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Abstract
Background: The advent of high-throughput and cost-effective genotyping platforms made
genome-wide association (GWA) studies a reality. While the primary focus has been invested upon
the improvement of reducing genotyping error, the problems associated with missing calls are
largely overlooked.

Results: To probe into the effect of missing calls on GWAs, we demonstrated experimentally the
prevalence and severity of the problem of missing call bias (MCB) in four genotyping technologies
(Affymetrix 500 K SNP array, SNPstream, TaqMan, and Illumina Beadlab). Subsequently, we
showed theoretically that MCB leads to biased conclusions in the subsequent analyses, including
estimation of allele/genotype frequencies, the measurement of HWE and association tests under
various modes of inheritance relationships. We showed that MCB usually leads to power loss in
association tests, and such power change is greater than what could be achieved by equivalent
reduction of sample size unbiasedly. We also compared the bias in allele frequency estimation and
in association tests introduced by MCB with those by genotyping errors. Our results illustrated
that in most cases, the bias can be greatly reduced by increasing the call-rate at the cost of
genotyping error rate.

Conclusion: The commonly used 'no-call' procedure for the observations of borderline quality
should be modified. If the objective is to minimize the bias, the cut-off for call-rate and that for
genotyping error rate should be properly coupled in GWA. We suggested that the ongoing QC
cut-off for call-rate should be increased, while the cut-off for genotyping error rate can be reduced
properly.

Background
Driven by the common disease-common variant (CDCV)
hypothesis [1], genome-wide association (GWA) studies
have demonstrated its power in the identification of
genetic variants underlying the diseases [2-5]. The com-
pletion of the human genome sequence [6,7] and the

International HapMap Project [8-10] as well as the advent
of highly efficient and affordable genotyping technologies
made GWA within reach. The Phase II HapMap contains
more than 4.3 million common SNPs and the coverage is
estimated to capture 94% of common variation in CEU
and CHB+JPT and 81% in YRI with r2 ≥ 0.8[9]. Several
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high-throughput and cost-effective technologies for geno-
typing that are currently being used, they are TaqMan
assay [11] and GeneChip array [12] (based on hybridiza-
tion with allele-specific probes), SNPstream system [13]
and GoldenGate assay [14] (based on single nucleotide
primer extension), Invader assay [15] (based on enzy-
matic cleavage), and SNiPer [16] (based on Oligonucle-
otide ligation). Though different reaction mechanisms are
employed in different methods, fluorescence detection is
widely employed in the process of the specific allele detec-
tion.

To deal with abundant genotype data produced by various
genotyping platforms, quality control (QC) to ensure the
accuracy of allele call becomes a critical issue. When gen-
otyping errors occur, its effects on linkage analysis [17-
19], LD measures [20,21], tagging SNP selection [22] and
the subsequent association tests [22-24] have been widely
and carefully investigated. Various strategies of detecting
genotyping errors or removing its effects on analyses,
especially on linkage analysis have been proposed [25-
28]. In addition to genotyping errors, missing calls seem
to be abundant in high-throughput genotyping. For exam-
ple, in the data of the Phase I HapMap, less than 20% data
that failed to pass QC was due to genotyping error (>1
duplicate inconsistent or >1 medelian error), while more
than 65% of the markers show missing data in over 20%
individuals [9]. The presence of missing calls was even
more prominent in the Phase II data of HapMap [8].
However, the effect of missing call on the subsequent
analyses has been largely ignored.

Strong emphasis on the accuracy of allele calls and techni-
cal success to achieve that has made the effect of missing
call largely overlooked. It was suggested that 'no-call' pro-
cedure should be taken where observations of borderline
quality be removed from allele calls in order to keep the
genotyping error rate as low as possible [29]. This 'no-call'
principle becomes a common practice in genotyping pro-
cedures. However, it should be noted that the validity of
the 'no-call' principle relies on an implicit assumption
that genotyping frequencies in no-call individuals are
equal to those in the population. Under this hypothesis,
missing data from the no-call procedure simply leads to a
power loss due to a decreased sample size, and does not
affect the estimation of allele frequencies at all. In this
report, we started with a close examination of the validity
of the 'no-call' principle by regenotyping those individu-
als whose genotypes that cannot be unequivocally deter-
mined and therefore would have been otherwise
discarded. The objectives of this report are (1) to demon-
strate experimentally how widely and seriously the prob-
lem of missing call bias (MCB) exists, (2) to investigate
theoretically the effects of MCB on the subsequent analy-
ses, especially on association studies, and (3) to provide

suggestion on dealing with observations of borderline
quality and re-evaluate the current QC standards, through
comparing the effects of MCB and genotyping errors on
allele frequency estimation and association studies.

Results
There are two major causes for missing calls. One is due to
poor quality of DNA samples, which often fails to be
amplified and to generate strong enough intensity of flu-
orescence signals over the background. The other arises
when an observation, i.e., a read out of fluorescence sig-
nals, cannot be assigned unequivocally to any of the clus-
ters of genotype, therefore, is subject to 'no-call'
procedure. In this report, we mainly focus on the missing
calls due to the failure of being assigned to any clusters of
genotype.

Nature of no-calls: results of sequencing
To evaluate the nature of no-calls in reality, four different
widely-used high-throughput genotyping platforms were
included in this study, and they are GenomeLab™
SNPstream Genotyping System (Beckman Coulter, Los
Angeles), BeadLab SNP Genotyping System (Illumina,
San Diego), TaqMan® SNP Genotyping Assays (ABI, Foster
City) and GeneChip® Human Mapping 500 K Array Set
(Affymetrix, Santa Clara). Eight SNPs were selected and
subjected to regenotyping of equivocal observations (no-
calls) through sequencing. The criteria for the selection of
SNPs and samples for sequencing were presented in Meth-
ods.

The genotype distribution of the observed data at each
locus which were produced by the respective genotyping
technology was compared with that of no-calls which
were obtained by sequencing (Table 1). Statistically signif-
icant differences were observed in SNPstream, Illumina
and GeneChip 500 K, indicating that the MCB indeed
exists in widely-used genotyping technologies and it
would lead to a biased estimation of allele/genotype fre-
quencies. The genotype-specific call-rates ci(i = AA, Aa, aa)
were calculated, most of which were above 0.95, but it
could be as low as 0.75 for GeneChip 500 K.

In the subsequent sections, in order to explore the effects
introduced by MCB, we proposed a model to investigate
the nature of no-calls. Typically an equivocal observation
occurs as follows (Fig. 1). For the data points that lie
between the cluster of homozygotes of minor alleles (AA)
and the cluster of heterozygotes (Aa), the real genotypes
could be either homozygotes of minor alleles (Scenario I)
or heterozygotes (Scenario II). For those that lie between
the cluster of homozygotes of major alleles (aa) and the
cluster of heterozygotes (Aa), the real genotypes could be
either heterozygotes (Scenario III) or homozygotes of
major alleles (Scenario IV). When the observations that
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cannot be called unequivocally are discarded, Scenario II
is equivalent to Scenario III. To facilitate discussion, we
assumed no-calls only happen in a specific genotype with
the genotype-specific call-rate c (0 ≤ c ≤ 1).

Effect of MCB on type-I error rate for HWE
Hardy-Weinberg Equilibrium has been repeatedly recom-
mended as a measure for QC in the context of genetic
association studies [30]. In the following, we will show
that MCB is one of causes for the departure from HWE.

The type-I error rate for departure from HWE disturbed by
MCB is inflated with the increasing of c (Fig. 2). When
MCB happens in homozygotes (Scenario I and Scenario
IV), it leads to a departure from HWE because of excessive
heterozygotes. The inflation is similar for AA and aa for a
given c. When MCB happens in heterozygotes (Scenario II
& III), excessive homozygotes result in the departure from
HWE. The inflation is more pronounced for MCB in het-

erozygotes than that in homozygotes. For example, the
type-I error rate is 0.055 ~0.228 in Scenario I and Scenario
IV, while it can be 0.076 ~0.654 in Scenario II & III under
different MAFs in the presence of MCB (c = 0.80) for a
population (N = 500) under HWE in the significant level
of 0.05. However, HWE still holds, as expected, when
missing equivalently but unbiasedly across different gen-
otypes (Unbiased Missing, UBM).

Effect of MCB on allele frequency estimation
The accuracy of allele/genotype frequency estimation is of
special importance since many analyses such as associa-
tion studies, inference of haplotype, and inference of pop-
ulation structure rely on it. UBM does not affect allele/
genotype frequency estimation although it reduces the
sample size. However, MCB does. When missing bias in
Scenario I and Scenario II & III, MAF is underestimated;
and when in Scenario IV, MAF is overestimated and this
change is larger than the former two (Fig. 2). It should be

Table 1: The regenotyping results for the different genotyping platforms.

Platform rsID Obs. Seq. ci pVal

SNPstream rs6743724 AA 47 0 1.000 0.231
Aa 427 2 0.995
aa 1009 16 0.984

rs699512 AA 239 3 0.987 0.0277
Aa 1064 3 0.997
aa 1309 15 0.989

Illumina rs2277632 AA 351 8 0.978 1.42 × 10-5

Aa 1129 1 0.999
aa 941 2 0.998

rs1457043 AA 449 1 0.998 0.463
Aa 1198 6 0.995
aa 775 1 0.999

TaqMan rs10109984 AA 111 1 0.991 0.0898
Aa 480 9 0.981
aa 513 20 0.962

rs11226 AA 242 4 0.984 0.599
Aa 568 17 0.971
aa 298 8 0.974

GeneChip 500 K rs11928855 AA 66 22 0.750 2.26 × 10-15

Aa 243 1 0.996
aa 133 1 0.992

rs6855202 AA 59 15 0.797 3.33 × 10-13

Aa 246 0 1.000
aa 141 0 1.000

pVal is the P value calculated by Fisher Exact Test to show whether the genotype counts called by the software provided by the respective platform 
(Obs.) were significantly different from the no-calls' counts by sequencing (Seq.). ci is the genotypic specific call-rate for AA, Aa and aa.
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noticed that the change of allele frequency in Scenario IV
can be quite serious, especially for the locus with rare
MAF. For instance, the change of MAF can be 0.019 with c
= 0.80, 0.068 with c = 0.50, and even to 0.184 with c =
0.20, while the real value of MAF is only 0.10.

Effect of MCB on association studies
The development of high-throughput genotyping tech-
nologies make association study widely conducted for
identification of disease loci underlying complex traits.
We now examine the effect of MCB on association using
various disease models and statistical tests.

Power issue is of special importance in association studies
[31,32]. To investigate the effect of MCB on the power of
association studies, MCB was introduced into disease
models (see Methods). Here, the sample size is 500 for
both case and control groups, and MCB are identical for
both groups.

It has been commonly assumed that missing calls would
lead to power loss due to decreased sample size, which
only holds in absence of MCB. In the presence of MCB,
the power can be affected by both the sample size and the
biased estimation of allele and genotype frequencies (see
Fig. 2, Additional file 1 &2). The change of power by MCB
is usually larger than that by UBM. For example, the
power loss by UBM is all less than 5% for the locus with

MAF = 0.25 under various disease models (power ≈ 80%
in genotypic χ2 test) when c = 0.80, while the change can
be around and even more than 10% when disturbed by
MCB (Table 2).

For the χ2 test based on genotype frequencies, MCB
always leads to power loss in all scenarios under different
disease models compared with the null (in the absence of
missing) (see Fig. 2 and Additional file 2). But for the χ2
test based on allele frequencies, it even can gain the power
in some scenarios, because of the biased estimation of
allele frequency (see Fig. 2 and Additional file 1). Geno-
typic χ2 test seems to be more robust to the changes of
power in association studies than allelic χ2 test in the
presence of MCB (see Fig. 2, Additional file 1 &2, and
Table 2).

The changes of power vary in different disease models. It
can be summarized that for the disease model with dom-
inant relationship (hAA = hAa ≠ haa), the power change in
Scenario IV (missing in aa) is most; for the disease model
with recessive relationship (hAA ≠ hAa = haa), the power
change in Scenario I (missing in AA) is the largest; for the
disease model with overdominant relationship (hAa ≠ hAA
= haa), the power change in Scenario II & III (missing in
Aa) is the most; and for the disease model with additive
relationship (hAA>hAa>haa), the power change in Scenario
I is similar to that in Scenario IV, especially when c is
small, while the decrease of sample size in quantity differs
greatly (see Additional file 1 &2). The influence under the
disease model with multiplicative relationship
(hAA>hAa>haa) is similar to that with additive relationship
(Fig. 2).

In addition, though the minor allele of A in the current
settings of disease models is susceptible to the disease (in
overdominant disease model, Aa is susceptible to dis-
ease), the conclusions drawn above can also be extended
when A is a protective one (data not shown). Moreover, in
the disease model (hAA = 0.01, hAa = 0.01, and haa = 0.01),
the type-I error rate in MCB remains to be 0.05, indicating
that MCB does not inflate the false positive rate for the
association studies, under the assumption that the extent
of missing is identical in both case and control.

Tradeoff between MCB and genotyping errors
In the previous section, we showed that MCB is common
in the current genotyping technologies, and it could affect
the subsequent analyses seriously and lead to false conclu-
sions. The key issue is how to deal with those equivocal
observations which apparently are responsible for MCB.
Two alternative options are available. The first option is to
discard the observations of borderline quality using the
'no-call' procedure which may lead to MCB. The second
option is to assign these observations to one of the geno-

The sketch of genotyping callingFigure 1
The sketch of genotyping calling. The points shown in 'x' 
represent no-calls due to the failure of being assigned to any 
clusters of genotype unequivocally. When the data points lie 
between the cluster of homozygotes of minor alleles (AA) 
and that of heterozygotes (Aa), the real calls could be AA or 
Aa, corresponding to Scenario I and Scenario II. When the 
data points lie between the cluster of heterozygotes (Aa) and 
that of homozygotes of major alleles (aa), the real calls could 
be Aa or aa, corresponding to Scenario III and Scenario IV.
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Effects of MCB on HWE, MAF estimation and association studies under multiplicative disease modelFigure 2
Effects of MCB on HWE, MAF estimation and association studies under multiplicative disease model. The com-
parison was conducted among the null (printed in green), UBM (printed in yellow) and MCB (printed in red). The figures cor-
respond to Scenario I, Scenario II & III and Scenario IV from the left to right with different extents of missing bias (0 ≤ c ≤ 1).
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types at the cost of increasing genotyping errors. Here, we
compare the overall outcome (allele frequency estimation
and power of association studies) of these two options
and try to offer guidelines for different scenarios to mini-
mize the biases caused by the equivocal observations. In
addition, we evaluate the overall call-rate and genotyping
error rate in the two options respectively and intend to re-
examine the current QC standards.

To facilitate the presentation, the genotype-specific call-
rate c was set to 0.80, a moderate MCB as shown previ-
ously. For the second option, we assumed all of the equiv-
ocal observations are called and the proportion of
accurate calls among these equivocal ones is denoted by
conf (0 ≤ conf ≤ 1). The genotyping error rate increases with
decreasing conf. For instance, if conf = 1, it means all of the
equivocal observations are called accurately; whereas, if
conf = 0, all of the equivocal ones are misclassified.

Both MCB and genotyping errors will possibly lead to
inaccurate estimation of allele/genotype frequencies and
in turn distorted association. When 'no-call' procedure is
applied to those observations of borderline quality, we
showed earlier that the biased estimation is dictated only
by MAF and c. When the equivocal observations are
called, the bias in allele frequency estimation depends on
conf in addition to MAF and c. In particular, the bias in
allele frequency estimation reflected by the changes of
MAF estimation increases with the decreasing conf (see
Additional file 3). Fixed MAF and c, the biased estimations

caused by MCB and by genotyping errors are comparable.
The bias introduced by MCB is certain, whereas the bias
caused by genotyping errors changes with the conf monot-
onically. Interestingly, when the conf is large enough
(indicated by the solid line in Fig. 3B), the biased estima-
tion of MAF caused by genotyping errors are smaller than
that caused by MCB. Therefore, it would be more benefi-
cial to call the equivocal observations in this case (grey
area above the line in Fig. 3B). However, when the conf is
below the solid line indicated in Fig. 3B, the biased esti-
mation of MAF caused by genotyping errors is more and
'no-call' procedure is recommended (area below the line
in Fig. 3B). It should be noted that the bias in estimation
of allele frequency in Scenario I by MCB is the greatest,
more so than in genotyping errors, even with the highest
error rate (conf = 0). Therefore, it is suggested that 'no-call'
principle should not be taken in Scenario I if the objective
is to minimize the biased estimation of MAF (Fig. 3).

In the following section, we explore the performance of
association studies affected by MCB and by genotyping
errors. Here, MCB (c = 0.80) and genotyping errors (c =
0.80, 0 ≤ conf ≤ 1), are assumed to be identical for case and
control groups. MCB and genotyping errors were intro-
duced to the disease models with various modes of inher-
itance relationship (Table 2) respectively according to
Methods. The power affected by MCB was discussed pre-
viously. The power affected by genotyping errors were
shown in Additional file 3. For χ2 test based on genotype
frequencies, genotyping errors may have no effect on asso-

Table 2: The power under different modes of inheritance relationship in the significant of 0.05.

Disease Models Penetrances (hAA, hAa, haa) Scenarios Power in Allelic χ 2test Power in Genotypic χ 2test

Null MCB UBM Null MCB UBM

I 0.805 0.790 0.800 0.806 0.800 0.800
Dominant (0.0148, 0.0148, 0.01) II & III 0.805 0.799 0.770 0.806 0.762 0.769

IV 0.805 0.730 0.762 0.806 0.756 0.759

I 0.619 0.472 0.611 0.801 0.710 0.794
Recessive (0.0201, 0.01, 0.01) II & III 0.619 0.691 0.586 0.801 0.798 0.769

IV 0.619 0.599 0.569 0.801 0.796 0.751

I 0.495 0.536 0.490 0.796 0.792 0.791
Overdominant (0.01, 0.0148, 0.01) II & III 0.495 0.447 0.461 0.796 0.736 0.758

IV 0.495 0.406 0.453 0.796 0.757 0.748

I 0.869 0.831 0.864 0.800 0.770 0.793
Additive (0.0178, 0.0139, 0.01) II & III 0.869 0.880 0.840 0.800 0.776 0.763

IV 0.869 0.816 0.831 0.800 0.756 0.752

I 0.875 0.831 0.870 0.800 0.763 0.793
Multiplicative (0.01847, 0.01359, 0.01) II & III 0.875 0.889 0.847 0.800 0.782 0.763

IV 0.875 0.826 0.838 0.800 0.759 0.752

MAF is 0.25 and the sample size in case and control is 500 respectively. Null, the power in absence of missing; MCB, the power affected by missing 
call bias; UBM, the power when missing equivalently but unbiasedly across different genotypes.
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ciation studies sometimes, i.e., in Scenario I and Scenario
II for the dominant disease model (hAA = hAa ≠ haa); other-
wise, it may cause power loss. But for χ2 test based on
allele frequencies, it may occasionally cause power gain
because of the biased estimation of allele frequency.
Though the power affected by genotyping errors is com-
plicated in different scenarios and disease models, the
power either does not change or changes monotonically
with the conf given the scenarios and disease models (see
Additional file 3). Therefore, similar to the previous study
on allele frequency estimation, a threshold of conf (indi-
cated by the solid lines in Fig. 4B, and Additional file 4B
&5B) is expected as well. If the conf is below the threshold,
the power loss caused by genotyping errors is larger than
that by MCB; therefore, 'no-call' procedure should be
taken (area below the line in Fig. 4B, and Additional file
4B &5B). Otherwise, it is better to call the observations of
borderline quality at the cost of genotyping errors (grey
area above the line in Fig. 4B, and Additional file 4B &5B).
For instance, for a locus with MAF = 0.35, when 'no-call'
procedure is taken for the equivocal observations hap-
pened in Scenario I (c = 0.80), the overall call-rate can still
achieve at 97.6%. The power is 87.7% in MCB compared
with 92.1% of the null in the multiplicative disease model
for allelic χ2 test. However, if these equivocal observations
are called even though they are completely misclassified
(conf = 0), the power with genotyping errors can be 88.1%
at least. It indicates that in order to reduce the power loss
caused by the equivocal observations, it would be more
beneficial to call the equivocal observations with a geno-

typing error rate 2.5% than 'no-call' with an overall call-
rate 97.5% (Fig. 4).

As shown above, the commonly-used 'no-call' principal
for the observations of borderline quality is not always the
best choice. By weighing the influences on the perform-
ance of association study and allele frequency estimation,
it is therefore preferable to force the calling of, even
though they can be erroneous, these equivocal observa-
tions when they lie between the cluster of homozygotes of
minor alleles and that of heterozygotes (i.e. in Scenario I
& Scenario II). When the equivocal observations lie
between the cluster of homozygotes of major alleles and
the cluster of heterozygotes (i.e., in Scenario III & Scenario
IV), the loss of power introduced by MCB is more pro-
nounced than that by genotyping error when these equiv-
ocal observations can be accurately called; but when the
calling accuracy cannot be granted (the conf is small), the
power loss is affected more by the genotyping error and it
may be better to invoke 'no-call' procedure. In addition,
with different disease models, different decisions for deal-
ing with these equivocal observations may be made. A
program called QC-Tradeoff is available online to suggest
whether 'no-call' procedure could be conducted http://
humpopgenfudan.cn/en/resource/download.html to
minimize the biases caused by the equivocal observations.

In the above analyses, for the models of genotyping errors,
we assumed all of equivocal observations were called to
facilitate the discussion. Here, we extended a general

Effects of MCB and genotyping errors on MAF estimationFigure 3
Effects of MCB and genotyping errors on MAF estimation. A) illustrates the overall call-rate for the loci with different 
MAFs in the presence of MCB (c = 0.8). B) illustrates the threshold of conf by a solid line. If the equivocal observations can be 
called accurately in a confidence above the conf threshold, it prefers to call those equivocal ones at the cost of genotyping 
errors to minimize the biased estimation of MAF introduced by the equivocal observations (grey area above the line). Other-
wise, 'no-call' procedure is beneficial, which results in MCB (area below the line). C) illustrates the genotyping error rate, 
when the equivocal observations are called in the conf threshold mentioned above. The figures correspond to Scenario I, Sce-
nario II, Scenario III and Scenario IV from the left to right.
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model to explore the joint effects caused by MCB and gen-
otyping errors. We assumed only (100 × α)% of equivocal
observations (0 ≤ α ≤ 1) were called with accuracy still
denoted by conf. The genotype frequencies in this joint
model were illustrated in Additional file 7. When α = 0,
this model is equivalent to the model of MCB; and when
α = 1, this model is equivalent to the model of genotyping
errors. We introduced this joint model (c = 0.8, conf = 0.0,
0.25, 0.5, 0.75. 1.0, and 0 ≤ α ≤ 1) to the disease models
denoted in Table 2. Fig. 5 and Additional file 6 illustrated
the power of association tests in the presence of MCB and
genotyping errors, and the corresponding overall call-rate
and genotyping error rate. An interesting finding is that

the influences of the power caused by the equivocal obser-
vations always change monotonically with α from 0 (the
model of MCB) to 1(the model of genotyping error). It
indicates in order to minimize the biases caused by the
equivocal observations on association studies, the vali-
date procedure is either no-call resulted in MCB or call all
of the equivocal observations with genotyping errors,
which we had discussed above.

Given the knowledge of relationship of bias in allele/gen-
otype frequency estimation and in association study with
the magnitude of MCB and genotyping errors, it is there-
fore likely to develop a strategy to minimize the bias by

Effects of MCB and genotyping errors on association studies under multiplicative disease modelFigure 4
Effects of MCB and genotyping errors on association studies under multiplicative disease model. A) illustrates 
the overall call-rate for the loci with different MAFs in the presence of MCB (c = 0.8). B) illustrates the threshold of conf by a 
solid line. If the equivocal observations can be called accurately in a confidence above the conf threshold, it prefers to call those 
equivocal ones at the cost of genotyping errors to minimize the power loss (grey area above the line). Otherwise, 'no-call' pro-
cedure is beneficial, which results in MCB (area below the line). C) illustrates the genotyping error rate, when the equivocal 
observations are called in the conf threshold mentioned above. The figures correspond to Scenario I, Scenario II, Scenario III 
and Scenario IV from the left to right.
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choosing proper cut-offs for call-rate and genotyping error
rate (see Discussion).

Disccusion
The advent of high-throughput genotyping technologies
led to an exciting era of genome-wide associations. Geno-
type data with good quality are imperative in ensuring the
creditability of a study. Missing calls in high-throughput
genotyping has long been ignored in genetic studies. In
this study, we demonstrated experimentally the preva-
lence and severity of the problem of missing calls, espe-
cially MCB, in the current genotyping technologies.

We also showed theoretically how MCB could lead to
biased conclusions in the subsequent analyses including
estimation of allele/genotype frequencies and association
tests. MCB leads to power loss in most cases, and such loss
may lead to false negative conclusions. Compared with
allelic χ2test, genotypic χ2 test is more robust to MCB. Var-
ious modes of inheritance relationship (dominant, reces-
sive, overdominant, additive and multiplicative) were
considered in our study. We also showed that when miss-
ing bias happens in the genotype whose contribution to
the disease differs most, regardless whether it is suscepti-
ble or protective to the disease, it affects the power of asso-
ciation studies most.

In this study, we investigated the bias of association in the
presence of both MCB and genotyping errors, and demon-
strated that they contributed to the bias differently. This

result is of special importance in determining the cut-offs
used for QC in the current practice of GWA. The question is
whether the current QC standards are optimal. If the objec-
tive is to minimize the bias in allele/genotype frequency
estimation and in association tests, the cut-off for call-rate
and that for genotyping error rate should be properly cou-
pled in GWA. This leads to a re-examination of the existing
QC standards for both call rate and genotyping error rate
that are widely used in various association studies.

A commonly used QC standard for call rate is 80% and
95% or above for the first screening and fine mapping,
respectively, in GWAs (e.g. Easton et al. [3]; Hunter et al.
[4]). Although we demonstrated that the bias in allele fre-
quency estimation and in association study discussed in
Results (Fig. 3 &4, and Additional file 4 &5) is not negli-
gible when 'no-call' procedure is applied, their call-rates
are all above 80% and even can be above 95%. It suggests
that the existing cut-offs are not sufficiently stringent to
filter out the loci which may suffer from MCB.

A genotyping error rate < 1% is considered acceptable [3-
5,33]. This is an extremely stringent cut-off in the presence
of equivocal observations, given that such a stringent cut-
off would force to invoke 'no-call' principal whereas
would not lead to a reduction of bias. Our results indi-
cated that in most cases, the bias can be greatly reduced by
increasing the call-rate at the cost of genotyping error rate,
i.e., < 5% (Fig. 3 &4, and Additional file 4 &5). Therefore,
we suggested that the ongoing QC cut-off for call-rate

Joint effects of MCB and genotyping errors on association studies under multiplicative disease modelFigure 5
Joint effects of MCB and genotyping errors on association studies under multiplicative disease model. A) illus-
trates the overall call-rate for the loci with different values of α in the joint models of MCB and genotyping errors (MAF = 0.25, 
c = 0.8, conf = 0.0, 0.25, 0.5, 0.75 and 1.0). B) illustrates the genotyping error rate with different values of α in the correspond-
ing joint models. C) illustrates the power based on allelic χ2 test with different values of α. D) illustrates the power based on 
genotypic χ2 test with different values of α. The figures correspond to Scenario I, Scenario II, Scenario III and Scenario IV from 
the left to right.
Page 9 of 14
(page number not for citation purposes)



BMC Genomics 2009, 10:106 http://www.biomedcentral.com/1471-2164/10/106
should be increased, while the cut-off for genotyping error
rate can be reduced properly.

A program called QC-Tradeoff is available online to pro-
vide a conf threshold. If the threshold is high, it is conserv-
ative to take 'no-call' procedure to reduce the power loss
in association studies introduced by the equivocal obser-
vations; otherwise, the equivocal ones could be called
even though genotyping errors may be occurred. Moreo-
ver, we showed that the missing calls can usually be
reduced sufficiently but with certain accuracy using the
current technologies, indicating that the value of conf in
reality is usually high enough. Through adjusting relevant
parameters which are implemented in the calling software
provided by genotyping platforms (such as Illumina, Taq-
Man and GeneChip 500 K), it allows either higher call
rates or greater genotyping rate. For example, we adjusted
quality value of TaqMan from 0.95 (default) to 0.80 to
illustrate the change of calling in the two loci rs10109984
and rs11226. After a change of the quality value, the over-
all call-rate increased substantially. In particular, when the
quality value is 0.95, 30 and 29 calls were not called for
the loci rs10109984 and rs11226, respectively. When 0.8
was chosen as the quality value, only 5 were not called at
rs10109984 and 7 at rs11226. Subsequently, the number
of genotyping discordance between the genotyping results
and sequencing results was 8 (corresponding to conf =
0.73) and 0 (corresponding to conf = 1.0) for the locus
rs10109984 and rs11226, respectively.

Furthermore, our results also suggested that MCB does not
inflate type-I error rate for association studies. But it
should be noted that the conclusion made here is under
the assumption that the extent of missing is same to case
and control. Sometimes differential bias between case and
control is unavoidable, i.e., for the different sourcing of
samples. In this case, effects of MCB and genotyping errors
could be more complicated. Clayton et al. [34] showed
case-control differential bias and calling inaccuracies can
lead to differential misclassification, and consequently, to
increase false-positive rates. Plagnol et al. [35] from the
same lab found case-control bias associated with missing
data can increase the false-positive rate as well and recom-
mended to use 'fuzzy' calls to deal with uncertain geno-
types that would otherwise be labeled as missing.

Conclusion
Missing calls in high-throughput genotyping has long
been ignored in genetic studies. However, it had been
illustrated that the problem of missing call bias does exist
widely and sometimes seriously in prevalent high-
throughput genotyping technologies. Missing call bias
could lead to biased conclusions in subsequent analyses,
including allele/genotype frequency estimation and asso-
ciation studies. The commonly used 'no-call' procedure

does not always a best option for observations of border-
line quality. Our results indicated that in most cases, the
biased conclusion can be greatly reduced by increasing the
call-rate at the cost of genotyping error rate. Therefore, the
existing QC standards should be modified that the cut-off
for call-rate and that for genotyping error rate should be
properly coupled in GWA. A program called QC-Tradeoff
is available online to suggest call or no-call the equivocal
observations according to the case the user faced to mini-
mize the power influences in association studies, and
illustrate the acceptable QC standard in the correspond-
ing case.

Methods
Regenotyping for no-calls
Two SNPs were selected for each platform (GeneChip 500
K, SNPstream, Illumina and TaqMan) from a large
number of loci which were genotyped by the respective
technology in our laboratory. The SNPs were selected
using the following criteria: 1) the genotype calls were
made using the software provided by the venders of the
respective technology; 2) the call-rate at each locus is
around or above the average call-rate from the same plat-
form; 3) the minor allele frequency (MAF) of the observed
data is above 0.15.

As for SNPstream, Illumina and TaqMan, their calling algo-
rithms are based on various methods, including GetGenos/
QCReview program for SNPstream, GeneCall software for
Illumina and SDS software for TaqMan. But generally, a
baseline is set to distinguish the background signals and the
informative ones, and then clustering and calling procedures
conduct in the informative ones. The samples that show sig-
nals above the baseline but cannot be called unequivocally
were selected for further analysis in the respective genotyping
platforms. As for GeneChip 500 K, genotype data was called
by the software GTYPE. It introduces a dynamic model-based
algorithm [36] to suit its properties that many different SNPs
are to be examined in a few individuals. This algorithm is dif-
ferent from others, so instead, we collected all the missing
samples for sequencing.

Overall, rs6743724 (call-rate: 96.5%) and rs699512
(98.6%) for SNPstream, rs2277632 (98.9%) and
rs1457043 (98.9%) for Illumina, rs10109984 (95.8%)
and rs11226 (96.6%) for TaqMan, rs1192885 (94.2%)
and rs6855202 (95.1%) for GeneChip 500 K were
selected. The genotypes for the missing data were gener-
ated by sequencing the DNA segment containing the pol-
ymorphism locus. In the 2 × 3 contingency table of
genotype in the 'observed' data produced by the genotyp-
ing platforms (Obs.) and the 'missing' data produced by
sequencing (Seq.), Fisher Exact Test was used to examine
Page 10 of 14
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whether there is difference in the genotypic distribution
between them (Missing Call Bias, MCB). The genotype-

specific call-rate was calculated as well,  for

AA, Aa and aa, respectively.

Models for MCB and genotyping errors

In the presence of no-calls, let  denote the frequency

of the genotypes Gi (i = AA, Aa, aa) in the population and

ci be the call-rate of the genotypes where 0 ≤ ci ≤ 1. The

observed genotype frequencies can be presented as

, where the overall call-rate is defined as

. When cAA = cAa = caa, there is no bias

in missing data, we called it Unbiased Missing (UBM). A
violation to any of the equality would lead to MCB. In the
presence of MCB, Scenario II is equivalent to Scenario III.
To facilitate discussion, we assumed no-calls only happen

in a specific genotype with 0 ≤ c ≤ 1, i.e., in AA (Scenario
I), in Aa (Scenario II & III), and in aa (Scenario IV).

On the other hand, an equivocal data point can be
assigned to a genotype, which could lead to a genotyping
error. Assume all the equivocal data points are called and
let conf denote the proportion of genotypes that could be
accurately called among these equivocal ones. The geno-
typing error rate is (1 - conf)(1 - c)pG, where G denotes the
genotype of equivocal data points.

The observed genotype frequencies  in the models

were listed in Table 3.

Effects on allele frequency estimation and type-I error rate 
for HWE
Let π denote the frequency for minor allele A in a popula-
tion, where 0 ≤ π ≤ 0.5. Suppose HWE holds in the popu-
lation, the genotype frequencies are pAA = π2, pAa = 2π(1 -
π) and paa = (1 - π)2, respectively.

However, in the presence of MCB or genotyping errors,
the estimation of π will be affected. Here, we present the
results by the difference (πobs-π) to reflect the changes in
the allele frequency estimation, where πobs is the estimated
frequency of minor allele A in the existence of MCB or
genotyping errors according to Table 3. In order to com-
pare the effects introduced by MCB with that by genotyp-
ing errors, we try to find a conf threshold in the given c and
MAF, where if the equivocal observations are called above
the conf threshold, the changes of allele frequency estima-

tion (|πobs-π|) caused by genotyping errors are smaller
than those by MCB, and vice versa.

MCB and genotyping errors will also cause the violation
of HWE. For biallelic locus,

 can be used to test the

departure from HWE, where N is the sample size. This sta-

tistic conforms to the χ2 distribution with one degree of
freedom (df = 1), when the null hypothesis holds [37].
However, in the presence of MCB or genotyping errors, it

conforms to a non-central χ2 distribution with df = 1 and
the non-centrality parameter is

, which can be calculated

according to Table 3. The explicit derivation of the non-
centrality parameter in the presence MCB or genotyping
errors was illustrated in Supplemental Methods. Here,
type-I error rate for HWE was calculated according to the

non-central χ2 distribution in the significant level of 0.05
and the sample size was assumed to 500, which was con-
ducted in the package of R[38].

Disease models and asymptotic power calculation
Let hAA, hAa, haa be the penetrances of a disease for the gen-
otypes AA, Aa and aa, respectively, and D be the preva-
lence of the disease,

Following the Bayesian formulation, the genotype fre-
quencies in the case population are

Similarly, the genotype frequencies in the control popula-
tion are,

The aim of case-control association studies is to search for
disease-susceptible polymorphisms by testing whether
allele/genotype frequencies of the case and control differ
significantly. Allelic χ2 test and genotypic χ2 test are the
most two widely used tests. Here we examined the influ-
ences affected by MCB, UBM or genotyping errors on the
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power in association studies. The genotype frequencies in
case and control can be calculated respectively according
to Table 3 and formula (1)~(3). The power was calculated
using a non-central χ2 distribution following Gordon et
al. [23]. The power calculation was conducted in the pack-
age of R. In order to the comparison of power affected by
MCB and that by genotyping errors with different levels,
we tend to find a conf threshold, where if the equivocal
observations are called above the conf threshold, the
power loss caused by genotyping errors are smaller than
that by MCB, and vice versa.

Here, the same extent of MCB, UBM or genotyping errors
was assumed for both case and control. Various modes of
inheritance relationships were considered, including
dominant, recessive, overdominant, additive and multi-
plicative relationship (Table 2). The power in these dis-
ease models can be 80% in the significant of 0.05 using
genotypic χ2 test, when MAF is 0.25 and the sample size of
case and control is 500 respectively.

Abbreviations
MCB: missing call bias; UBM: unbiased missing; SNP: sin-
gle nucleotide polymorphism; QC: quality control; HWE:
Hardy-Weinberg Equilibrium.
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Additional File 1
Figure S1. 
The power comparison among the null (printed in green), UBM 
(printed in yellow) and MCB (printed in red) under various disease 
models (dominant, recessive, overdominant and additive relation-
ship) in the significant level of 0.05 when allelic χ2 test was used. The 
figures correspond to Scenario I, Scenario II & III and Scenario IV from 
the left to right.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-106-S1.pdf]

Additional File 2
Figure S2. 
The power comparison among the null (printed in green), UBM 
(printed in yellow) and MCB (printed in red) under various disease 
models (dominant, recessive, overdominant and additive relation-
ship) in the significant level of 0.05 when genotypic χ2 test was used. 
The figures correspond to Scenario I, Scenario II & III and Scenario IV 
from the left to right.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-106-S2.pdf]

Table 3: The genotype frequencies in different scenarios in the presence of MCB or genotyping errors.
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Additional File 3
Figure S3. 
Effects of genotyping errors on allele frequency estimation and on 
power of association studies under various disease models in the sig-
nificant level of 0.05 when allelic χ2 test (printed in green) and gen-
otypic χ2 test (printed in yellow) were used. When conf = 1, the 
changes of MAF estimation is 0 and the power corresponds to that in the 
null. The figures correspond to Scenario I, Scenario II, Scenario III and 
Scenario IV from the left to right.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-106-S3.pdf]

Additional File 4
Figure S4. 
The power comparison for association studies between MCB and genotyp-
ing errors under various disease models (dominant, recessive, overdomi-
nant, additive relationship) when allelic χ2 test was used.A) illustrates the 
overall call-rate for the loci with different MAFs in the presence of MCB (c = 
0.8). B) illustrates the threshold of conf by a solid line. If the equivocal obser-
vations can be called accurately in a confidence above the conf threshold, it 
prefers to call those equivocal ones at the cost of genotyping errors to minimize 
the power loss (grey area above the line). Otherwise, 'no-call' procedure is 
beneficial, which results in MCB (area below the line). C) illustrates the gen-
otyping error rate, when the equivocal observations are called in the conf 
threshold mentioned above. The figures correspond to Scenario I, Scenario II, 
Scenario III and Scenario IV from the left to right.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-106-S4.pdf]

Additional File 5
Figure S5. 
The power comparison for association studies between MCB and genotyp-
ing errors under various disease models (dominant, recessive, overdomi-
nant, additive relationship) when genotypic χ2 test was used.A) illustrates 
the overall call-rate for the loci with different MAFs in the presence of MCB (c 
= 0.8). B) illustrates the threshold of conf by a solid line. If the equivocal obser-
vations can be called accurately in a confidence above the conf threshold, it pre-
fers to call those equivocal ones at the cost of genotyping errors to minimize the 
power loss (grey area above the line). Otherwise, 'no-call' procedure is benefi-
cial, which results in MCB (area below the line). C) illustrates the genotyping 
error rate, when the equivocal observations are called in the conf threshold men-
tioned above. The figures correspond to Scenario I, Scenario II, Scenario III and 
Scenario IV from the left to right.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-106-S5.pdf]

Additional File 6
Figure S6. 
Joint effects of MCB and genotyping errors on association studies 
under various disease models (dominant, recessive, overdominant, 
additive relationship).A) illustrates the overall call-rate for the loci with 
different values of α in the joint models of MCB and genotyping errors 
(MAF = 0.25, c = 0.8, conf = 0.0, 0.25, 0.5, 0.75 and 1.0). B) illus-
trates the genotyping error rate with different values of α in the corre-
sponding joint models. C) illustrates the power based on allelic χ2 test with 
different values of α. D) illustrates the power based on genotypic χ2 test 
with different values of α. The figures correspond to Scenario I, Scenario 
II, Scenario III and Scenario IV from the left to right.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-106-S6.pdf]

Additional File 7
Supplemental Methods. 
The non-centrality parameter of HWE test in the presence of MCB or 
genotyping errors; the joint model of MCB and genotyping errors.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-106-S7.doc]
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