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Abstract 

Background In recent years, Single-cell RNA sequencing (scRNA-seq) is increasingly accessible to researchers 
of many fields. However, interpreting its data demands proficiency in multiple programming languages and bioinfor-
matic skills, which limited researchers, without such expertise, exploring information from scRNA-seq data. Therefore, 
there is a tremendous need to develop easy-to-use software, covering all the aspects of scRNA-seq data analysis.

Results We proposed a clear analysis framework for scRNA-seq data, which emphasized the fundamental and crucial 
roles of cell identity annotation, abstracting the analysis process into three stages: upstream analysis, cell annotation 
and downstream analysis. The framework can equip researchers with a comprehensive understanding of the analysis 
procedure and facilitate effective data interpretation. Leveraging the developed framework, we engineered Shaoxia, 
an analysis platform designed to democratize scRNA-seq analysis by accelerating processing through high-perfor-
mance computing capabilities and offering a user-friendly interface accessible even to wet-lab researchers with-
out programming expertise.

Conclusion Shaoxia stands as a powerful and user-friendly open-source software for automated scRNA-seq analy-
sis, offering comprehensive functionality for streamlined functional genomics studies. Shaoxia is freely accessible 
at http:// www. shaox ia. cloud, and its source code is publicly available at https:// github. com/ Wiede nWei/ shaox ia.
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Background
In recent years, single cell sequencing technologies 
emerge as a revolutionary way to interrogate the essential 
biological issues, from tissue development and homeo-
stasis to disease specific mechanisms. Harnessing single 
cell analyses, researchers can reveal new and potentially 

unexpected biological discoveries relative to traditional 
profiling methods that assess bulk populations [1]. Sin-
gle cell technologies have gained a tremendous advance 
within the last decade. Among these approaches, single 
cell RNA sequencing (scRNA-seq) stands out as the most 
popular and mature method. Advancements in technol-
ogy and cost reduction have made scRNA-seq increas-
ingly accessible to researchers in a broad spectrum of 
fields. For instance, scientists have employed scRNA-
seq to identify new cell subtypes [2], investigate immu-
nological responses to COVID-19 (corona virus disease 
2019) [3], profile the immune cell landscape of metastatic 
tumors [4], comprehend early embryonic development 
[5], contribute to the construction of the International 
Human Cell Atlas [6], pinpoint new cancer cell sub-
types [7], delineate kinetics during the progression of B 
cell acute lymphoblastic leukemia [8], and delve into the 
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formation of the immunosuppressive tumor microenvi-
ronment [9], among other applications.

Despite the fact that scRNA-seq is widely used in a 
variety of research fields, it also brings new challenges 
in data analysis aspect. Firstly, there is not a gener-
ally accepted analysis framework for scRNA-seq data, 
although several computational pipelines for single cell 
sequencing data exist. For example, Hwang et.al. pro-
posed an analysis framework, which emphasized on solv-
ing the problem of noisy scRNA-seq data [1]. Baek et.al. 
came up with another one for scATAC-seq (single-cell 
sequencing assay for transposase-accessible chroma-
tin) data, which consists of pre-processing and down-
stream analysis [10]. However, a well-structured analysis 
framework with a high level of abstractness can assist 
researchers in conducting more effective data interpre-
tation. Secondly, in comparison to bulk mRNA sequenc-
ing methods, scRNA-seq introduces a new dimension 
(single-cell resolution) to RNA sequencing data, result-
ing in significantly larger raw sequencing data—typically 
tens of gigabases per sample. Handling such “big data” 
demands substantial computational resources, making it 
impractical for personal computers or small server setups 
to execute these data processing tasks. Thirdly, many cur-
rently published single-cell analysis tools, such as Seurat 
[11], CellphoneDB [12], and SCENIC [13], demand an 
advanced level of programming proficiency, involving 
mastery of multiple programming languages. Conse-
quently, these tools are not user-friendly and accessible 
to researchers with limited or no programming skills, 
despite their professional expertise in biology. In other 
words, there is a tremendous need to develop a platform, 
covering all the aspects of scRNA-seq data analysis.

Herein, we propose an intuitive and clear framework 
for scRNA-seq data. In this framework, we emphasize 
the fundamental and crucial roles of cell identity anno-
tation, abstracting the analysis process into three stages: 
upstream analysis, cell annotation and downstream 
analysis. Moreover, having this framework in hand, we 
designed and developed a web-based, interactive analy-
sis platform, named Shaoxia, that releases the power 
of modern compute system (high performance com-
pute, HPC) to accelerate the analysis of scRNA-seq data 
and makes aspects of single cell RNA-seq data analysis 
friendlier and more accessible for researchers, especially 
who focus on wat-lab technologies and has no program-
ming skills. Shaoxia employs a set of popular tools as 
backend to enable robust data analysis. To demonstrate 
Shaoxia’s functionalities and compatibility, we employed 
it to analyze scRNA-seq datasets from both a standard 
PBMC (peripheral blood mononuclear cell) sample and 
real-world oral mucosa tissue (healthy gingival mucosa, 
GM, and gingival mucosa from periodontitis, PD).

Implementation
Analysis framework for scRNA‑seq data
Cell annotation is fundamental part of scRNA-seq data 
analysis, without cell identity, analyses such as differen-
tially expressed genes (DEGs) analysis have no biological 
means, or even worse, it may lead to wrong conclusions 
when based on incorrect cell annotation. With this 
understanding in mind, we propose an intuitive and clear 
framework that upstream and downstream analysis are 
separated by cell type annotation (Fig.  1), emphasizing 
the important roles of cell annotation.

The major step of upstream analysis contains reads 
mapping, cell quality control, data combining, dimen-
sional reduction and cell clustering. Starting with FASTQ 
files, reads mapping should be the first analysis, it maps 
the reads to the reference genome, and then generates the 
expression matrix. The rows of the matrix are the gene 
names, and the columns are the cell names. After reads 
mapping, a special process step – generate loom can be 
conducted, it can generate essential files for RNA veloc-
ity analysis. With expression matrix, cell quality control 
can be conducted, this process filters out expression data 
from dead cells and cells that have low quality. After qual-
ity control, expression data from multiple samples can 
be merged if they are same sample type and have same 
experiment design, if they are not the same sample type 
or same experiment design, their expression data can also 
be integrated. In our analysis framework, data combining 
is optional. Because of sparse nature of expression data 
generated by current single cell RNA sequencing tech-
nology, the last two step of upstream analysis – dimen-
sion reduction and cell clustering should be carried out, 
it can reduce the high dimension of expression matrix 
(thousands of genes, thus thousands of dimensions), the 
cells are then clustered, subsequent cell annotation will 
be carried out based on these cell clusters.

As mentioned above, cell annotation is the most 
important and fundamental part of scRNA-seq data 
analysis. In our analysis framework, cell annotation has 
two major parts – cell type annotation and cell subtype 
annotation, this design follows the recommendations 
of a cell annotation protocol with some modifications 
[14]. First, annotation begins by identifying major well-
known cell types which have generally acknowledged 
cell markers, for example, with scRNA-seq data from 
blood samples, T cells are easy to identify by CD3D and 
CD3E gene markers, B cells can also be easy to identify 
by MS4A1 and CD79A gene markers. Second, to iden-
tify subtypes within the major cell types, cells belonging 
to the targeted major cell population are re-clustered 
and subsequently annotated using reference gene mark-
ers from the literature or CellMarker database [15], this 
process enable us to identify cell subtypes and even new 
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cell subtypes. For instance, CD8+ or CD4+ T cells can be 
identified from its major cell type T cell, memory B cells 
or naïve B cells can be identified from its major cell type 
B cell. The annotation procedure of our framework may 
be better than annotating cell subtypes directly, because 
the procedure – annotating major cell types and then cell 
subtypes could be easier and avoid potential annotation 
errors.

In our framework, eleven downstream analyses fall into 
two major fall into two major classes.: 1) gene level analy-
sis, including DEGs analysis, KEGG (kyoto encyclopedia 
of genes and genomes) and GO (gene ontology) enrich-
ment analysis of DEGs, gene set enrichment analysis 
(GSEA), gene set variation analysis (GSVA), inferred copy 

number variation (inferCNV), gene regulation analysis; 
2) cell level analysis, which contains cell type correla-
tion, cell cycle scoring, cell type frequency, RNA velocity, 
pseudo-time inference, cell communication analysis. Our 
framework covers a wide range of downstream analysis, 
which can meet the needs of most researchers.

Implementation of Shaoxia platform
Based on the scRNA-seq data analysis framework, we 
designed and developed a web based graphical user inter-
face (GUI) platform (Fig. 2), named Shaoxia, which enable 
researchers to easily explore and interpret their scRNA-
seq data. Shaoxia supports three type of data format as 
input: 1) 10X Genomics cellranger software output data 

Fig. 1 Analysis framework for scRNA-seq data
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files (barcodes.tsv.gz, features.tsv.gz and matrix.tsv.gz), 
2) FASTQ files that generated by 10X Genomics single 
cell RNA sequencing protocol, 3) cell-gene count matrix 
that is a tab-delimited text file, the first row contains cell 
barcodes, and the first column contains gene names, each 
entry in the matrix represents the  molecule count for a 
specific cell-gene pair. These three types of data files 
can be directly uploaded to Shaoxia platform. Besides, 
Shaoxia integrates all kinds of analysis tool and covers 
diverse aspects of scRNA-seq data analysis (Table 1).

In upstream analysis stage, reads mapping is performed 
by 10X Genomics cellrager software. In generate-loom 
step, the loom file is generated by samtools [16] and 
scvelo Python package [17] and is used in RNA velocity 
downstream analysis. Quality control (QC) has four met-
rics that are calculated by Seurat [11] function Percent-
ageFeatureSet, the visualization images of QC effect are 
produced by Seurat [11] function VlnPlot. Extremely low 

number of detected genes(nFeature_RNA) per-cell could 
indicate loss-of-RNA, in contrast, extremely high num-
ber of detected genes per-cell could indicate doublets, 
and low number of molecule counts (nCount_RNA) 
per-cell could indicate low quality of data, high percent-
age of mitochondrial gene (percent.mt) expression could 
indicate dying cells, extremely low proportion of riboso-
mal gene (percent.rp) expression could indicate loss-of-
RNA. If users want to combine multiple sample’s data, 
Shaoxia provides two type of methods – merge and inte-
grate, both of them come from Seurat R package [11]. In 
dimension reduction and clustering step,  some Seurat 
package [11]  functions are used, including  Normalize-
Data, FindVariableFeatures, ScaleData, RunPCA, RunU-
MAP, FindNeighbors, FindClusters and Dimplot.

In cell type annotation stage, Markers of all cell clus-
ters are generated by Seurat [11] function FindAll-
Markers, marker plots and cell type annotation result 

Fig. 2 Architecture of Shaoxia platform
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images are produced by Seurat [11] function Feature-
Plot, DoHeatmap, VlnPlot.

In downstream analysis stage, inferCNV is carried out 
by infercnv R package [18], cell type correlations are ana-
lyzed by R function cor and its result image is produced 
by using R package ComplexHeatmap [19]. Cell type fre-
quency is computed by custom R function and visualized 
by functions of ggplot2 [20]. DEGs is generated by Seu-
rat [11] function FindMarkers, KEGG and GO enrich-
ment analysis is performed by R package ClusterProfile 
[21], GSVA analysis is carried out by GSVA R package 
[22], GSEA is performed using GSEA software [23]. 
RNA velocity is carried out by scvelo Python package 
[17], cell trajectory analysis is performed with Monocle 

and Monocle3 R package [24], cell communication anal-
ysis results are produced by CellPhoneDB [12] Python 
package, gene regulative analysis results are generated by 
SCENIC [13] Python package.

In term of data management, Shaoxia has a data-free 
design, a special MySQL database is established to save 
the parameters users submitted rather than the inter-
mediate files produced during the analysis, thus only 
analysis (images) results and upload data are stored 
typically. Furthermore, Shaoxia employs SLURM soft-
ware to manage analysis jobs on HPC system. At last, 
all the results of upstream, cell type annotation and 
downstream analysis can be directly downloaded from 
the platform.

Table 1 Summary of analysis tools used in Shaoxia

Stage Step Command Software tool

Upstream
analysis

Reads mapping cellranger count 10X Genomics cellranger

Generate loom samtools sort
velocyto run10x

Samtools [16]
scvelo Python package [17]

Quality control Seurat::PercentageFeatureSet Seurat R package [11]

Integration Seurat::FindIntegrationAnchors Seurat R package [11]

Merge Seurat::merge Seurat R package [11]

Dimension reduction & clustering Seurat::FindVariableFeatures
Seurat::NormalizeData
Seurat::ScaleData
Seurat::RunPCA
Seurat::FindNeighbours
Seurat::FindClusters
Seurat::RunUMAP

Seurat R package [11]

Cell
annotation

Cell type annotation - Seurat R package [11]

Cell subtype annotation - Seurat R package [11]

Downstream
analysis

inferCNV infercnv::run infercnv R package [18]

Cluster correlation ComplexHeatmap::
Heatmap

ComplexHeatmap R package [19]

Cell cycle scoring Seurat::CellCycleScoring Seurat R package [11]

Cell type frequency ggplot2::geom_bar ggplot2 R package [20]

KEGG & GO erichment Seurat::FindMarkers
ClusterProfiler::enrichKEGG
ClusterProfiler::enrichGO

Seurat R package [11]
ClusterProfiler [21]

GSVA gsva:: gsva gsva R package [22]

GSEA gsea-cli.sh GSEA GESA software [23]

Trajectory anlysis monocle::setOrderingFilter
monocle:: reduceDimension
monocle:: orderCells
monocle3::cluster_cells
monocle3::learn_graph
monocle3::order_cells

Monocle and Monocle3 R package [24]

RNA velocity velocity_embedding_stream scvelo Python package [17]

Cell communiction cellphonedb method
cellphonedb plot

cellphonedb Python package [12]

Gene regulation pyscenic grn
pyscenic ctx
pyscenic aucell

SCENIC Python package [13]
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Processing scRNA‑seq data from PBMC and oral mucosa 
using Shaoxia
Raw sequencing files (FASTQ) of PBMC scRNA-seq data 
(two sample, s1 and s2) were downloaded from archive 
data website (http:// s3- us- west-2. amazo naws. com/ 10x. 
files/ sampl es/ cell- exp/2. 1.0/ pbmc8k/ pbmc8k_ fastqs. 
tar) and uploaded to the platform. The quality control 
parameters are set to 200 < nFeature_RNA < 4000, per-
cent.mt < 15, nCount_RNA > 2000 and percent.rp > 20. 
Two samples’ data are integrated together. Dimension 
reduction and cell cluster use first 10 principal compo-
nents and 0.5 resolution. In downstream analysis, related 
parameters are set to default.

Cellranger output files of oral tissues (GM and 
PD) were downloaded via the following link: https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE16 
4241. Six samples’ data (including GM148, GM169, 
GM283, PD170, PD164b and PD164) was uploaded to 
the platform. The quality control parameters are set to 
200 < nFeature_RNA < 6000, percent.mt < 15, nCount_
RNA > 2000 and percent.rp > 0. Six samples’ data were 
integrated together. Dimension reduction and cell cluster 
use first 10 principal components and 0.1 resolution. In 
term of B cell sub-clustering, dimension reduction and 
cell cluster use first 8 principal components and 0.1 reso-
lution. In downstream analysis, related parameters are 
set to default.

Results and discussion
Perform PBMC scRNA‑seq data analysis with Shaoxia
To demonstrate the core functionality of the Shaoxia 
scRNA-seq data analysis platform, we analyzed a publicly 
available dataset that profiled messenger RNA abundance 
of PBMCs, generated by 10 × Genomics. These PBMC 
datasets is often used to benchmark all kinds of bioinfor-
matic software. The data we use contains two samples – 
s1 and s2, each one has approximately eight-thousands of 
cells, and this dataset was utilized for upstream analysis, 
cell annotation, and downstream analysis.

After reads mapping and generate-loom, four qual-
ity control metrics are used, including the number of 
expressed genes (nFeature_RNA), the number of unique 
molecular identifier (UMI) counts (nCount_RNA), the 
percentage of all the counts belonging to mitochon-
drial genes (percent.mt), the percentage of all the counts 
belonging to ribosomal genes (percent.rb) (Fig.  3a) to 
remove the low-quality cells and exclude doublet, result-
ing in a dataset of total 15,446 cells. After checking 
potential gene markers, we identified six cell types – B 
cell, dendritic cell (DC), monocyte, NK (natural killer) 
cell, NKT cell and T cell (Fig. 3b and c).

In cell type correlation analysis result, NKT cell and 
NK cell have close relationship, correlation among 
other cell types is weak, this demonstrate that our cell 
type annotation has high credibility (Fig.  4a). Cell cycle 

Fig. 3 Results of quality control and cell annotation of PBMC scRNA-seq data. a quality control result. b heatmap plot of cell type specific gene 
marker expression level. c cell clustering and annotation result

http://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/2.1.0/pbmc8k/pbmc8k_fastqs.tar
http://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/2.1.0/pbmc8k/pbmc8k_fastqs.tar
http://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/2.1.0/pbmc8k/pbmc8k_fastqs.tar
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164241
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164241
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164241
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scoring analysis show that most of cells stay at S phase, 
minor of cells stays at M phase (Fig.  4b). According to 
cell type frequency analysis, T cell has highest frequency 

(42%) while DC and NK cell have lowest frequency 
(Fig.  4c). To compare T cell with B cell, DEGs analysis, 
KEGG and GO enrichment analysis are performed. The 

Fig. 4 Downstream analysis results of PBMC scRNA-seq data. a cell type correlation. b cell cycle analysis. c cell type frequency. d KEGG enrichment 
result of DEGs of T cell versus B cell. e GO enrichment result of DEGs of T cell versus B cell. f RNA velocity analysis result. g cell communication 
analysis result
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KEGG enrichment result show that DEGs of T cell and 
B cell relate to immune pathways, such as T cell recep-
tor signaling pathway and primary immunodeficiency 
(Fig.  4d), this is consistence with the GO enrichment 
results (Fig.  4e), GSEA results (Figure S1) and GSVA 
result (Figure S2). RNA velocity analysis show that B cell 
has a single direction of state transition, while monocyte, 
T cell and NKT cell have multiple direction of state tran-
sition. Especially, NKT cell and T cell have interaction of 
state transition (Fig. 4f ). In cell communication analysis, 
we note that there are many interactions between NK 
cell, NKT cell and T cell. Especially for LCK-CD8 inter-
action between NKT cell and T cell, it indicates that 
the function of NKT cell may be regulated by CD8+ T 
cells (Fig. 4g). In gene regulation analysis, we found that 
monocytes have a very high transcription factors activ-
ity level, when compared to other cell types, it may indi-
cate that there is rapid state transition among monocytes. 
Transcription factor LEF1 seem to have activity in all the 
cell types, it suggests that LEF1 may play a role in regulat-
ing different cell types (Figure S3).

Analyzing oral tissue scRNA‑seq dataset using Shaoxia
Beyond standard PBMC data processing, a real-world 
scRNA-seq dataset from healthy gingival mucosa (GM) 
and mucosa from individuals with periodontitis (PD) 
was analyzed on Shaoxia platform, aim to elucidate the 
molecular underpinnings of gingival health and disease.

After quality control, 24,541 cells remain, and six cell 
types are identified—B cell, endothelial cell, epithe-
lial cell, fibroblast, monocyte and T cell (Fig.  5a and b). 
In cell frequency analysis result, it shows that epithelial 
cell has lowest frequency, while B cell has relatively high 
frequency (Fig.  5c). Interestingly, GM has much higher 
frequency in epithelial cell, while PD has much higher 
frequency in B cell (Fig.  5d). Therefore, we performed 
enrichment analysis specifically focusing on epithelial cell 
and B cell, to compare gene expression profiles between 
healthy and diseased gingival tissues on a cell type-spe-
cific level. GO enrichment analysis reveals potential acti-
vation of epithelial cells in PD tissues, as indicated by the 
enrichment of GO terms related to growth factor recep-
tor binding and epidermal growth factor receptor bind-
ing (Fig.  5e). Conversely, B cells in PD tissues exhibit 
enrichment of GO terms associated with B cell activa-
tion, suggesting an active immune response (Fig. 5f ). By 
sub-clustering B cells, we identify four B cell subtypes, 
including memory B, activated memory B, immature B 
and plasma, and it shows that antibody-produced plasma 
cell has highest proportion (Fig.  6a and b). Pseudotime 
analysis results is consistent with B cell differentia-
tion process (Fig. 6c). These results suggest that a stable 

immune system response is already established in peri-
odontitis tissue.

Features of Shaoxia platform
Beside GUI feature, Shaoxia platform also has some 
other useful features. Firstly, Shaoxia enable interactive 
response to cell quality control, dimension reduction, 
cell clustering and cell type annotation. As is well known, 
these analysis steps involve numerous parameters that 
need to be set. For instance, varying the parameters for 
quality control can yield different results, and trying dif-
ferent cell markers is necessary for annotating cell types. 
Shaoxia can present the results of these steps immedi-
ately as users modify the parameters. This allows users 
to adjust the parameters of these steps until they achieve 
the best results. Secondly, to address “big data” problem 
of scRNA-seq data analysis, Shaoxia doesn’t save the 
intermediate files which generated during the data pro-
cessing. In contrast, we design a special MySQL database 
for Shaoxia to save parameters of each analysis that set by 
user. This design will save a lot of hard disk space if users 
install Shaoxia and use it on their own computer sys-
tems. Thirdly, Shaoxia is a multi-user analysis platform, 
it allows multiple users to login and use it at the same 
time, thus it makes teamwork easier. Fourthly, Shaoxia 
can handle different type of input data, including FASTQ 
file generated by 10X Genomics, ZIP file of cellranger 
software results and TXT file of expression matrix, thus 
has a very high degree of flexibility. Last but not the least, 
Shaoxia has a task scheduling system at backend, it can 
schedule downstream analysis jobs on the HPC system or 
a single computer server. Therefore, Shaoxia can release 
the total power of modern compute systems to accelerate 
the analysis of scRNA-seq data.

Compared to previously published analysis plat-
form, Shaoxia has several advantages. Firstly, it has rich 
downstream analyses. SC1 [25], ICARUS [26], and Sin-
gleCAnalyzer [27] are analytics platforms that have 
been published in recent years, all of them just pro-
vides enrichment analyses for scRNA-seq data. There-
fore, unlike Shaoxia, they may not satisfy the needs of 
most of researchers. Secondly, Shaoxia supports mul-
tiple input data types, while SC1 [25] does not support 
FASTQ file and ICARUS [26] only allow FASTQ files as 
input. Thirdly, all three of them does not have an analysis 
framework, but a clear framework could help research-
ers get a better understanding of scRNA-seq data analysis 
procedure. Finally, Shaoxia boasts superior interaction 
design, particularly in upstream analysis and cell type 
annotation.

While Shaoxia is a powerful tool, it currently focuses 
on analyzing scRNA-seq data. To expand its capabili-
ties, future versions will incorporate analysis pipelines 
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Fig. 5 Analysis results of oral tissue scRNA-seq data. a heatmap plot of cell type specific gene marker expression level. b cell clustering 
and annotation result. c overall cell type frequency. d sample type specific cell type frequency. e GO enrichment result of DEGs of PD versus GM 
in epithelial cell. f GO enrichment result of DEGs of PD versus GM in B cell
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for other single-cell sequencing methods like scATAC-
seq, transforming Shaoxia into a comprehensive single-
cell omics data analysis platform. Additionally, Shaoxia 
is a continuously evolving platform, and it can benefit 
from integration with other valuable software tools. 
Tools like GPTCelltype [28], SingleR [29], and scType 
[30] could provide helpful references for manual cell-
type annotation. Integrating SCUBI [31], Palo [32], 
and findPC [33] could enhance cell clustering analysis, 
while Slingshot [34] and TSCAN [35] would offer more 
flexibility for pseudotime analysis. Besides, Shaoxia’s 
response time may be affected by large datasets and 
network issues, leading to high latency. To address this, 
installing and using Shaoxia in a local network environ-
ment is recommended. By using Shaoxia, researchers 
can get rid of learning several programing languages 
(which may be very hard for some wet-lab researchers) 

or writing repetitive code and obtain rich analysis 
results from their data easily.

Conclusion
scRNA-seq has revolutionized the field of genomics 
by allowing researchers to explore the heterogeneity of 
gene expression at the individual cell level. This powerful 
technology provides unprecedented insights into cellular 
diversity and function. However, the sheer volume and 
complexity of scRNA-seq data and tedious bioinformatic 
pipelines necessitate sophisticated and interactive analy-
sis platforms to extract meaningful biological informa-
tion. Toward this end, we introduce Shaoxia, empowering 
researchers with a comprehensive toolkit for extracting 
meaningful biological insights from single-cell transcrip-
tomic data and automating the analysis pipeline, mak-
ing it accessible to researchers across diverse biological 

Fig. 6 B cell subtypes analysis results of oral tissues. a stack violin plot of B cell subtype specific gene marker expression level. b B cell subtypes 
clustering and annotation result. c trajectory and pseudotime analysis results
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disciplines. Shaoxia represents a good open-source 
analysis software for researchers who use scRNA-seq 
technology to interrogate the essential biological issues, 
and we believe that it can serve as a foundational analysis 
platform for scRNA-seq data.

Availability and requirements
Project name: Shaoxia.

Project home page: https:// github. com/ Wiede nWei/ 
shaox ia.

Operating system(s): Linux (for server side), cross-plat-
form (for user side).

Programming language: Python, R, Typescript, Shell.
Other requirements: Nginx, Slurm, Supervisor.
License: GNU General Public License version 3.
Any restrictions to use by non-academics: None.
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