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Tissue-specific atlas of trans-models for gene 
regulation elucidates complex regulation 
patterns
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Abstract 

Background Deciphering gene regulation is essential for understanding the underlying mechanisms of healthy 
and disease states. While the regulatory networks formed by transcription factors (TFs) and their target genes 
has been mostly studied with relation to cis effects such as in TF binding sites, we focused on trans effects of TFs 
on the expression of their transcribed genes and their potential mechanisms.

Results We provide a comprehensive tissue-specific atlas, spanning 49 tissues of TF variations affecting gene expres-
sion through computational models considering two potential mechanisms, including combinatorial regulation 
by the expression of the TFs, and by genetic variants within the TF.

We demonstrate that similarity between tissues based on our discovered genes corresponds to other types of tissue 
similarity. The genes affected by complex TF regulation, and their modelled TFs, were highly enriched for pharmacog-
enomic functions, while the TFs themselves were also enriched in several cancer and metabolic pathways. Addition-
ally, genes that appear in multiple clusters are enriched for regulation of immune system while tissue clusters include 
cluster-specific genes that are enriched for biological functions and diseases previously associated with the tissues 
forming the cluster. Finally, our atlas exposes multilevel regulation across multiple tissues, where TFs regulate other 
TFs through the two tested mechanisms.

Conclusions Our tissue-specific atlas provides hierarchical tissue-specific trans genetic regulations that can be fur-
ther studied for association with human phenotypes.
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Background
Transcription regulation plays a key role in immune 
response [1] and in a broad range of diseases [2]. Under-
standing the gene regulation plan has the potential to 
help in identifying disease etiology and designing thera-
peutics. Importantly, previous studies suggest that gene 

regulation is tissue specific, driven by context-dependent 
regulatory paths, providing transcriptional control of tis-
sue-specific processes [3, 4].

One of the methods to unravel the connection between 
genotype and transcription levels is through transcrip-
tome imputation techniques, such as PrediXcan or 
TWAS [5, 6]. These methods model the genetic compo-
nent of observed gene expression using combinations 
of genetic locations in cis with the gene they impute. 
The use of transcriptome imputation techniques have 
proven valuable in several scenarios, including complex 
human disease research and identification of trans-acting 
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components [7–12], but these cis models still explain 
only a small portion of the variation in gene expression. 
Indeed, one study estimated that most heritability is 
driven by weak trans-eQTL single-nucleotide polymor-
phism (SNPs), supporting an approach to identify such 
sources of expression variability [13]. Two data-driven 
studies to identify trans effects were based on the cis-
transcriptome imputation technique of PrediXcan. The 
first one learned a model for every pair of source and 
target genes, but it suffered from low power due to the 
large hypothesis space, which resulted in low number 
of discovered relationships [12]. They also tested their 
approach on either a single tissue (whole blood), or 
included all the tissues into one model, thus missing tis-
sue specific information. The second approach looked for 
correlation between proteomics and the imputed gene 
expression, leading to both cis and trans correlations [14]. 
While this approach tested all 49 tissues, it was against 
proteomics from a single tissue. Additionally, both 
approaches suffered from two additional limitations: 1) 
it only tested one trans gene at a time, potentially miss-
ing combinations of trans effects; and 2) the data-driven 
approach leaves the potential mechanisms of these dis-
covered trans effects determined.

To address the missing explained variance in cis tran-
scription imputation methods and to overcome the low 
power and limitations of the aforementioned studies, we 
noted that both approaches found that trans-acting genes 
were enriched in transcription binding pathways and 
target genes were enriched in known transcription fac-
tor binding sites [12, 14]. Correspondingly, we previously 
introduced a new hypothesis-driven approach to gener-
ate trans-association models. Instead of looking at the 
entire genome, we focused on associations between vari-
ations in transcription factors (TFs) and the transcription 
levels of their transcribed genes [15]. We developed com-
putational models accounting for two potential mecha-
nisms whereby the combined variability of TFs can affect 
the expression of a transcribed gene. One mechanism 
considers variations in the expression of TFs affecting the 
expression their transcribed genes. Another mechanism 
suggest that deleterious single nucleotide polymorphisms 
(SNPs) within TFs may affect binding affinity, which leads 
to altered transcription levels of the transcribed genes.

The previous publication focused on methodology and 
was demonstrated only on two tissues [15]. The purpose 
of this study is therefore to provide an atlas of TF expres-
sion models for 49 different tissues and characterize 
their traits. We demonstrate through similarity between 
tissues that our discovered genes corresponds to other 
genomic types of tissue similarity. We further elucidate 
enrichment of modeled genes with pharmacogenomic 
phenotypes and with cancer and metabolic pathways. 

Clustering the tissues based on shared genes, we dem-
onstrate that common genes are enriched with immune 
system regulation while cluster-specific genes are associ-
ated with phenotypes associated with the same tissues in 
which they were discovered. To allow for exploration of 
the regulation networks formed by our models, we pro-
vide a website (https:// tstr. uth. edu).

Results
Distribution of genes modeled by tissue‑specific TF models
We considered two potential mechanisms by which vari-
ability in TFs is associated with variability in expression 
of their transcribed genes: (1) the combined expression 
levels of TFs is associated with expression of their tran-
scribed gene (Fig.  1A); or (2) combination of deleteri-
ous SNPs within the TFs is associated with expression of 
their transcribed gene (Fig. 1B). We refer to the compu-
tational models capturing these potential mechanisms as 
TF-Expression (mechanism number 1) and TF-Binding 
(mechanism number 2), respectively (Methods, Fig. 2).

Applying our models to 49 tissues and cells from GTEx, 
we extracted “hit genes” for which the TF-Expression 
and/or TF-Binding models passed the significance 
tests (explain more variance than a random model) 
and robustness test (consistently discovered with sub-
sets of the samples) (Methods). We discovered a total 
of 6,147 hit genes using the TF-expression model (aver-
age 295 ± 93 hit genes per tissue) and 6,265 hit genes 
using the TF-binding model (182 ± 60 hit genes per tis-
sue) (Table S1, Figure S1). The majority of the discovered 
genes were tissue-specific, with each gene discovered in 
2.4 ± 3.5 tissues on average for the TF-Expression model 
and in 1.4 ± 0.75 tissues for the TF-Binding model (Figure 
S2).

We measured the correlation between the  R2 of 
explained expression variance between cis (PrediXcan) 
models and our models across tissues. The TF-Expression 
model showed moderate negative (ρ = -0.22, p <  6e−165), 
While the TF-Binding model displayed negligible corre-
lation (ρ = -0.03, p < 0.003, Figures S3-S4).

Model‑based tissue similarity is comparable to other tissue 
similarity metrics
To augment our previous validation of the methodology 
in two tissues [15], we validated the models across the 
entire 49 tissues and cells. We compared tissue similar-
ity based on the modelled genes to tissue similarity com-
puted based on expression and tissue-shared genetic 
regulation based on gene-level profiles of DNase I hyper-
sensitive sites (DHS) of Zhou et al. [16] (Methods).

When compared to Zhou et al. tissue similarity that is 
based on gene expression profiles, we found a significant 
correlation to our TF-Expression shared genes similarity 

https://tstr.uth.edu
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Fig. 1 An illustration of the two tested mechanisms regarding the assocation between variabiliy in TFs and expression of their transcribed genes. 
TF-expression model includes associations of TF expression with estimated trans gene expression (A); and TF-binding model includes association 
of deleterious SNPs within the associated TF with estimated trans gene expression (B)

Fig. 2 An illustration of the pipeline to identify hit genes. We compute the estimated trans GReX on the residulas after removing cis genetic effects 
and other effects on gene expresssion (A), test their significance relative to background models (B), and conduct a robustness test to validate 
the results (C)
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(Spearman ρ = 0.43, p <  2e−54, Figure S5). Since the com-
parison is to an expression-based tissue similarity, the 
comparison to the TF-Binding model was lower but still 
statistically significant (Spearman ρ = 0.17, p <  e−8, Figure 
S6).

When compared to tissue similarity based on DHS 
[16], we found good correspondence between the DHS 
similarity and the similarity computed on the genes 
from both the TF-Expression model (Spearman ρ = 0.47, 
p <  4e−65, Figure S7) and the TF-Binding model (ρ = 0.25, 
p <  7e−18, Figure S8).

Characterization of hit genes
We first characterized the hit genes discovered through 
our TF modes by testing the hit genes for conservation 
using the LIST [17] conservation scores (Methods). We 
found that hit genes were significantly more conserved 
relative to genes that did not pass the model filtering 
in both the TF-Expression (Wilcoxon ranked sum test, 
p <  2e−15) and in the TF-Binding models (p <  e−69).

Inspecting individual tissues, all individual tissues in 
TF-Binding had higher conservation scores than the 
background. For the TF-Expression model, forty tissues 
(out of 49) obtained higher conservation scores than the 
background. The nine tissues that obtained lower con-
servation scores than the background score include brain 
tissues, colon and esophagus.

Another characteristics is that both the TFs partici-
pating in the models and the modeled hit genes in both 
TF-Expression and TF-Binding models were enriched 
for pharmacogenes – genes with variants associated 
with pharmacogenomic traits from PharmGKB [18] 
(p <  3e−9 and p <  9e−9 for TFs in TF-Expression and TF-
Binding models, respectively and p <  6e−21 and p <  3e−9 
for hit genes in TF-Expression and TF-Binding models, 
respectively).

Hit genes common to multiple tissues are enriched 
with immune response
We next looked for identifying traits for hit genes dis-
covered across at least half of the tissues (Methods). We 
identified 56 common hit genes in the TF-Expression 
model and four common hit genes (ANKRD65, POLR1A, 
VPS28, NDUFV1) in the TF-binding model (Table S1 
display the number of tissues per hit gene).

The 56 common genes in the TF-Expression mod-
els were enriched with multiple Gene Ontology (GO) 
biological process terms, including general immune 
systems terms such as “innate immune response”, “regu-
lation of immune system process” and “defense response 
to other organisms” (B&H FDR adjusted p <  4e−10), 
and more specific immune response-related GO terms 
include activation of myeloid leukocytes, neutrophils 

and granulocytes (p <  5e−6). Additional enrichments are 
for Reactome pathways related to the immune system, 
including “cyclic GMP-AMP synthase (cGAS)-stimulator 
of interferon genes (STING) mediated induction of host 
immune responses” (B&H FDR adjusted p < 0.005) and 
Reactome’s “diseases of immune system” (p < 0.02, Table 
S2). We highlight one gene of the 56 common genes, 
CD33, a microglial inhibitory Siglec [19]. In our set, 
CD33 was discovered in several brain tissues, including 
brain cerebellum, frontal cortex, hippocampus, putamen 
and caudate basal ganglia. In these tissues, the TF with 
the highest weight in the model is the gene SPI1 (PU.1). 
Interestingly, higher CD33 expression in the parietal lobe 
is associated with advanced cognitive decline or Alzhei-
mer’s disease status [19–21]. Furthermore, In support of 
this finding, the TF SPI1 is also reported to regulate dis-
ease-associated genes in primary human microglia [22] 
and expression levels regulate microglial inflammatory 
response [23].

Out of the four common hit genes in the TF-Binding 
model, we highlight two, RNA Polymerase I Subunit 
A (POLR1A) and Mitochondrial complex I deficiency 
(NDUFV1). POLR1A was modeled in ten tissues, includ-
ing multiple tissues from the gastrointestinal tract (sig-
moid and transverse colon, esophagus mucosa, small 
intestine terminal ileum, stomach and minor salivary 
gland). Inhibition of POLR1A was found to regulate the 
signaling pathways and cell functions in colorectal cancer 
[24, 25], so its trans-regulating TFs may also be involved. 
There are several TFs in their models across these diges-
tive system tissues, but the most highly weighted TFs are 
RNA Polymerase I Subunit A (POLR1E) and genes from 
the Signal Transducer And Activator Of Transcription 
family STAT2, STAT3 and STAT4. Indeed, POLR1E is 
part of enriched signaling pathways in colorectal can-
cer [26, 27] while these member of the STAT family are 
contributing to promotion of colorectal tumorigenesis, 
silencing them inhibits cell proliferation and invasion of 
colorectal cancer cells, and considered as targets for ther-
apy [27–34].

NDUFV1 was primarily discovered in 11 tissues, seven 
of which are brain tissues (amygdala, caudate basal gan-
glia, cerebellum, cortex, hypothalamus, putamen basal 
ganglia and substantia nigra). Genetic variations and 
differential expression of NDUFV1 are associated with 
several human neurological disorders, including Mito-
chondrial Complex I Deficiency, Parkinson disease (PD), 
Alzheimer’s Disease (AD), myoclonic epilepsy, schizo-
phrenia, Leigh syndrome and leukoencephalopathy [35–
45]. The brain tissue models are prevalent with three TFs, 
ETS Proto-Oncogene 1, Transcription Factor (ETS1), 
Forkhead box protein O1 (FOXO1) and PR/SET Domain 
14 (PRDM14), each appearing in almost half of the brain 
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tissues. These TFs are also associated with some of the 
same neurological conditions associated with regulation 
of their modeled hit gene, NDUFV1: ETS1 is associated 
with complex I deficiency [42, 46], expression levels of 
FOXO1 are decreased in acute schizophrenia [47] and 
increased in AD [48]. Finally, PRDM14 has key role in 
modulating specific regulatory functions in schizophre-
nia [49], suggesting a possible mechanism for these three 
TFs to affect these conditions through NDUFV1.

Tissue cluster‑specific gene modules
We were interested in tissue-specific hit genes but in 
order to account for similar tissues, we first clustered 
the tissues based on the hit genes, choosing hierarchical 
clustering to reflect the tiered nature of tissues, such as 
organs and organ systems (Methods). We identified 12 
clusters from the TF-Expression model and 17 clusters 
from the TF-Binding model, not including tissues that 
form singleton clusters. Several of these clusters grouped 
tissues from the same organ or organ system, such as 
brain, gastrointestinal, adipose, skin, or heart tissue clus-
ters (Figs. 3 and 4).

The majority of the clusters do not overlap between the 
TF-Expression and TF-Binding models. Notable exam-
ples of clusters that are shared between these models 
include tissues belonging to the digestive system, includ-
ing sigmoid colon, esophagus gastroesophageal junction 
and esophagus muscularis, brain tissues (anterior cingu-
late cortex ba24 and brain caudate basal ganglia), and a 
cluster grouping liver and coronary artery (Figs. 3 and 4).

We identified 199 cluster-specific hit genes across 
all clusters in the TF-Expression and 263 cluster-spe-
cific genes in the TF-Binding model (Methods). We 
highlight here two such examples. The first example 
involves a cluster of digestive system tissues in the TF-
Expression model. This cluster has three cluster-spe-
cific genes, GOLT1A, RAB27B and SLC28A3. GOLT1A 
has been reported to be differentially expressed 
between high and low risk groups for esophageal can-
cer [50] and RAB27B is a significant prognostic marker 
for metastasis and poor prognosis in colorectal cancer 
[51–53]. The TF that appears in the models of all three 
hit genes is GATA-binding factor 2 (GATA2). GATA2 is 
highly expressed in colorectal cancer cells and serves a 
prognostic factor [54–56].

The second example is a cluster from a TF-Binding 
model, including brain hypothalamus and nucleus 
accumbens basal ganglia tissues. There are six cluster-
specific genes (PRKCA, GPNMB, ADI1, KCNMB4, 
CCZ1B, and SLC13A3) and these genes are enriched for 
GO annotation of regulation of neurotransmitter secre-
tion (p < 0.05), consistent with the brain tissues where 
they were modeled [57, 58]. The two prominent TFs in 
their models are TFAP2A and MXI1, where noradren-
ergic neurons require TFAP2A for expression of a neu-
rotransmitter phenotype and promote specification 
and maturation of neurons, while MXI1 is essential for 
neurogenesis and acts by bridging the pan-neural and 
proneural genes [59–63].

Fig. 3 Dendrogram of the clustered tissues based on hit genes discovered in the TF-Expression model. Each cluster is in separate color, with black 
lines denoting signleton clusters
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Co‑regulation of hit genes
We tested for co-regulation of genes by identifying pairs 
of hit genes that co-discovered across several tissues 
(Methods). We identified 1,157 co-regulated hit genes 
pairs in the TF-Expression model, and only 23 gene 
pairs from the TF-Binding models, corresponding to a 
larger portion of tissue-specific hit genes modeled by 
the TF-Binding model. The majority of the co-regulated 
gene pairs in the TF-Expression are in one connected 
module (77% of the pairwise connections). We provide 

visualization of these co-regulation networks on our ded-
icated website (https:// tstr. uth. edu).

We highlight two examples of prevalent co-regula-
tion (Fig.  5). The first example from the TF-Expression 
involves three genes, TYROBP (DAP12), IFIT3, and 
AIF1 (IBA1), which were discovered in the TF-Expres-
sion model across more than 37 shared tissues (Jaccard 
score > 0.8, p < 0.01). Interestingly, all three genes have 
increased expression in microglia [64, 65] and are part 
of a gene signature in a mouse model of amyotrophic 

Fig. 4 Dendrogram of the clustered tissues based on hit genes discovered in the TF-Binding model. Each cluster is in separate color, with black lines 
denoting signleton clusters

Fig. 5 Discussed examples of co-regulation from TF-Expression model (A), where the discussed examples are in yellow and their direct neighbors 
in blue; and TF-Binding model (B)

https://tstr.uth.edu
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lateral sclerosis, where expression of IFIT3 and TYROBP 
increased during disease progression in the mice micro-
glia, macrophages, neutrophils, and monocytes [66].

The second highlighted example is from the TF-Bind-
ing model, involving the genes PRKCA, GPNMB and 
KCNMB4. These genes were discovered across various 
brain tissues (cortex, hippocampus, hypothalamus and 
nucleus accumbens basal ganglia). Microglia express 
GPNMB in the brains of Alzheimer’s disease and Nasu-
Hakola disease [67], PRKCA is associated with neural 
basis of episodic remembering in healthy individuals [68] 
and KCNMB4 is downregulated in hippocampal granule 
neurons following seizure activity [69]. The three TFs 
that have the highest cumulative weight in the models of 
these genes are SREBF1, SREBF2 and ZEB1, themselves 
associated with neuronal differentiation and neurodegen-
erative diseases like Alzheimer’s Disease or Huntington’s 
Disease [70–72].

Regulation cascades of hit genes and TFs
We identified regulation cascades, where a gene’s expres-
sion is modeled by the TFs in the model, and in turn, 
some of these TFs are also modeled by other set of TFs, 
forming regulation cascades in specific tissues. In order 
to enable exploration of these regulation cascades in each 
tissue, we’ve provided a web server (https:// tstr. uth. edu/), 
showing regulation cascades that reach up to four levels 
of trans-regulation (in the small intestine and in the aor-
tic artery tissues in the TF-Expression model).

We highlight one such regulation cascade: Interferon-
induced protein with tetratricopeptide repeats 3 (IFIT3) 
is a hit gene that is modeled in 38 tissues by the TF-
Expression model, each involving different combinations 
of TFs affecting IFIT3. Four TFs, Signal Transducer And 
Activator Of Transcription 1 and 2 (STAT1 and STAT2), 
and interferon regulatory factor 1 and 9 (IRF1 and IRF9) 
are not only prevalent across these models, but they are 
also modeled themselves by the TF-Expression model 
across nine different tissues where IFIT3 is also modeled. 
Furthermore, in four tissues such as breast and esopha-
gus mucosa, both IFIT3 and IRF9 are modeled by STAT1 
and STAT2, suggesting a high level of regulation (Table 1, 
Figs.  6, S9-S11). This regulation pattern is supported 
by previous publications, demonstrating that STAT1–
STAT2–IRF9 form complexes, known as IFN-stimulated 
gene (ISG) factor 3 complexes [73, 74]. Furthermore, 
high expression of STAT1, STAT2, and IRF9 in breast 
cells significantly increase the expression of IFIT3 after 
IFNβ treatment [75], are all highly expressed in cells such 
as esophageal squamous cell carcinoma [76, 77] and that 
STAT2 could form a complex with IRF9 and bind to the 
IFN-stimulated gene regulatory element (ISRE) sequence 
on the IFIT3 promoter to promote IFIT3 transcription 

[78]. In another publication regarding patients with 
Chronic Hepatitis B Virus, STAT2 was essential for the 
production of IFIT3 but not STAT1 [79].

We highlight the possible co-regulation of IFIT and 
its TF IRF9. IRF9 has the highest weight in the models 
of IFIT3 and is modeled in four tissues where IFIT3 is 
also modeled (Table  1). One of these tissues is breast. 
Recent studies have implicated IFIT proteins as prog-
nostic markers to determine the clinical outcome of 
breast cancer [80]. IRF9 is not only associated with the 
development of resistance to antimicrotubule agents in 
breast tumor cells, but is also reported as potential link 
to downstream mediators of IFN signaling to drug resist-
ance in human cancers [81]. Another tissue where the 
signaling cascade of interferon is involved is sun exposed 
skin (Table  1). Indeed, there is prognosis and biologi-
cal significance for IFIT family in skin cutaneous mela-
noma and is a novel regulatory factor in psoriasis [82, 
83]. Additionally, healthy primary keratinocytes increase 
interferon response genes, including IRF9 [84]. Although 
STAT1 and STAT2 are not hit genes by themselves, TFs 
from the STAT family have established connections to 
breast cancer and skin [29, 84–87]. It is interesting to 
note that in breast and amygdala tissues, both STAT1 and 
STAT2 participate in the TF-Expression model for IRF9 
(Figs. 6, S9), but in the esophagus only STAT2 is included 
in IRF9 model (Figure S10) and for skin only STAT1 is 
included, which could be related to the accumulating 
evidence revealing that distinct facets of STAT2 and 
IRF9 activity mediated by the segregation in alternative 
STAT1-independent complexes are thought to trigger 
different transcriptional programs [88].

Discussion
Transcriptome imputation methods focus on cis areas of 
the genes and suffer from missing explained variance in 
gene expression. We introduced models for explaining 

Table 1 Regulation cascade of TFs modeling IFIT3 and also 
modeled themselves

Tissue IRF1 IRF9 STAT1 STAT2

Adipose subcutaneous X

Adipose visceral omentum X

Brain amygdala X

Brain spinal cord cervical c-1 X

Breast mammary tissue X

Esophagus mucosa X

Heart atrial appendage X

Skin sun exposed lower leg X

Whole blood X

https://tstr.uth.edu/
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the missing variance by considering trans effects of vari-
ability in TFs on gene expression in the form of tran-
scriptional variation (TF-Expression) or genetic variation 
(TF-Binding) in TFs. Here, we applied our models to 
49 tissues and cells, characterized the thousands of dis-
covered hit genes affected by variation in TFs across the 
tissues (6,147 and 6,265 hit genes in each model), and 
generated an atlas of this type of regulation.

The majority of the discovered hit genes are specific to 
a single tissue, or few related tissues, which corresponds 
well to the observation of Lopes-Ramos et  al. [89] that 
TF regulation is tissue specific. This is mostly apparent in 
the TF-Binding model, where no hit gene was common 
to more than five tissues, while some of the hit genes in 
the TF-Expression model were common to more than 
twenty tissues. We hypothesize that since TFs typically 
transcribe several genes, major changes in TF binding 
may result in significant effect to several genes and cellu-
lar processes, which could be detrimental to the individ-
ual. Such genetic variation may suffer from evolutionary 
pressure to attenuate its effect. In contrast, affecting the 
regulation through expression variation of the TF can 
be more fine-tuned. Furthermore, the overlap of genes 
between the two models, TF-expression and TF-binding, 
in each tissue do not exceed 2.5%, suggesting that these 
mechanisms are complementary in each tissue.

A small subset of the genes in the TF-Expression are 
common to multiple tissues (56 genes). These genes are 
enriched for multiple GO terms and diseases related to 
the immune response, suggesting that these immune 
functions are prevalent across multiple tissues and that 

these genes are regulated via expression variation of their 
corresponding TFs. This observation is in line with previ-
ous observation that genes involved in response regula-
tion, such as TFs in our case, display a unique expression 
pattern across species and conditions, suggesting a fine-
tuned regulation [90]. Additional support comes from 
the study of Wittich et  al. [14] that observed that their 
target proteins of trans-acting genes were enriched for 
autoimmune diseases in the GWAS catalog. Given the 
enrichment of immune system hits in our TF-Expression 
models, we speculate that in the case of immune system, 
complex regulation plan that is not “hard-coded” into the 
genome but regulated by the transcription level of the 
TFs might provide more benefits. This type of immune-
specific regulation complexity was previously discussed 
but quantification requires more research [91, 92].

We observed complex regulation cascades, where the 
TFs themselves were also regulated by other sets of TFs. 
These cascades were also tissue-specific. TF cascades 
were previously studied with regard to developmental 
gene networks [93], where these cascades were accurately 
timed, and are also prevalent in other model organisms 
[94, 95]. Further research into our hypothesized cascades 
is needed to determine if they occur in sequence in devel-
oped cells.

We list three limitations of our method. The first lim-
itation is that it is hypothesis-driven and thus led us to 
focus on variability in TFs. This has allowed us to gen-
erate interpretable models and gain better understand-
ing of TFs, which are components with well-established 
role in transcription regulation. However, we might have 

Fig. 6 Example of regulation cascade discovered in the TF-Expression model in Mammary breast tissue between IFIT3 (hit gene, in yellow), IRF9 
(both TF and hit gene, yellow). Other TFs, such as STAT1 and STAT2, are included in the models for IFIT3, IRF9 or both (orange)
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missed other trans-regulation components that can affect 
gene expression, and thus our models are likely to under-
estimate the trans effects on each gene.

A second limitation is specific to the TF-Binding 
models. We included only non-synonymous deleterious 
SNPs in these models with these two reasons in mind: 
1) the biological interpretation of the models; and 2) 
the generalizability of the models. Specifically, the first 
reason concerns interpretability of our model, as vari-
ants predicted to be deleterious would be the initial 
suspects for affecting binding affinity while other vari-
ants, such as synonymous SNPs, would be harder to tie 
to the mechanism. The second reason is that incorpo-
rating a smaller and more focused set of variants helps 
address the high dimensional sparse space of variants, 
avoids overfitting of the models and enables reasonable 
computing time of these models. While dimensional-
ity reduction techniques could be considered in sub-
sequent works to incorporate non-deleterious variants 
into the models, these would aid computations time but 
may still reduce the interpretability and transferability 
of the models.

The final limitation is that our models identify only 
associations and not infer causation. Nevertheless, 
we anticipate that our findings will be useful in prior-
itizing genes and TFs for experimental setting that is 
designed to test their causality and relevance to specific 
conditions.

The deleterious variants included in the TF-Bind-
ing model could potentially affect both the binding 
domains and the structure of the TF, each with a poten-
tial to affect the binding affinity of the TF. Further 
research utilizing a large scale resource that differen-
tiate between binding and structural domains within 
each TF could further determine the mechanistic inter-
pretation of the model.

Conclusions
Understanding how variations in TFs regulate gene 
expression can offer key insights into the transcriptional 
regulation plan. Correspondingly, we provide an atlas of 
computational models linking variations of TFs to gene 
expression levels of their transcribed genes across 49 tis-
sues and make discovered co-regulation and regulation 
cascade networks available for examining through a dedi-
cated website.

Our results can be utilized in two ways. First, our tis-
sue-specific regulation models can be incorporated into 
genome wide association studies and improve phenotype 
prediction models. Second, our newly generated hypoth-
eses for genetic regulation that can be further explored in 
the context of specific tissues through experiments.

Materials and methods
Data
Genotype and expression data from the Genotype-Tissue 
Expression Project (GTEx) version 8 [96] were retrieved 
from dbGaP for 49 tissues (Table S3). Transcription 
factors and their transcribed genes (204,999 unique 
gene-TF pairs) were assembled from three sources: 
Transcriptional Regulatory Relationships Unraveled by 
Sentence-based Text mining (TRRUST V2) [97], the 
Human Transcriptional Regulation Interaction Database 
(HTRIdb) [98] and the regulatory Network Repository 
of Transcription Factor and microRNA Mediated Gene 
Regulations (RegNetwork) [99]. Genomic positions of 
the TFs were computed based on the human genome 
assembly version 37 (GRCh37). Functional annotations 
for non-synonymous SNPs were retrieved from SnpEff 
v4.3 [100]. Evolutionary conservation scores were down-
loaded from LIST [17] and averaged across all the amino 
acids of each protein to obtain a protein conservation 
score. Pharmacogenomic clinical variants were down-
loaded from PharmGKB [18]. Pathways were retrieved 
from the Pathway Interaction Database [101] and The 
Reactome pathway knowledgebase [102].

TF models for estimating trans associations with gene 
expression
To formulate our models, we start with the hypothesis, 
described in the PrediXcan method [6], that views the 
observed transcription levels of a gene,  Tg, as the com-
bined effect of genetically regulated gene expression 
(GReX) and contribution of other factors, ϵ, assumed to 
be independent of the genetic component cis and trans 
effects of variants in the gene:

We further split the estimate of GReX, ĜReX , to its 
combined cis and trans effects, GReXcis , and GReXtrans . 
In this work we neglected interaction terms between cis 
and trans to simplify the models.

For estimating the trans effects, we model the residual 
genetic effect of ĜReXtrans by subtracting the GReXcis 
component, predicted by PrediXcan method [6], from a 
normalized expression value, that is adjusted for sex, the 
top 3 principal components (derived from genotype data) 
and the top 15 PEER factors [103], using the normaliza-
tion procedures introduced in the PrediXcan paper:

For modeling the genetic trans effects, ĜReXtrans , we 
used two hypothesized mechanisms:

(1)Tg = GReX + ǫ

(2)ĜReX = GReXcis + GReXtrans

(3)ĜReXtrans = TgNorm − GReXcis
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Model 1: A model assuming variability in the expres-
sion of the TFs affects variability in gene expression 
(TF-Expression). This model uses expression values 
of TFs as the independent variables:

where Tk are the normalized TF expression level and αk 
are the weights learned using the regularized LASSO 
regression [104] and ϵ is the contribution of other factors 
that determine the residual expression trait, assumed to 
be independent of the TF-expression component.

Model 2. The second model assumes genetic variants 
in the TF gene affect the binding affinity to the tran-
scription factor binding site (TF-Binding):

where βk are the weights learned using the regularized 
LASSO regression and Vk are the dosages of SNPs within 
these TFs and ϵ is the contribution of other factors that 
determine the residual expression trait. For these models, 
we focused only on non-synonymous, deleterious SNPs, 
based on SIFT scores lower than 0.05 [105].

We tested each of these models independently so 
effects of each model does not mask another model.

TF models construction
The constructed TF models follow a four-step pipeline 
that is also described in Lu et al. [15] (Fig. 2). We provide 
a brief description of these steps below:

Step 1: Calculate residual variability unexplained by 
cis-models. We modeled the residuals between nor-
malized observed genes expression and cis-imputed 
expression based on PrediXcan method [106]: The 
genetic component of the observed expression of 
each gene in each tissue was calculated using the 
normalization proposed in PrediXcan, accounting for 
gender, sequencing platform, the 3 top principal com-
ponents of the genotype dosages, and the 15 proba-
bilistic estimation of expression residuals (PEER) fac-
tors [106]. The result of the normalization was that 
the normalized gene expression closely resembled 
standard normal distribution (mean expression per 
gene 0.006 ± 0.97). The remaining residuals to model 
are obtained by subtracting the cis-imputed expres-
sion from the normalized expression.
Step 2, build a model for each candidate gene: We 
model the residual genetic variability of the gene 
expression (dependent variable) using the regular-
ized LASSO regression [104]. The dependent vari-
ables were either the normalized observed expression 

(4)ĜReXTF−expression =
k
αkTk + ǫ

(5)ĜReXTF−binding =

∑
k
βkVk + ǫ

of the TFs, normalization of TF expression adjusting 
for the same variables as all the genes (TF-Expression 
model) or deleterious genetic variants within the TF 
gene (TF-Binding model).
Step 3: Significance tests. In order to identify genes 
whose TF models are significantly different than ran-
dom, we compared the computed  R2 between the 
residual expression and the model prediction to  R2 
obtained from two sets of background models (each 
with a hundred runs) and retained only genes that 
passed both background models with significance 
level of FDR-adjusted p-value < 0.05 (Benjamini–
Hochberg false discovery rate (B&H FDR) [107]). The 
first background model trained the models on shuf-
fled residuals, while the second background model 
uses random selection of unassociated TFs. For the 
latter, we selected 100 random sets of TFs for each 
gene, each set with the same number of TFs as the 
true set of TFs associated with the gene.
Step 4: Robustness test. We re-ran the entire pipeline 
(with background models) ten times, each on ran-
domly selected 90% of the samples, retaining genes 
that were significant in more than 50% of the robust-
ness tests, defined as “hit genes”.

Comparison to similarity metrics
In Lu et al., [15] we validated hit genes in two tissue, skel-
etal muscle and whole blood, against eQTLs and a data-
driven approach of Wheeler et al. [12]. Here, we validated 
our tissue-specific gene atlas by comparing a tissue simi-
larity metric constructed from hit genes, to previously 
constructed tissue similarities based on other types of 
data. The comparison was done by calculating the Spear-
man correlation between our tissue similarity and the 
external tissue similarities across all tissues.

We computed our pairwise tissue-tissue similarity 
using Jaccard score between their shared genes in either 
the TF-Expression or TF-Binding models based on our 
discovered genes associated with variability in their TFs.

We compared our similarity metric to two types of 
tissue similarities introduced by Zhou et  al. [16]: 1) an 
expression-based tissue similarity and 2) a tissue simi-
larity capturing tissue-shared genetic regulation based 
on cell-specific gene-level profiles of DNase I hypersen-
sitive sites (DHS). For the second metric, they mapped 
cells to tissues and provided normalized tissue similarity 
scores. The DHS-based tissue similarity is computed on 
the gene level (i.e., the similarity is provided between two 
tissues for each gene), so we calculated a tissue similar-
ity by averaging across all the genes. Due to their method 
of standardization, the similarity provided by Zhou et al. 
is not symmetric, i.e., the average similarity between 
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tissue A and tissue B (across all genes) is not the same as 
between tissue B and tissue A. We thus made it symmet-
ric by averaging the similarity of each pair of tissue from 
both directions.

Defining hit genes common to multiple tissues
We defined hit genes that are common across tissues by 
computing the maximum number of tissues that any hit 
gene appeared in (41 tissues in TF-Expression and 16 in 
TF-Binding), and selecting genes that appear in more 
than half of the number of these tissues (21 tissues and 8 
tissues, respectively).

Identifying tissue clusters
In order to gain insights into hit genes specific to a tissue 
group, we clustered the tissues using hierarchical cluster-
ing, capturing tissue hierarchy. We used average linkage 
that achieved highest cophenetic coefficient among link-
age options (0.94 for the TF-Expression model and 0.68 
for the TF-Binding model). We used median of the tree 
based on the inconsistency coefficient for each link of the 
hierarchical cluster tree [108] in order to decide on a cut-
off to assign distinct clusters. We defined cluster-specific 
genes as hit genes that are predominant for a single clus-
ter (FDR adjusted p < 0.05).

Statistical analysis
Enrichments of pharmacogenes used hypergeometric 
test of hit genes relative to all the tested genes. Enrich-
ments of hit genes within a cluster and hit genes within 
biological pathways were computed using hypergeo-
metric test between genes in the cluster and genes in 
all clusters, and enrichment of hit genes with biological 
functions was computed using the ToppGene suit [109]. 
The co-regulation networks was computed across tissues. 
It includes genes that were modeled in at least three tis-
sues and the tissue overlap between each gene pair has a 
Jaccard score of at least 0.5 and reached statistical signifi-
cance (False discovery rate < 0.05). Statistical significance 
of these co-regulated genes was computed using hyper-
geometric test and all p-values were corrected using Ben-
jamini–Hochberg false discovery rate [107].
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