctly predicted 27 and 
40 samples, respectively, with an accuracy improvement 
of 13.83%. This suggested that our proposed GNNGL-
PPI method could learn features from small sample sizes 
and made accurate predictions, mitigating the problem of 

low prediction accuracy due to imbalanced dataset cat-
egories with small sample sizes.

Interpretability analysis of the effectiveness of GNNGL-PPI
To thoroughly evaluate the effectiveness of GNNGL-
PPI, we applied the widely recognized dimensionality 

Table 7 Performance comparison between GNNGL-PPI and other state-of-the-art methods under the multi-classification evaluation 
metrics
Method Multi-classification evaluation metrics SHS27K SHS148K

Random (%) BFS (%) DFS (%) Random (%) BFS (%) DFS (%)
GNNGL-PPI Weighted precision 89.49± 0.43 76.41± 1.14 76.49± 2.22 92.96± 0.20 75.37± 2.71 84.85± 0.65
LDMGNN 89.13± 0.55 73.14± 2.32 76.11± 0.08 92.89± 0.33 72.56± 3.32 83.35± 1.35
GNN-PPI 88.97± 0.17 69.75± 9.24 70.92± 1.94 92.87± 0.07 70.91± 2.55 83.08± 0.56
GNNGL-PPI Weighted recall 90.81± 0.43 79.38± 2.02 82.92± 2.98 94.00± 0.07 78.88± 6.02 88.74± 0.38
LDMGNN 88.41± 0.22 74.06± 3.47 81.15± 2.79 92.04± 0.14 65.23± 2.76 80.88± 1.67
GNN-PPI 88.10± 0.32 71.68± 9.55 73.67± 2.40 91.63± 0.25 59.12± 6.67 82.60± 1.01
GNNGL-PPI Weighted f1-score 90.13± 0.41 77.42± 0.86 79.39± 2.57 93.47± 0.07 76.66± 4.37 86.69± 0.60
LDMGNN 88.73± 0.39 72.81± 2.39 78.16± 1.30 92.45± 0.20 67.32± 2.71 81.86± 1.04
GNN-PPI 88.50± 0.25 68.30± 1.91 71.87± 1.64 92.24± 0.10 62.53± 4.21 82.72± 0.77
GNNGL-PPI Macro precision 86.36± 0.66 70.00± 5.68 72.63± 2.65 89.76± 0.47 72.83± 2.70 78.44± 0.77
LDMGNN 85.92± 0.40 70.08± 2.81 73.16± 0.47 89.60± 0.30 71.60± 3.26 78.26± 0.87
GNN-PPI 85.88± 0.40 57.88± 20.34 67.37± 1.51 89.64± 0.15 69.18± 3.32 77.65± 0.57
GNNGL-PPI Macro recall 86.52± 0.60 72.22± 4.15 78.09± 2.74 90.20± 0.06 75.55± 5.97 83.71± 0.31
LDMGNN 83.89± 0.67 64.32± 2.12 74.34± 1.63 87.32± 0.07 58.13± 1.70 74.14± 1.84
GNN-PPI 83.43± 0.45 52.88± 8.32 69.44± 1.37 87.07± 0.40 54.24± 8.07 72.37± 0.88
GNNGL-PPI Macro f1-score 86.40± 0.33 70.37± 4.35 74.99± 2.72 89.97± 0.26 73.70± 3.83 80.83± 0.55
LDMGNN 84.80± 0.52 65.85± 2.10 72.80± 0.35 88.47± 0.16 62.11± 3.11 75.77± 1.47
GNN-PPI 84.55± 0.13 52.96± 14.06 68.00± 1.34 88.30± 0.18 58.62± 5.55 73.82± 0.66
GNNGL-PPI Micro precision 89.49± 0.49 75.74± 1.09 76.23± 2.14 92.95± 0.23 74.77± 3.26 84.35± 0.77
LDMGNN 89.24± 0.48 73.52± 2.64 76.10± 0.18 93.05± 0.32 72.28± 3.12 82.90± 1.39
GNN-PPI 89.11± 0.25 71.54± 5.70 70.44± 2.11 92.98± 0.09 70.03± 1.74 83.27± 0.57
GNNGL-PPI Micro recall 90.82± 0.43 79.39± 2.03 82.93± 2.98 94.01± 0.07 78.88± 6.03 88.76± 0.36
LDMGNN 88.42± 0.22 74.06± 3.47 81.15± 2.79 92.05± 0.15 65.23± 2.77 80.88± 1.67
GNN-PPI 88.11± 0.32 71.69± 9.55 73.34± 2.26 91.64± 0.25 59.12± 6.68 82.60± 1.02
GNNGL-PPI Micro f1-score 90.15± 0.39 77.49± 0.56 79.43± 2.53 93.48± 0.09 76.72± 4.29 86.50± 0.56
LDMGNN 88.82± 0.32 73.74± 2.48 78.12± 1.10 92.54± 0.20 68.52± 2.26 81.86± 0.94
GNN-PPI 88.60± 0.29 70.81± 1.72 71.83± 1.61 92.31± 0.09 63.86± 3.43 82.87± 0.70

Table 8 Performance comparison of some statistical tests between GNNGL-PPI and state-of-the-art methods
Rank Number of cases Rank Mean Sum of Ranks
GNNPPI-GNNGLPPI Negative Rank 18a 9.50 171.00

Positive Rank 0b 0.00 0.00
Bind Value 0c

Total 18
LDMGN-GNNGLPPI Negative Rank 17d 9.53 162.00

Positive Rank 1e 9.00 9.00
Bind Value 0f

Total 18
(a) GNNPPI < GNNGLPPI (b) GNNPPI > GNNGLPPI (c) GNNPPI = GNNGLPPI
(d) LDMGN < GNNGLPPI (e) LDMGN > GNNGLPPI (f ) LDMGN = GNNGLPPI
Statistic tests (a) Z Progressive significance (two tailed) p-value
GNNPPI-GNNGLPPI -3.724b 0.000 0.000196
LDMGN-GNNGLPPI -3.332b 0.001 0.000863
(a) Wilconxon sign rank test (b) Based on positive rank
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reduction algorithm t-SNE [55] to the SHS27K dataset. 
This dataset was partitioned using the Random alog-
rithm. t-SNE proved to be an ideal choice for our analysis 
as it preserved the proximity of closely positioned data 
points even after reducing their dimensions. At the same 
time, it effectively maintained the separation between 
originally distant data points. We utilized t-SNE to gain 
insights into the effectiveness of GNNGL-PPI by visual-
izing the clustered representations resulting from dimen-
sionality reduction at different epochs of model training. 
Due to the rapid convergence of GNNGL-PPI in the 
early stages of training, we applied t-SNE to reduce the 
dimensionality of features learned in the 1st, 5th, 20th, 
50th, 100th, and 200th epochs. The clustering visualiza-
tion obtained after one epoch of model training (Fig. 3a) 
revealed that data points representing different interac-
tion categories were intertwined, with no distinct separa-
tion between them. However, as the number of training 
epochs increased, the clustering visualizations after the 
5th, 20th, 50th, and 100th epochs (Fig.  3b to e) clearly 
showed that data points representing different interac-
tion categories gradually moved away from each other, 
while data points representing the same interaction cat-
egory started to cluster together. By the 200th epoch, 
clear boundaries between data points of different interac-
tion categories were observed (Fig. 3f ). It’s important to 
note that since this study treated PPI as a multi-category 
classification task, some data points from different inter-
action categories may still appear in the same cluster. 
Nevertheless, the clustering visualization results from 
different training epochs indicated that GNNGL-PPI was 
an effective method for predicting multi-category of PPI.

Discussions
Although GNNGL-PPI has exhibited a fine performance 
in predicting multiple categories of protein-protein inter-
actions and can provide explanatory analysis for its effec-
tiveness, it also has certain shortcomings:

1. The training of GNNGL-PPI was conducted on 
two publicly available benchmark datasets, and 
the model’s learned deep features were limited. 
This limitation may result in a gap between the 
generalization performance of GNNGL-PPI and 
users’ expected thresholds.

2. GNNGL-PPI relied on sequence features and GO 
annotations of proteins, while overlooking protein 
structural features. However, protein structural 
features often play a crucial role in the performance 
of PPI models.

3. The utilization of GNNGL-PPI requires users to 
input protein-protein interaction networks, which 
undoubtedly increases the complexity for non-
professionals and restricts the application and 
promotion of GNNGL-PPI.

In response to these shortcomings, we have carefully 
considered the issues and proposed potential solutions:

(1) To address the limited deep features learned 
by GNNGL-PPI, we suggest crawling a more 
comprehensive PPI interaction dataset from 
databases. By constructing a more extensive 
PPI interaction network for training GNNGL-
PPI, we can gradually enhance its generalization 
performance.

Fig. 2 Performance comparison between GNNGL-PPI and GNN-PPI across different interaction categories using the BFS partitioning algorithm on the 
SHS27K dataset. (a) In each interaction category, GNNGL-PPI outperformed GNN-PPI by predicting more correct samples (green color) as compared to 
the latter (red color). Particularly in the Expression category, GNNGL-PPI correctly predicted 40 positive samples, while GNN-PPI only achieved 27. (b) With 
the exception of the Action and Inhibition interaction categories, the prediction accuracy of both methods was similar. However, in the remaining five 
interaction categories, GNNGL-PPI exhibited a prediction accuracy that was more than 10% higher than that of GNN-PPI.
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(2) In order to incorporate protein structural features 
into GNNGL-PPI, we recommend extracting such 
features from protein topology graphs or three-
dimensional grids using graph neural networks or 
3D-CNN. This approach will enrich the protein 
features and improve the model’s performance.

(3) To alleviate the challenges faced by non-professionals 
in utilizing GNNGL-PPI, we propose developing 
an online service tool. With this tool, users would 
only need to input protein pairs, and the tool would 
automatically construct a protein-protein interaction 
network and predict the interaction categories 
between proteins.

In order to further improve the performance of GNNGL-
PPI, we believe that in-depth research should be con-
ducted in the following areas in the future:

(a) Introducing self-supervised contrastive learning 
into the GNNGL-PPI method enhances its feature 
extraction ability, enabling the method to learn 
more key implicit features that affect multi-category 
prediction of protein-protein interactions.

(b) At present, the protein features used are still 
relatively single, and multiple modal information 
such as protein sequences and structures should be 

integrated to promote the model to achieve better 
performance based on the rich features of proteins.

(c) Deepening the interpretive analysis of the 
effectiveness of protein-protein interaction 
prediction methods will not only promote the 
application of this method, but also provide support 
for the research of new methods.

GNNGL-PPI not only provides PPI prediction services 
to support users in understanding the mechanism of 
protein-protein interaction, but also the predicted PPI 
categories or PPI networks constructed from them can 
provide deep and rich features for drug-target interac-
tion prediction and other related tasks, which is helpful 
for drug screening, repositioning, and target recognition 
research. We will briefly provide relevant work in Appen-
dix A.

Conclusions
GNNGL-PPI is a novel method for predicting multi-cate-
gory of PPI based on graph neural networks. This innova-
tive approach leverages the power of GIN and GIN-AK 
to extract the features from both the global graph and 
local subgraph of the PPI network. Additionally, the 
use of ASL helps enhance the model’s performance on 
imbalanced datasets. Experimental results have showed 
that GNNGL-PPI surpasses the performance of existing 

Fig. 3 Interpretability analysis of the effectiveness of GNNGL-PPI. We used t-SNE algorithm to elucidate GNNGL-PPI’s effectiveness by contrasting the clus-
tered visualizations resulting from dimensionality reduction for multiple different epochs of the model training of GNNGL-PPI. The clustering visualization 
results, represented as (a) to (f), corresponded to the features learned in the first, fifth, 20th, 50th, 100th, and 200th epochs of model training, respectively. 
Upon examining these results, a clear pattern emerged: data points representing different interaction categories gradually moved apart as the number of 
training epochs increased, while data points representing the same interaction category gradually clustered together. The clustering visualization results 
showed that GNNGL-PPI was an effective PPI multi-category predictor
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state-of-the-art methods for PPI prediction on two stan-
dard datasets. The effectiveness of GNNGL-PPI is further 
supported by the t-SNE algorithm, which provides visual 
evidence of the model’s capability. Therefore, GNNGL-
PPI is a reliable multi-category prediction tool for pro-
tein-protein interactions.

Appendix A
Here, we will briefly mention that predicting protein-pro-
tein interactions can significantly contribute to drug-tar-
get interactions, target identification, and other related 
research in drug discovery, ultimately advancing drug 
development.

TripletMultiDTI [56] utilized protein-protein inter-
action (PPI) and drug-drug interaction (DDI) networks 
as supplementary knowledge. It integrated multimodal 
information, including drugs, proteins, DDI networks, 
and PPI networks, as inputs to predict the affinity of 
drug-target pairs. Furthermore, a review article [57] elab-
orated on the crucial role of protein-protein interactions 
in performing essential cellular functions. These inter-
actions have been pivotal drug targets for the past two 
decades and are fundamental to drug development and 
design. Additionally, reference [58] provided a detailed 
exploration of the vital role of protein-protein interac-
tions in structural biology and drug discovery.
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