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Disregarding multimappers leads to biases 
in the functional assessment of NGS data
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Abstract 

Background Standard ChIP-seq and RNA-seq processing pipelines typically disregard sequencing reads whose 
origin is ambiguous (“multimappers”). This usual practice has potentially important consequences for the functional 
interpretation of the data: genomic elements belonging to clusters composed of highly similar members are left 
unexplored.

Results In particular, disregarding multimappers leads to the underrepresentation in epigenetic studies of recently 
active transposable elements, such as AluYa5, L1HS and SVAs. Furthermore, this common strategy also has implica-
tions for transcriptomic analysis: members of repetitive gene families, such the ones including major histocompatibil-
ity complex (MHC) class I and II genes, are under-quantified.

Conclusion Revealing inherent biases that permeate routine tasks such as functional enrichment analysis, our results 
underscore the urgency of broadly adopting multimapper-aware bioinformatic pipelines –currently restricted to spe-
cific contexts or communities– to ensure the reliability of genomic and transcriptomic studies.
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Background
Next-generation sequencing (NGS) technologies such as 
Chromatin Immunoprecipitation followed by sequenc-
ing (ChIP-seq) [1] and RNA-seq [2, 3] have emerged as 
the state of the art for obtaining insights into gene regula-
tory processes. ChIP-seq and RNA-seq sequencing reads 
are typically short, with customary protocols recom-
mending 1×50 bp and 2×75 bp, respectively [4, 5]. Such 
read lengths are insufficient to completely span many of 
the repetitive elements that abound in complex eukary-
otic genomes. Consequently, standard analysis pipelines 
struggle to unambiguously trace the locus from which 
the reads have arisen and fail to quantify closely related 
sequences of the genome.

The challenge of assigning reads which map equally 
well to multiple loci in the genome has been discussed 
for over a decade. Already in the early days of NGS, 
Chung et al. [6] acknowledged that in ChIP-seq data 32% 
of human STAT1 and 74% of mouse GATA1 binding sites 
(“peaks”) were unlikely to be detected when ambigu-
ously mapping reads (“multimappers”) were discarded 
from the analysis. Similarly, while trying to determine 
the range of detection of RNA-seq, Mortazavi et  al. [7] 
found that 13–24% of the 25 bp-long reads obtained after 
sequencing transcriptomic libraries from mouse brain, 
liver and skeletal muscle tissues were multimappers, and 
suggested that discarding multimappers would result in a 
severe underestimation of genes with closely related par-
alogs, such as the members of the ubiquitin B family (97% 
of the reads that map to members of this family are mul-
timappers). Furthermore, scientists working on the func-
tion and evolution of repetitive elements, particularly on 
transposable elements (TEs), have often expressed their 
concerns about most studies disregarding more than half 
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of the human genome [8–10], and proposed several strat-
egies to alleviate the problem [9, 11].

While various computational strategies have been pro-
posed to mitigate the challenges posed by multimappers, 
to the best of our knowledge, no established NGS data 
processing pipeline offers an entirely satisfactory solu-
tion. In general, most strategies make prior assumptions 
about the distribution of the reads, and calculate the 
probability of a multimapper mapping to each of its pos-
sible target loci using a specific statistical model. Most 
strategies assume that multimappers and uniquely map-
ping reads (“unimappers”) are similarly distributed across 
the genome/transcriptome, and that loci/transcript seg-
ments with high unimapper coverage (e.g., [6, 7, 12–14]) 
or enriched for reads relative to, for example, what could 
be expected under a random distribution (e.g., [15]), 
are the most likely source of those multimappers. Some 
tools also incorporate information on the likelihood 
of sequencing errors and variations (e.g., [16]). Never-
theless, recent studies have shown that multimappers 
are concentrated into a few regions of the genome with 
especially poor unimapper coverage [17], and therefore 
their distribution does not match the distribution of uni-
mappers. Consistent with this observation, to estimate 
the likelihood of a multimapper’s origin some tools rely 
solely on attributes such as the mapping quality of the 
reads (e.g., [17, 18]) or the sequence similarity between 
the potential loci of origin of the reads (e.g., [19]), as well 
as on the proportion of multimappers shared between 
the potential loci/transcript segments of origin (e.g., 
[19]). Moreover, substantial effort has been invested 
into developing strategies that make minimal or no prior 
assumptions about the data. These strategies acknowl-
edge multimappers by distributing them equally among 
all loci (e.g., [20, 21]) or randomly selecting one of their 
mappings (e.g., filtering for the secondary alignment flag 
using samtools-view [22]), and have been used as an ulti-
mate solution for resolving ties when the mapping quality 
scores among multimapper’s mappings are equally good 
(e.g., Bowtie2 with “-k” option [23]). A comprehensive 
review of available tools is out of scope of this work, and 
can be found in the literature (e.g., [9, 11]).

Typical repetitive elements in many genomes, includ-
ing the human genome, include TEs, tandem repeats, 
and satellite and microsatellite DNA. But also members 
of certain gene families, such as the globin gene fam-
ily, homeobox genes and the olfactory receptors, exhibit 
strong sequence similarity [24–26]. Consistently, it has 
been noted that the expression of highly repetitive mem-
bers of the ubiquitin family [7] and HLA class II beta 
chain paralogues, specifically, HLA-DRB5 [18], can be 
underestimated by the practice of discarding multimap-
pers. Unfortunately, despite the evident issue, standard 

transcriptomic pipelines, including the ones introduced 
by the ENCODE Project Consortium [27], disregard 
multimappers by default [28]. Not surprisingly, 87% (27 
out of 31) of the articles recently published in the high-
impacted journals Nature, Nature Genetics, Science, and 
Cell that report on the findings of ChIP-seq or RNA-seq 
data analyses do not acknowledge multimappers, while 
the remaining ones only partially recognize them, for 
example, by considering at most 10 of the mapping loci 
or requiring a minimum mapping quality score (Addi-
tional file 1: Suppl. Table 1).

With the present study, we aim to draw attention to 
biases in the functional interpretation of NGS data that 
result from disregarding multimappers. We demonstrate 
the problem by comparing the strategy used by stand-
ard NGS pipelines (e.g., ENCODE Project Consortium 
[27]), which simply filter out multimappers, to simple 
“multimapper-aware” approaches [9]. Our contribution 
is not to provide a definitive solution for the problem, 
but rather, to demonstrate its potential functional-level 
implications. Specifically, we analysed 9 ChIP-seq and 16 
RNA-seq datasets for a small but diverse group of human 
and mouse cell types and experimental conditions (i.e., 
targeted protein or histone modification for ChIP-seq 
data, different treatments and replicates for RNA-seq 
data). In conclusion, we urge for the implementation of 
strategies accounting for multimappers in NGS pipelines.

Methods
Literature search
A PubMed search was carried out to identify arti-
cles accounting for multimappers. The following 
terms were used for the query: (ChIP-seq[tiab] OR 
RNA-seq[tiab]) OR (ChIP-seq[MeSH Terms] OR 
RNA-seq[MeSH Terms]) AND (“Nature”[Journal] 
OR “Nat Genet.“[Journal] OR “Cell”[Journal] OR 
“Science”[Journal]). A filter for publication date was 
applied for the period from 2022/8/01 to 2023/8/31.

If not specified, we assumed that the tools had been 
run with default parameters (Additional file  1: Suppl. 
Table 1).

Datasets
We selected four human and mouse datasets from the 
ENCODE Project data repository [27] for single-end 
ChIP-seq and pair-end RNA-seq with read (or read 
pair) length ranging from 50 to 101 bp (Additional file 1: 
Suppl. Table 2).

Repeat annotation
Repeat annotation was obtained from the RepeatMas-
ker track of the UCSC Genome Browser [29]. Immedi-
ately adjacent or overlapping annotations for TEs with the 
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same “name” (“repName” in the RepeatMasker track) were 
merged. We further refer to all TEs with the same name as 
a TE “group”.

Quality control and read mapping
Quality of raw ChIP-seq and RNA-seq samples was 
assessed using FASTQC v0.11.9 [30]. Reads were trimmed 
for adapters with Cutadapt 2.8 [31] and filtered with Trim-
momatic v0.39 [32]. Bwa mem v0.7.17 [33] and BBMap 
v39.01 [34] were used to map reads against the human 
(GRCh38/hg38) and mouse (GRCm38/mm10) genome 
assemblies for ChIP-seq; STAR v2.7.10a [35] was used for 
RNA-seq. Gene annotations (GRCh38.p13 and GRCm38.
p4) were obtained from GENCODE [36]. Duplicated reads 
were filtered out using PICARD v2.24.0 [37]. Reads map-
ping to non-chromosomal scaffolds and mitochondrial 
chromosome were excluded from the analysis of ChIP-seq 
samples. Only reads mapped in a proper pair were consid-
ered for RNA-seq data analysis; they were retrieved with 
SAMtools v1.10 [22]. The parameters used for each tool are 
listed in Additional file 1: Suppl. Table 3.

TE group age
The oldest clade in which the TEs from a given group can 
be assumed to have been active was retrieved from Dfam 
(“Clades” column, [38]).

TE group coverage
Bedmap v2.4.37 [39] was used to identify overlaps between 
the coordinates of read mappings and annotated TEs. 
Reads that mapped only once in the genome were con-
sidered “unimappers”; reads that mapped more than once 
were considered “multimappers”. Read coverage was com-
puted for each TE group as:

where K is the set of all copies of a TE group, Q  is the 
set of all reads in the library, Mr is the set of all loci to 
which read r (of length Lr ) mapped and |Mr | is the size of 
that set, and lkri is the number of  nucleotides of the ith 
mapping of read ri , overlapping with TE copy k . For each 
mapping ri of r

Gene expression quantification
Multimappers were defined as read pairs (“fragments”) 
for which at least one read of the pair mapped more than 
once in the genome.

CK =

k∈K r∈Q ri∈Mr

Ik(ri)

|Mr |

lkri
Lr

Ik(ri) =

{

1, if ri overlaps with k
0, otherwise

.

Standard gene expression quantification was per-
formed with HTSeq-count (v2.0.2, [40]) using default 
parameters (“--nonunique none”), i.e., not account-
ing for multimappers. The expression value of a gene g 
was defined as Hg/Lg , where Hg is the count for gene g 
assigned by HTSeq-count, and Lg is the gene length as 
defined by its start and end coordinates in the R Ensembl 
BioMart database v2.54.0 [41].

To account for multimappers, we used a “multimapper-
aware” strategy that counted fragments in genes based on 
the list of genes (“set S”) overlapping with the fragment 
mappings generated by HTSeq-count [42]. Specifically, 
gene counts were computed for each gene g as:

where Q is the set of all fragments in the library, Mf  is the 
set of all mappings in the transcriptome for fragment f  
and 

∣

∣Mf

∣

∣ is the size of that set, and for each mapping fi 
of f

Note that if fi overlaps not only with g but also with 
at least another gene, then Ig

(

fi
)

= 0 . This is the default 
behaviour of HTSeq-count (Additional file 3: Additional 
Material).

A gene g was considered “expressed” if Cg > 0 . The 
multimapper-aware expression value of gene g was 
defined as Cg/Lg.

Genes were considered under-quantified by HTSeq-
count if Cg/Lg

Hg/Lg
> 2 , where Hg is the count for gene g 

assigned by HTSeq-count.
Computations were repeated with simulated libraries 

constructed by trimming the 3’ end of the read pairs to 
25, 50 or 75 bp with Cutadapt 2.8 [31].

Functional analysis
The 50, 100 or 200 protein-coding genes with the highest 
expression values were subjected to functional analysis 
using the “compareCluster()” function of the R cluster-
Profiler package (v.4.6.0, [43]). Gene type was retrieved 
from R Ensembl BioMart database v2.54.0 [41].

Gene set enrichment analysis (GSEA)
GSEA [44] was conducted on the fold-changes between 
the normalised counts for all protein-coding genes com-
puted with HTSeq-count and those computed with our 
multimapper-aware strategy using the “GSEA()” function 
of the clusterProfiler with 10,000 permutations and the 
C7: Immunologic Signatures” collection from the Human 

Cg =
∑

f ∈Q

∑

fi∈Mf

Ig
(

fi
)

∣

∣Mf

∣

∣

Ig
(

fi
)

=

{

1, if fi overlaps with g
0, otherwise

.
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Molecular Signatures Database (MSigDB) (v.2023.2, 
[45]). Gene counts were normalised with the trimmed 
mean of M-values (TMM) method, by calculating scaling 
factors using the “calcNormFactors()” and “cpm()” func-
tions of the edgeR package (v.3.40.2, [46]) with default 
parameters.

Differential expression analysis
Differential expression analysis was performed for the 
mouse RNA-seq dataset (Additional file 1: Suppl. Table 2) 
using the DESeq2 (v.1.38.3, [47]) R package. Specifically, 
the “DESeq()” function was used with default options to 
compare gene expression across all time points (1 h, 2 h, 
4 h, 6 h) following lipopolysaccharide treatment, relative 
to the untreated control group (0 h). Gene counts from 
the multimapper-aware strategy were rounded to the 
nearest integer. Genes with a false discovery rate (FDR) 
lower than 0.05 and a  log2 fold-change lower than -1 
(down-regulated) or greater than 1 (up-regulated) were 
considered differentially expressed. The “lfcShrink()” 
function was used for fold-change shrinkage, using the 
“apeglm” method.

Results
Inspection of exemplary ChIP-seq ENCODE [27] librar-
ies (Datasets 1 and 2; Additional file  1: Suppl. Table  2) 
revealed that multimappers constitute a substantial 
proportion (9–51%) of all reads mapped to the human 
genome, although the exact numbers vary greatly 
depending on the mapping tool –Bwa mem [33] (26–32%) 
reported twice or more the number of multimappers 
than BBMap [34] (9–16%) – and the immunoprecipi-
tated protein (22–51%) (Additional file 2: Suppl. Fig. 1). 
Counterintuitively, when adhering to the current working 
standards and guidelines for ChIP-seq, we observed that 
the read length had only a relatively modest influence 
on the proportion of multimappers. Specifically, extend-
ing the read length from 50 to 100 bp resulted in a 17% 
reduction when utilising BWA mem and a 40% reduction 
with BBMap (Fig. 1A). As expected, a large fraction (43–
80%) of multimappers mapped to regions annotated as 
TEs. Motivated by this fact and by the enormous expan-
sion of repetitive TE sequences in mammalian genomes 
–they comprise ~ 46% of the human genome–, we used 
TEs to explore the impact of multimappers on an epige-
netic analysis based on ChIP-seq data. TE individual cop-
ies in the human genome vary widely in length, from 10 
(e.g., members of L2a) to 153,104  bp (nested LTR12B), 
but span a median of 231 bp, mostly reflecting the rela-
tively recent expansion of elements from the SINE Alu 
family (median of 294 bp, Fig. 1B). Thus, although not all 
TEs give rise to multimappers, the large fraction of mul-
timappers derived from TEs can be explained by the fact 

that TE copies are not fully covered by conventional NGS 
reads. In the datasets included in this study, at least 70% 
of the reads mapping to 8–16% (up to 181 out of 1,160) 
of TE groups are multimappers (Methods). Specifically, 
when considering every possible mapping, multimap-
pers tended to be associated with evolutionary young 
TEs, such as AluYa5, L1HS and SVAs, while unimappers 
were associated with old TEs (P-value < 2.2 ×  10–16, Chi-
squared test; Fig. 1C; Additional file 2: Suppl. Figs. 2–4). 
And although with some deviations in TE group cover-
age (e.g., 3–55% for HERV-Fc1_LTR2), we made similar 
observations when considering only a random mapping 
for each multimapper (Additional file 1: Suppl. Table 4). 
This is natural, since relatively young TEs have not had 
enough time to accumulate variations in their sequences, 
but has far-reaching consequences: using standard ChIP-
seq pipelines will specifically underrepresent recently 
active TEs, hampering their study. Nevertheless, TE 
activity is known to be associated with diverse human 
diseases [48], and hence, rectifying this issue promptly is 
imperative.

ChIP-seq is not the only NGS technology concerned 
by the current prevailing approach to handling multi-
mappers. Standard RNA-seq bioinformatic pipelines use 
tools such as HTSeq-count [40] and STAR [35] for quan-
tifying the reads mapping to annotated genes, and these 
tools also deliberately disregard multimappers. Although 
multimappers are not as abundant in RNA-seq data as 
they are in ChIP-seq data, they are not negligible. Using 
human and mouse RNA-seq dendritic cell libraries to 
illustrate the problem, we found that ~ 10% (Fig.  2A) 
and ~ 5% of the fragments mapped to the human and 
mouse genomes, respectively, were multimappers (Addi-
tional file 2: Suppl. Fig. 5). Similarly to what we observed 
for ChIP-seq, the read length had a relatively modest 
influence on the proportion of multimappers. More 
precisely, for paired-end RNA-seq, increasing the read 
length from 50 to 100  bp resulted in a 28% reduction. 
Moreover, analysis using HTSeq-count and STAR gene-
Counts with default parameters revealed quantification 
differences for about 6% (777 out of 13,437) of the human 
and 4% (468 out of 12,561) of the mouse genes expressed 
in these cells compared to a simple multimapper-aware 
strategy (Methods). Specifically, these genes were under-
quantified by HTSeq-count and STAR geneCounts 
(Fig.  2B; Additional file  1: Suppl. Tables  5 and 6; Addi-
tional file  2: Suppl. Fig.  6), and most notably, they were 
not just random genes, but actually related to functions 
intrinsic to the biology of the samples under investiga-
tion, such as MHC class I and II immune responses and 
peptide antigen binding (Fig. 2C; Additional file 2: Suppl. 
Figure 7). GSEA analysis comparing the gene expression 
values from HTSeq-counts to those obtained with the 
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multimapper-aware strategy further supported the asso-
ciation with perturbations of the immune system (Addi-
tional file 2: Suppl. Fig. 8). Perhaps more critically, these 
quantification biases can also impact the identification 
of differentially expressed genes. Indeed, we observed a 
substantial number of genes (9–81) that were exclusively 
differentially expressed when quantified with HTSeq-
counts compared to the multimapper-aware strategy, or 
vice versa. Additionally, these genes were enriched for 
antigen presentation molecular functions (Additional 
file 2: Suppl. Figures 9 and 10). Naturally, RNA-seq den-
dritic cell libraries are no exception. Thus, for a collection 
of RNA-seq libraries of human lung carcinoma treated 
with three different drugs (i.e., dexamethasone, hydro-
cortisone or mapracorat), we found multimappers rep-
resented 6–9% of the fragments mapped to the genome, 
and 6–7% of the expressed genes were under-quantified 
when discarding multimappers (Additional file 2: Suppl. 

Fig.  11). In line with our findings in dendritic cells, 
accounting for multimappers resulted in differences in 
functional analysis, although in this case, the discrepan-
cies were smaller (Additional file 1: Suppl. Table 7, Addi-
tional file 2: Suppl. Fig. 12 and 13). In essence, contingent 
upon the characteristics of the gene families expressed in 
the sample of interest, disregarding multimappers dur-
ing the analysis of RNA-seq data may severely hinder the 
identification of critically relevant biological functions 
and processes.

Discussion
For over a decade, scientists have grappled with the chal-
lenge of unambiguously assigning a substantial fraction 
of NGS short-reads to their original genomic loci. Most 
standard NGS pipelines filter out reads whose origin is 
ambiguous. Over time, numerous computational strate-
gies have been proposed to acknowledge multimappers. 

Fig. 1 Discarding multimappers leads to epigenetic mischaracterization of young TEs. A Percentage of uni- and multimapper reads mapping 
to portions of the human genome annotated as TEs and not annotated as TEs (non-TE) for dataset 1 containing two ChIP-seq libraries generated 
by the ENCODE consortium using single-end 50 bp (“SE50”) and 100 bp (“SE100”) reads. Mapping was performed with two different mapping 
tools: with BBMap and Bwa mem. TEs are the major source of ChIP-seq multimappers in the human genome. B Length distribution of TE individual 
copies. Only TEs shorter than 500 bp are shown. Note that ~ 74% (856 out of 1,160) of the TEs in the human genome are longer than 500 bp, 
spanning up to 153,104 bp. The bin width is 10 bp. TEs were classified as DNA, LTR (long terminal repeat), SINE (short interspersed nuclear 
element), LINE (long interspersed nuclear element) and Others (e.g., rolling-circle (RC), unknown classification). Standard NGS reads are too 
short to fully cover most TE copies, explaining why TEs often give rise to multimappers. C Read coverage (bar plot on the left y-axis; see Methods) 
per clade for the SE100 ChIP-seq library (dataset 1) for uni- and multimappers. Reads were mapped using Bwa mem. TEs found in multiple 
clades (e.g., L1HS and L1P1) were assigned to the “younger” clade (Homo and Hominoidea, respectively). Only 30 out of 1,160 different TEs 
in the human genome (~ 3%) have not been annotated to any clade and were not represented. The number of TE copies for each clade (line plot 
on the right y-axis) shows that the majority of TEs are Primates and Eutherian-specific. Evolutionary young TEs are prone to be underrepresented 
when excluding multimappers from ChIP-seq analysis
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All of them make prior assumptions, mostly about the 
distribution of reads in the NGS data (e.g., [6, 7, 12–14]). 
These assumptions have been naturally accepted as valid 
and only recently, it has been questioned whether they 
are valid [17]. To date, no gold-standard NGS pipeline 
exists that completely resolves the problem. It is up to the 
researchers to decide which assumptions are reasonable, 
and ultimately which biases are acceptable.

In this study, we investigated the implications of how 
multimappers are processed for the functional analysis of 

NGS data using two “multimapper-aware” approaches. 
One of the approaches accounts for multimappers by 
dividing the number of reads assigned to a locus/tran-
script segment by the total number of loci/transcript 
segments to which the reads map. The second approach 
randomly selects a mapping for each multimapper from 
the set of all multimapper’s mappings. The main advan-
tage of these strategies is that they rely on a parsimonious 
set of assumptions, which makes them simple, intui-
tive and widely applicable. This alignment with Occam’s 

Fig. 2 Discarding multimappers leads to functional mischaracterization of repetitive gene families. A Percentage of uni- and multimapper 
fragments mapping to human genome for a RNA-seq library of dataset 3 generated by the ENCODE consortium using pair-end 100 bp (“PE100”) 
and thereof simulated libraries with read pairs of length 25, 50 and 75 bp (“PE25”, “PE50” and “PE75”, respectively). Within the read lengths 
assessed, the difference in the proportion of multimappers was modest (10–21%). B Scatter plot showing gene expression values computed 
with HTSeq-count using default parameters (“–nonunique none”; x-axis) and by our “multimapper-aware” strategy (y-axis) for PE100. Each 
dot represents a protein-coding gene and is coloured differently depending on whether it is considered (approximately) equally-quantified 
or under-quantified by HTSeq-count (see Methods). The dashed line indicates identical gene expression values. About 6% (777 out of 13,437) 
expressed genes are under-quantified when discarding multimappers. C Gene ontology (GO) enrichment analysis of the 50, 100, and 200 
protein-coding genes with the highest expression values in PE100 as computed by HTSeq-count (“H50”, “H100”, and “H200”, respectively) or our 
“multimapper-aware” strategy (“C50”, “C100”, and “C200”, respectively). GO enrichment analysis was performed for the “molecular function” 
category and using the “org.Hs.eg.db” annotation for the human genome. The q-value threshold was set to 0.01. Dot size represents the ratio 
between the number of genes in the given GO term (y-axis) and the number of genes annotated in each category (shown in brackets, 
below the label of each gene set on the x-axis). Dot colour indicates the P-value adjusted by Benjamini-Hochberg (BH, “p.adj.”). Neglecting 
multimappers leads to the underrepresentation of genes associated with specific GO terms (indicated in bold and with grey shading)
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Razor reduces uncertainty and promotes generalizability. 
Meanwhile, the vast majority of strategies proposed in 
the literature allocate multimappers to a locus/transcript 
segment according to the distribution of unimappers or 
based on read mapping quality scores. While these strat-
egies may seem more appealing and well-suited at first 
glance, they are flawed. First and foremost, the underly-
ing assumptions are not necessarily true [17]. But even 
if multimappers could be assumed to be distributed as 
unimappers, and hence, the unimapper coverage served 
as a good indicator for inferring the loci of origin of mul-
timappers, the low fraction of unimappers mapping to 
genomic elements like the members of the ubiquitin B 
family –only 3% of the reads mapping to these genomic 
elements are unimappers [7]– would make this inference 
unreliable. Similarly, the probability that a read is incor-
rectly mapped alone is insufficient for determining the 
locus of origin of a multimapper, as it can be easily influ-
enced by other factors, such as sequencing errors and 
sequence variants. Naturally, despite their advantages, 
straightforward solutions to the problem such as the 
two “multimapper-aware” strategies we employed also 
have their limitations, as they may not comprehensively 
capture the entirety of the complexity of the problem. 
In particular, the approaches we adopted are suitable for 
calculating read coverage at the level of TE group/gene 
families, but do not allow to quantify how much a TE 
copy/transcript is expressed in comparison to other TE 
copies/transcripts of the same TE group/gene family [11].

Using exemplary random ChIP-seq and RNA-seq data-
sets, we showed that discarding multimappers can lead 
to biases in functional genomic/transcriptomic analyses. 
As might be expected, the magnitude of the biases var-
ies with the dataset and the impact is more pronounced 
when shorter reads are used. Prevailing NGS platforms 
like Illumina produce massive quantities of highly accu-
rate sequencing reads, but these reads are relatively 
short. Generally, we noted that the proportion of mul-
timappers is determined by the read length. However, 
consistent with previous observations [49, 50] we found 
that the use of longer or paired-end Illumina reads does 
not result in substantial differences. Moreover, our find-
ings suggest that the fraction of multimappers mapped to 
regions annotated as TEs and members of repetitive gene 
families also depends on the mapping tool (previously 
observed by [51]), targeted proteins or histone modifica-
tions, and treatment. Furthermore, also the identity of 
the TEs and genes most affected by the way multimap-
pers are handled depends on the aforementioned factors, 
suggesting that the biases stemming from the practice 
of discarding multimappers may vary in severity, con-
tingent upon the underlying biological context. Finally, 
it is important to note that the datasets illustrating the 

issue were chosen randomly. While an examination of 
a broader range of datasets may be warranted to unveil 
more nuanced trends, there is no compelling evidence to 
undermine the robustness of our general conclusion—
that neglecting multimappers introduces biases in the 
functional analysis of NGS data.

Interpreting the functional significance of expressed 
(or differentially expressed) genes is often a primary 
goal in RNA-seq analysis. When genes exhibit suffi-
ciently high sequence similarity, the practice of discard-
ing multimappers is likely to affect the quantification of 
paralogous gene families, genes with internally repeated 
domains, and multiple isoforms of the same gene. Nota-
ble examples of such groups of genes include HLA class I 
(e.g., HLA-B, HLA-E) and class II (e.g., HLA-DRA, HLA-
DPA1), polyubiquitin genes (e.g., UBB, UBC), chromatin 
(e.g., MRNIP) and cytoskeleton (e.g., TUBB, TUBB2B) 
components, and the recently discovered BOLA2B 
genes. It is worth mentioning that biases in gene quanti-
fication impact differentially expression analysis as well, 
potentially leading to both false positives and false nega-
tives. These effects are likely to be exacerbated if poorly 
expressed genes are filtered out before testing for differ-
ential expression, a common practice.. Since in this study 
we have only focused on mRNA, we anticipate that many 
other types of RNA (e.g., miRNAs, rRNAs, tRNAs) pre-
sent in multiple copies might be underestimated when 
discarding multimappers. Importantly, functional analy-
sis may not always reveal underrepresented functions, as 
we found for dendritic cell libraries, in which functions 
related to adaptive immunology were well associated 
with multimappers, but can be minor, as for the analysed 
lung cancer libraries. Researchers had previously identi-
fied isolated instances of genes exhibiting varying quan-
tification results depending on how multimappers were 
handled. Here, we demonstrate that these effects extend 
beyond individual genes and manifest at the functional 
level.

Despite its intuitive nature, the problem posed by mul-
timappers and their impact on functional NGS analysis 
are routinely disregarded by standard bioinformatics 
pipelines. This oversight results in the neglect of clus-
ters of repetitive genomic elements with highly simi-
lar members. We therefore believe that addressing the 
problem outlined in this study may entail applying one 
or more multimapper-aware strategies and contrasting 
their results with those of strategies that do not account 
for multimappers. Furthermore, emerging NGS tech-
nologies such as PacBio and Oxford Nanopore enable the 
acquisition of ultra-long reads, having already reached 
the impressive mark of more than 2 Mbp [52], and thus, 
hold the potential to substantially reduce the number of 
ambiguously mapping reads. However, they are currently 
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limited by their higher cost and lower accuracy when 
compared to Illumina NGS. An alternative to achieve the 
desired outcome could be combining these two technolo-
gies. Ultimately, it becomes imperative that new com-
putational guidelines acknowledging multimappers are 
established and disseminated by major projects.

Conclusions
Our research shows that neglecting multimappers during 
NGS data processing can have a substantial impact on 
biological inferences drawn from genomic and transcrip-
tomic data. To the best of our knowledge no other arti-
cle has explored the functional-level implications of this 
practice embedded in the ENCODE guidelines. Notably, 
we showed that the issue extends beyond specific scien-
tific communities, such as those dedicated to the study 
of TEs. Indeed, our findings emphasise that even a seem-
ingly routine task such as performing a gene ontology 
(GO) enrichment analysis on any given RNA-seq data-
set can be susceptible to biases. And consequences are 
far-reaching: candidates identified for further functional 
assays may be considerably suboptimal.
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