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Abstract

Background: The recent development within high-throughput technologies for expression
profiling has allowed for parallel analysis of transcriptomes and proteomes in biological systems
such as comparative analysis of transcript and protein levels of tissue regulated genes. Until now,
such studies of have only included microarray or short length sequence tags for transcript profiling.
Furthermore, most comparisons of transcript and protein levels have been based on absolute
expression values from within the same tissue and not relative expression values based on tissue
ratios.

Results: Presented here is a novel study of two porcine tissues based on integrative analysis of
data from expression profiling of identical samples using cDNA microarray, 454-sequencing and
iTRAQ-based proteomics. Sequence homology identified 2.541 unique transcripts that are
detectable by both microarray hybridizations and 454-sequencing of 1.2 million cDNA tags. Both
transcript-based technologies showed high reproducibility between sample replicates of the same
tissue, but the correlation across these two technologies was modest. Thousands of genes being
differentially expressed were identified with microarray. Out of the 306 differentially expressed
genes, identified by 454-sequencing, 198 (65%) were also found by microarray. The relationship
between the regulation of transcript and protein levels was analyzed by integrating iTRAQ-based
proteomics data. Protein expression ratios were determined for 354 genes, of which 148 could be
mapped to both microarray and 454-sequencing data. A comparison of the expression ratios from
the three technologies revealed that differences in transcript and protein levels across heart and
muscle tissues are positively correlated.

Conclusion: We show that the reproducibility within cDNA microarray and 454-sequencing is
high, but that the agreement across these two technologies is modest. We demonstrate that the
regulation of transcript and protein levels across identical tissue samples is positively correlated
when the tissue expression ratios are used for comparison. The results presented are of interest
in systems biology research in terms of integration and analysis of high-throughput expression data
from mammalian tissues.
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Background

High-throughput quantitative profiling of transcripts and
proteins is a widely used approach for studying biological
processes. As a consequence, technologies develop rapidly
in order to improve quality, increase the throughput and
reduce the cost of expression profiling. Currently, tran-
script profiling technologies include DNA microarray [1],
Serial Analysis of Gene Expression (SAGE) [2], Massive
Parallel Signature Sequencing (MPSS) [3] and recently the
sequencing technologies from 454 Life Sciences (now
Roche) [4] and Solexa (now Illumina). Hybridization-
based microarray technologies have been the dominating
method for transcript profiling and are characterized by
their ability to globally profile gene expression in large
numbers of tissue samples. We recently developed and
applied the cDNA microarray technology in porcine stud-
ies of gene expression in multiple samples of diseased [5]
and healthy [6] tissues. Microarray expression profiles are
extracted from signal intensities reflecting the amount of
hybridized mRNA to spotted DNA whereas the above
mentioned sequencing-based technologies provide
expression levels that are absolute values computed as the
number of transcripts observed for individual genes. At
the protein level, introduction of the iTRAQ-tagging
approach, has allowed simultaneous quantitative com-
parison of individual protein levels in multiple tissue
samples [7]. Currently the iTRAQ-based proteomics tech-
nology is not able to fully characterize entire proteomes
[8], which is a limiting factor in global comparative stud-
ies of transcript and protein expression. Comparative
analysis of protein expression in pig tissues using iTRAQ-
based tagging was recently reported [9]. In comparison to
SAGE, MPSS and Solexa, 454-sequencing has increased
the sequence length to a minimum of 110 bp. The ability
for transcript profiling across multiple tissue samples has
been reported for most high-throughput sequencing-
based technologies, but has been limited to single tissue
profiling for 454-sequencing [10,11].

As new high-throughput technologies emerge and
develop, more comparative expression studies across tech-
nologies and across transcriptomes and proteomes have
been reported. At the transcript level, these studies have
been dominated by comparisons of SAGE data with either
Affymetrix short oligonucleotide microarrays [12-22] or
cDNA microarrays [13,14,16,21,23,24]. A few studies
have compared long oligonucleotide microarrays with
SAGE [25,26] and MPSS [25,27]. In one study, several
commercial oligonucleotide-based platforms were com-
pared with MPSS [28]. As demonstrated by many previous
studies, computation and evaluation of Pearson's or
Spearman correlation coefficients allows for comparison
of transcript-based expression profiles across technologies
[13,15,17-22,25,28]. Comparison of transcript and pro-
tein profiling has been used in studies of various mamma-
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lian tissues including high productivity Chinese Hamster
Ovary (CHO) cells [29], murine stem cell populations
[30] and recombinant NSO cells [31]. Studies in yeast have
also been reported that integrate transcript and protein
expression [32-35]. Integrative studies of transcriptomic
and proteomic profiles by means of 454-sequencing and
iTRAQ-based proteomics have not been reported. The
reported levels of correlation in gene expression across
technologies have been fairly inconsistent. The observed
discrepancies between transcript-based technologies have
been suggested to result from errors in SAGE tag-to-gene
mapping, errors in microarray probe-to-gene mapping
[19,22] and alternative polyadenylation [17]. The correla-
tion between quantitative proteomics data and microar-
ray data may be affected by alternative splicing [8]. Studies
of the correlation between the regulation of transcrip-
tomes and proteomes have mostly used direct compari-
sons of absolute measurements within single tissues
where the differences across genes in translational effi-
ciencies, turn-over rates and half life will have great
impact on the level of agreement. On the other hand, it
seems appropriate to assume that, when comparing the
transcript and protein level of a gene in two tissues, the tis-
sue with the highest transcript level will also be the tissue
with the highest protein level. Hence, tissue expression
ratios should be more compatible measurements when
analyzing the relationship between transcript and protein
abundances.

Here we report a comparative study of three high-
throughput technologies for multi-sample expression
profiling using tissue samples from pig heart and skeletal
muscle. We compare transcript profiles from 454-
sequencing and cDNA microarray based on relative
expression within tissues and expression ratios across tis-
sues. Furthermore, we analyze the relationship between
transcript and protein regulation between the two tissues
by direct comparison of expression ratios from cDNA
microarray, 454-sequencing and iTRAQ-based proteom-
ics.

Results

Expression profiles for genes overlapping between
technologies

Identical tissue samples were used in expression profiling
with 454-sequencing, cDNA microarray and iTRAQ-based
proteomics, three for heart and three for skeletal muscle.
An overview of the experimental setup is shown in figure
1. For cDNA microarray and iTRAQ-based proteomics, a
common reference sample was constructed by mixing
equal aliquots from all six samples facilitating computa-
tion of relative expression profiles and expression ratios
across tissues. For 454-sequencing data, relative expres-
sion profiles were computed from absolute transcript
count per UniGene ID identified by sequence homology.
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Expression profiles were compared across technologies by
matching unique pig UniGene sequence IDs as the gene
IDs from the different expression sets. The UniGene IDs
for 454-sequencing and microarray cDNAs were identi-
fied by BlastN whereas the UniGene IDs for the iTRAQ-
based proteins were identified by searching mass spec-
trometry data against the database of predicted proteins
from UniGene sequences downloaded at trEST [36]. Table
1 shows the number of UniGene IDs identified by micro-
array cDNA, 454-sequencing and the overlapping Uni-
Gene IDs between the two transcript-based technologies.
A major portion of the UniGene IDs identified by 454-
sequencing is overlapping with UniGene IDs represented
by microarray ¢cDNAs. Of 26.877 cDNA sequences, we
were able to map 12.563 cDNAs to unique UniGene IDs.
A total of 1.253.361 sequences were generated using the
454-based technology divided into 551.666 for heart and
701.695 for skeletal muscle. In total, 647.093 sequences
were mapped to 18.624 UniGene IDs. The expression pro-
files from 454-sequencing were obtained by BlastN
sequence homology between 454 sequence reads and
UniGene database sequences. Absolute gene expression
was determined by counting the number of transcripts per
gene, in this case computed as the number of 454
sequences for each UniGene ID in each of the six samples.
In total, 2.954 UniGene IDs were found to have sequence
counts in all six samples. We were able to compare expres-
sion profiles from microarray and 454-sequencing for
2.541 UniGene IDs by using the matching IDs. Relative
expression profiles for 454-sequencing were represented
by Relative Abundance (RA) values computed as the abso-
lute sample sequence count divided by the total sequence
count in that sample. Microarray RA values were com-
puted as the sample signal intensity divided by the total
sample signal intensity. RA values have previously been
used as estimates of relative gene expression for rough
comparisons within and across expression platforms
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[6,37]. Logarithmic transformed RA values were used for
subsequent analysis of differential gene expression using
454-sequencing. With the iTRAQ-based proteomics we
identified proteins corresponding to 354 UniGene IDs. In
terms of matches between protein identifications from
iTRAQ-based proteomics and transcript profiles, we were
able to map 148 UniGene IDs to 454-sequencing, 202
UniGene IDs to microarray cDNAs and 148 UniGene IDs
to both 454-sequences and microarray cDNAs.

Reproducibility of gene expression within and across 454-
sequencing and cDNA microarray

To determine the level of reproducibility of 454-sequenc-
ing and cDNA microarray for measuring gene expression
in heart and skeletal muscle and to evaluate the level of
correlation in expression across the two technologies,
Pearson's correlations between RA for pairs of tissue sam-
ples for the 2.541 shared genes were computed. For each
of the six samples and two technologies, a vector of RA
expression values was prepared. The resulting 12 RA
expression vectors were then used to compute pair-wise
tissue sample correlations, of which the average values
within and across the two tissues and technologies are
plotted in figure 2. Both technologies show good repro-
ducibility within the same tissue shown by the high corre-
lation values. For measuring expression in heart the
average correlation is 0.85 with 454-sequencing and 0.98
with cDNA microarray. The corresponding values for skel-
etal muscle were found to be 0.95 for 454-sequencing and
0.98 for cDNA microarray. Although high reproducibility
was observed with both technologies, microarray has a
slightly higher reproducibility than 454-sequencing for
measuring these two particular tissues. The correlation
within cDNA microarray is relatively high across the two
tissues with average correlation at 0.67 in comparison to
the average correlation at 0.23 observed for 454-sequenc-
ing. To further analyze this difference between 454-

Table I: Summary of 454-sequencing and overlap to microarray cDNAs via pig UniGene sequence IDs

RNA 454 sequence 454 sequence Unique UniGene Unique UniGene sequence count with array overlap
Sample count count with sequence count
UniGene hit

HEAI 173.571 79.401 10.567 6.544
HEA2 91.591 37.944 6.551 4.873
HEA3 286.504 134.455 12.783 7.426
Subtotal 551.666 251.800 15.885 8.764
LDOI 258.307 142.498 10.116 6.290
LDO2 155.443 85.158 7.555 5.098
LDO3 287.945 167.637 9.320 6.384
Subtotal 701.695 395.293 14.059 8230
Total 1.253.361 647.093 18.624 9.741
Total, N > | 471.028 2.954 2.541

N > | indicates that these UniGene IDs are identified by BlastN at least once in all six RNA samples by 454-sequencing.
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Overview of the experimental design. For microarray and iTRAQ, a common reference sample (REF) was constructed by
combining the three samples from heart (HEAI, HEA2 and HEA3) and three samples from the skeletal muscle Longissimus dorsi
(LDOI, LDO2, and LDO3). In the microarray experiment, three cDNA microarray slides were used per sample.

sequencing and microarray, a comparison of the distribu-
tion of RA values was made. This revealed that 454-
sequencing generates expression profiles with higher
dynamic range in comparison to microarray, indicating
that the relative expression profiles measured by 454-
sequencing are more different (Additional file 1). Across
454-sequencing and microarray, the highest correlation in
gene expression was observed between skeletal muscle
samples with an average value at 0.51. The correlation
across 454-sequencing and microarray for measuring the
gene expression in heart was less pronounced with an
average value at 0.25. These correlations are relatively low,
but are still higher than the average correlation value at
0.13 across heart and muscle using the two different tran-
script-based technologies as would be expected.

Level of agreement between 454-sequencing and cDNA
microarray in detecting differentially expressed genes

The agreement between 454-sequencing and cDNA
microarray in identifying differential gene expression was
evaluated by comparing lists of differentially expressed

genes between heart and skeletal muscle. A t-test was car-
ried out to compute the fold changes and P-values cor-
rected for multiple testing was set to 0.05 as a cutoff for
significant regulation. Identification of differentially
expressed genes using 454-sequencing produces the low-
est number of significantly regulated genes, 306 out of
2.954 tested genes (10%). Out of the tested 12.563 genes,
microarray produces a list of 5.888 genes that are signifi-
cantly regulated, a much higher percentage (47%) com-
pared to that of 454-sequencing. Of the 306 significantly
regulated genes identified using 454-sequencing, 198
genes (65%) are overlapping with the 5.888 genes identi-
fied using cDNA microarray. Plotting the log2 of the
expression ratios between heart and skeletal muscle for
these 198 genes shows that the direction of the regulation
is identical for a majority of the genes (figure 3). Out of
198 genes, 160 (81%) are regulated in the same direction
using both 454-sequencing and cDNA microarray. How-
ever, some discrepancy was found between these two
technologies in terms of the direction of the regulation.
For instance, 6 genes were found to be up-regulated in
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Figure 2

Reproducibility within and across transcript-based technologies. Average correlation between transcript RA profiles
from heart and skeletal muscle tissues within and across the two transcript-based technologies 454-sequencing and cDNA
microarray. Black vertical error bars indicate the minimum and maximum values of the Pearson's correlations used to calculate

average correlation.

heart compared to skeletal muscle with microarray,
whereas 454-sequencing identified these genes as being
down-regulated. Similarly, 32 genes were found to be up-
regulated in heart compared to skeletal muscle according
to 454-sequencing but found to be down-regulated with
microarray. Thus, out of 198 genes, 38 (19%) genes were
significantly regulated in both technologies but in the
opposite direction. The plot in figure 3 also demonstrates
a higher dynamic range of the expression ratios for 454-
sequencing than for cDNA microarray.

Correlation between heart-muscle expression ratios across
transcript-based technologies and iTRAQ-based
proteomics

To investigate the level of agreement between transcript
and protein ratios, heart-muscle expression ratios were
extracted for the two transcript-based technologies and
pair-wise comparisons were made to protein ratios
obtained from iTRAQ-based proteomics. Using the Uni-
Gene IDs it was possible to link expression ratios for 148
genes across the three technologies. The pair-wise ratio
comparisons for cDNA microarray versus iTRAQ and 454-
sequencing versus iTRAQ with indications of transcript
and protein concordance are shown in figure 4. The slopes
for the fitted straight lines for cDNA microarray and 454-
sequencing were calculated to be 0.6 and 1.4 respectively.
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Comparison of differentially expressed genes across transcript-based technologies. Level of agreement between
454-sequencing and cDNA microarray in the direction of regulation for 198 genes identified as significantly (adj. P < 0.05) reg-
ulated between heart and skeletal muscle by both technologies. The scatter plot shows the log2 of the ratios between heart
and skeletal muscle obtained with 454-sequencing plotted against those obtained with cDNA microarray. Red spots: | |3 genes
being up-regulated in heart compared to skeletal muscle were identified with both 454-sequencing and cDNA microarray.
Green spots: 47 genes being down-regulated in heart compared to skeletal muscle were identified with both 454-sequencing
and cDNA microarray. Yellow spots: 6 genes being up-regulated in heart compared to skeletal muscle were identified with
cDNA microarray but found to be down-regulated with 454-sequencing. Blue spots: 32 genes being up-regulated in heart com-
pared to skeletal muscle were identified with 454 but found to be down-regulated with cDNA microarray.

The corresponding Pearson's correlation coefficients were
positive and computed to be 0.49 and 0.53 respectively,
indicating that 454-based mRNA expression ratios are
slightly more in agreement with the protein ratios in com-
parison to mRNA expression ratios produced by the cDNA
microarray platform. We made a list of the 148 overlap-
ping genes and classified each gene in terms of concord-
ance between transcript and protein ratios based on the
distance of the data point to the fitted straight line and a
cutoff value at one time the standard deviation of all dis-
tances (Additional file 2). In the comparison of iTRAQ
and 454-sequencing, 43 UniGene IDs are not in concord-
ance and the corresponding number for the comparison
of iTRAQ and microarray was 34 UniGene IDs. The
observed positive correlations between transcript and pro-
tein ratios for both transcript-based technologies demon-
strate that for most genes differences in transcript levels
across heart and skeletal muscle is accompanied by simi-
lar differences in the protein level.

Discussion

In this study, cDNA microarray and 454-sequencing have
been compared for transcript expression profiling in por-
cine heart and skeletal muscle tissues. Protein abundance
data for identical tissue samples was generated using
iTRAQ-based proteomics to analyze the relationship
within genes between transcript and protein ratios across
tissues.

A total of 2.541 genes were detectable by both transcript-
based technologies. The degree of overlapping genes
detectable by both cDNA microarray and 454-sequencing
is affected by the nature of the two technologies. With
c¢DNA microarray, spot intensities are provided for all
genes printed on the microarray slides, regardless of
whether the genes are expressed or not. In case of 454-
sequencing, expression of a gene can be measured if the
gene is transcribed and if the sequencing depth of the
experiment is sufficiently high. For example, low
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Comparison of tissue expression ratios from transcriptomic and proteomic profiling. Pair-wise comparison of
heart-muscle log2 expression ratios obtained by 454-sequencing, cDNA microarray and iTRAQ-based proteomics for 148
genes detectable by all three technologies. Thick lines represent fitted straight lines from the data points. The distances
between the thick and thin lines are equal to one time the standard deviation of all distances from data points to the fitted
lines. The black data points between the two thin lines were considered to represent genes where transcript and protein ratios
are in concordance, whereas the outside red data points were considered to represent genes where transcript and protein
ratios are not in concordance (red).
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expressed genes will require that more sequences are gen-
erated in order to be captured. Thus, the degree of overlap
will depend largely on the genes being expressed in the
particular tissues being examined. In order to compare t-
tests for differential expression with cDNA microarray we
restricted the 454-sequencing data set to genes with
expression values in all six tissue samples, which reduced
the number of genes and thereby the number of overlap-
ping genes. This restriction may have removed informa-
tive data, but was necessary to allow comparison.

The reproducibility in profiling gene expression across
replicates of the same tissue sample is high for both tran-
script-based technologies with correlation values at 0.85
for 454-sequencing and 0.98 for cDNA microarray. The
expression correlation between heart and skeletal muscle
within cDNA microarray is relatively high (0.67) in com-
parison to the corresponding correlation observed for
454-sequencing (0.23), which suggests a larger tissue dif-
ference. We speculate that the main reason for the differ-
ence between these two transcript-based technologies is
the differences in the dynamic range of the expression
profiles. Thus, the distribution of the RA values from 454-
sequencing is considerably wider than that observed for
microarray, indicating that sensitivity for detecting expres-
sion difference across tissue samples is highest for 454-
sequencing. Whether the larger number of genes detected
to be different across skeletal muscle and heart by 454-
sequencing is reflecting real biological differences
between these two tissues is uncertain. The correlation
values across 454-sequencing and microarray at 0.25 and
0.51 for heart and muscle respectively was relatively low,
but considerably higher than the correlation value at 0.13
across the two transcript-based technologies and across
the two tissues. This means that even though the technol-
ogies are quite different they still measure the respective
expression profiles within heart and muscle to be most
similar.

The number of differentially expressed genes identified in
relation to the number of tested genes was much higher
for cDNA microarray (47%; 5.888 out of 12.563) than for
454-sequencing (10%; 306 out of 2.954). Because it is not
the same set of genes being tested, it will of course not
lead to the same list of identified differentially expressed
genes. However, microarray tends to predict more genes
that are differentially expressed. Some might be false pos-
itives, even though P-values were corrected for multiple
testing. If expression ratios across any given two tissues are
close to one, they are vulnerable to random shifts between
up-regulated, not-regulated and down-regulated genes.
This has previously been suggested as a reason for discrep-
ancy between cDNA- and oligonucleotide-based microar-
ray platforms in expression ratios [38]. Cardiac and
skeletal muscles represent two different tissues, although
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they can both be classified as muscle type tissues. The fact
that only about 10% of the monitored genes with 454-
sequencing are differentially expressed may not be sur-
prising due to the similarity of these two tissues. Thus,
genes that are related to basic functions in muscle tissue
cells would be expected to be expressed in both tissues. A
relatively low number of differentially expressed genes
between similar tissue samples has previously been
observed in a study of rhabdomyosarcoma, fetal and skel-
etal muscle tissues, where 403 tags out of 41084 unique
tags were identified as differentially expressed, although
this study was based on the SAGE technology [39]. The
fact that cONA microarray has a lower dynamic range sug-
gests that this technology is less sensitive to minor differ-
ences in gene expression across tissues than the
sequencing-based approach. However, microarray detects
more genes than 454-sequencing that are differentially
expressed across cardiac and skeletal muscle. One expla-
nation may be that if the variation in expression across
sample replicates within tissue is considerably lower than
the variation across tissues, significantly regulated genes
can still be detected. This is supported by the high repro-
ducibility observed for microarray within tissues in figure
2. Of the 306 genes identified as being differentially
expressed with 454-sequencing, 198 was also identified
by microarray and 160 were regulated in the same direc-
tion. Out of 198 genes found to be significantly regulated
between the two tissues, 38 genes are regulated in oppo-
site direction with the two transcript-based technologies.
This may also be due to random shifts between positive
and negative values in the log2 ratio in either of the two
technologies. Other reasons for the disagreement in detec-
tion of differential expression could be gene mapping
errors or alternative splicing events.

To investigate the relationship between the regulation of
transcript and protein levels across tissues, the expression
ratios across heart and skeletal muscle from microarray,
454-sequencing and iTRAQ-based proteomics were com-
pared. Transcript and protein ratios across heart and skel-
etal muscle were shown to be positively correlated for 148
genes detectable by all three technologies. The correlation
appear to be slightly more positive for the comparison
with 454-sequencing (0.53) than for the comparison with
c¢DNA microarray (0.49). The slope is 0.6 for cONA micro-
array and 1.4 for 454-sequencing when ratios are com-
pared against iTRAQ-based ratios. The positive correlation
between transcript and protein ratios suggests that for
most genes, a relative tissue difference across a given tissue
pair in transcript level leads to a similar difference in the
protein level. A list of all 148 genes with expression ratios
for the three technologies and indications of concordance
was generated. Genes, where the transcript-protein rela-
tionship deviates from this linearity might be interesting
to study further, since they could be examples of differen-
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tial regulation of either translation or mRNA- or protein-
turnover among the tissues. Alternatively, translation of
mRNAs from genes that generate high levels of transcripts
might be limited by the availability of RNA-binding factor
or the capacity of the translational machinery. Deviations
may also result from gene annotation errors [19,22] or
alternative splicing events taking place differentially
across the two tissues, which are not equally detected by
the transcript-based technologies and the iTRAQ-based
technology [8]. Discrepancies arising from alternative
splicing may potentially be verified with real time PCR.
Future improvement of the proteomics-based technolo-
gies should also increase the depth of comparative studies
of transcripts and proteins profiles. While the analysis
described here allows for the detection of genes with alter-
native regulation in different tissues, further experiments
are needed in order to understand the biological basis of
these differences.

Conclusion

In this study we have analyzed the reproducibility of
expression data within and between microarray and 454-
sequencing technologies. Furthermore, we have inte-
grated expression data from both transcriptomic and pro-
teomic profiling to analyze the gene regulation across two
porcine tissues by comparing tissue expression ratios of
transcripts and proteins. Both transcript-based technolo-
gies displayed a high degree of reproducibility within
technology, but the reproducibility across these two tech-
nologies was modest. The majority of the differentially
regulated genes identified by 454-sequencing was also
found by the cDNA microarray platform. Most interesting
was the comparison of data from both transcript-based
technologies with relative expression values from iTRAQ-
based proteomics. Integrative analysis revealed that the
regulation of transcript and protein levels across the two
tissues is positively correlated for most genes using tissue
expression ratios for comparison. Some genes without
transcript-protein concordance were identified, which
may arise from annotation errors or differential regulation
of translation, turnover or alternative splicing. The results
presented here should be of high importance for integra-
tion and analysis of high-throughput expression data, in
particular for studies of the regulation of transcript and
protein abundances in mammalian tissues.

Methods

Tissue samples of heart and skeletal muscle

Tissue samples of heart (HEA) and skeletal muscle (Long-
issimus dorsi; LDO) were prepared by pooling equal
amounts of tissue sampled from five healthy Hampshire
gilts at age four to six months. Each pool was divided into
six sub-samples, three for each tissue named HEA1, HEA2,
HEA3, LDO1, LDO2 and LDO3. The exact same six tissue
sub-samples were used for expression profiling with
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c¢DNA microarray, 454-sequencing and iTRAQ-based pro-
teomics. A reference sample for the cDNA microarray
experiment and iTRAQ-based proteomics was constructed
by combining equal amounts of tissue from the six sub-
samples.

Microarray experiment

Total-RNA extractions were carried out from each sample
using the RNeasy Maxi Kit from Qiagen. Alexa Flour-
labelled cDNA was synthesized from 20 pg of total-RNA
using SuperScript Plus Direct cDNA Labeling System from
Invitrogen. The reference sample was labelled with Alexa
555 and the individual tissue samples were labelled with
Alexa 647. Each of the six labeled tissue samples was co-
hybridized with the labelled reference sample to three 27
k pig cDNA microarray slides representing approximately
20 k genes. Microarray cDNA platform development was
based on a large EST sequence resource established as part
of the Sino-Danish Pig Genome Sequencing Project
[40,41]. Detailed description of the pig cDNA microarray
platform can be found at NCBI's Gene Expression Omni-
bus (GEO; http://www.ncbi.nlm.nih.gov/geo) [42] using
the accession ID GPL3585. Following hybridization,
washing and drying, the slides were scanned and the out-
put images were analyzed. Using the limma package [43]
from Bioconductor http://www.bioconductor.org, the
log2-transformed median intensity ratios of Alexa-647 to
Alexa-555 were normalized within-slide using the print-
tip-loess method [44]. The raw and normalized cDNA
microarray gene expression data set was submitted to

GEO at NCBI http://www.ncbi.nlm.nih.gov/geo and
given the accession ID GSE10122.

Preparation of cDNA libraries and 454-sequencing

From the same total-RNA extraction batches used for the
microarray experiment, poly A+ RNA was purified from
~200 pg total-RNA using the Oligotex mRNA Mini Kit
from Qiagen. The poly A+ RNA isolates were used as tem-
plates in synthesis of high quality double-stranded cDNA
with oligo(dT)12-18-priming of the first strand cDNA
(SuperScriptTM Doubled-Stranded cDNA Synthesis Kit
from Invitrogen). The final purification of the synthesized
c¢DNA was performed on MinElute PCR Purification col-
umn from Qiagen, and an average cDNA fragment size of
300-400 bp was obtained by applying 45 psi (= 3 bar) of
nitrogen for 50-60 seconds on 2.7-4.7 ug starting mate-
rial using a nebulizer. Subsequently, the distribution of
fragments was profiled on a BioAnalyzer DNA 1000
LabChip (Agilent Technologies). As part of the library
preparation, the ends of the sheared cDNA fragments were
polished by treatment with T4 DNA Polymerase and T4
Polynucleotide Kinase prior to ligation of sequencing
adaptors as previously described. The fragments were
immobilized on streptavidin beads, following nick repair
with Bst DNA Polymerase, and the sstDNA libraries were
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eluted by alkali denaturation. Finally, the qualities and
quantities of the libraries were assayed on Bioanalyzer
RNA 6000 Pico LabChip (Agilent Technologies). A titra-
tion run, based on DNA/bead ratios of 4 and 16 copies per
bead (cpb) in the emulsion-based clonal amplification,
revealed the optimal experimental set-up for the large
sequencing run using enriched beads. Each of the six
libraries was sequenced on a full 70 x 75 PicoTiterPlate
(PTP). In total 1.253.361 sequences were generated and
submitted to the Short Read Archive (SRA) of NCBI and
assigned the accession ID SRA000267.

iTRAQ-based proteomics

Eight samples (including two reference samples) were
processed in parallel. Total protein fraction was purified
from 200 mg tissues as previously described [9]. The
supernatant was stored at 80°C until use. Tryptic diges-
tion (100 pg protein from each sample) and tagging with
iTRAQ reagents (Applied Biosystems, Forster City, CA,
USA) was performed as previously described [9]. The two
reference samples were labelled with mass-tag 114, and
then pooled and split for normalization. Samples were
combined in a 1:1:1:1 ratios into two parallel 4-plexed
samples, with each 4-plex containing a common reference
sample, as well as both heart and skeletal muscle samples.
Inclusion of a common reference sample in every 4-plex
sample allowed comparison of the protein expression
ratios across the different 4-plexes. Fifty (50) ug of iTRAQ-
labelled peptides were separated by 2D-HPLC (Agilent
Technologies, Palo Alto, CA, USA) according to detailed
descriptions [9]. The eluted peptides were sprayed
through a nanospray needle (Fused Silica Emitters, OD
360 um, ID 75 um, Proxeon Biosystems, Odense, Den-
mark) directly into the Q-star XL mass spectrometer
(Applied Biosystems, Forster City, CA, USA). The raw data
files were searched with the Protein Pilot 1.0 software
(Applied Biosystems) using the ParagonTM algorithm for
protein grouping and confidence scoring, and searched
against a database of proteins predicted from pig UniGene
release 30 downloaded at trEST [36]. There was no
processing (e.g. smoothing) of the raw data files prior to
database searching. The database allowed for iTRAQ rea-
gent labels at N-terminal residues, internal K and Y resi-
dues, and MMTS-labelled cysteine as fixed modifications,
deamidation, O-phosphorylation (STY) and oxidation
(M) as variable modifications and one missed cleavage.
Confidence of protein identification was selected accord-
ing to a 95% confidence and a minimum of two peptides
identified per protein.

Identification of IDs for genes detected across expression
technologies

The microarray cDNA gene expression data and the 454-
sequencing data was linked together by mapping all
microarray cDNA sequences and 454-based sequences to

http://www.biomedcentral.com/1471-2164/10/30

NCBI's pig UniGene database release 28 and then linking
the data by their shared UniGene IDs. The sequences were
mapped to UniGene IDs by BlastN and collecting only
IDs for the first hit with score at or above 100. For correct
microarray cDNA mappings it was required for each Uni-
Gene Id that the corresponding UniGene sequence was
able to identify the exact same microarray cDNA sequence
as the first hit when it was compared back to a database of
all microarray cDNA sequences. In total, 12.563 out of
26.877 microarray cDNA sequences were mapped to
12.563 UniGene IDs and 647.093 out of 1.253.361 454-
sequences were mapped to 18.624 UniGene IDs. In total,
2.541 genes were identified with expression profiles from
both ¢cDNA microarray and 454-sequencing by using the
overlapping UniGene IDs to merge the two data sets
together. For iTRAQ-based proteomics, a database of pre-
dicted pig proteins from trEST based on translations of the
latest release (30) of UniGene sequences was downloaded
and searched [36]. Using this database, proteins corre-
sponding to 356 UniGene IDs were identified and 148 of
these could be directly linked to 454-sequencing, whereas
202 IDs could be linked to the microarray cDNAs. The
total overlap between all three technologies consisted of
148 UniGene IDs.

Computation of relative expression values for 454-
sequencing and microarray

The expression profiles from 454-sequencing was
achieved by counting the number of transcripts per gene,
in this case represented by the number of BlastN query
454-sequences for each target UniGene ID in each of the
six tissue samples. The minimum number of sequence
counts in a tissue sample was set to one resulting in a total
number of 2.954 UniGene IDs for which gene expression
could be detected by 454-sequencing in all six samples. To
calculate within-tissue relative expression profiles for each
of the six tissue samples, taken into account the variation
in total raw sequence counts, Relative Abundance (RA)
values were computed for each gene (UniGene ID) in each
tissue sample. The RA value for a given gene in a given tis-
sue sample was computed as the 454-sequence count for
that gene divided by the total 454-sequence count for the
2.541 genes in the whole tissue sample. To be able to
make direct comparison of 454-based RA values with
microarray-based expression profiles for the six tissue
samples, corresponding microarray RA values were also
computed using the same approach. The microarray RA
value for a given gene was computed as previously pro-
posed [6,37] based on the raw median signal intensity for
Alexa 647 divided by the total signal intensity for Alexa
647 in that tissue sample. Three microarray slides were
used per tissue sample so an average RA value was calcu-
lated for each tissue sample and used for comparison.
Computation of RA values was based the 2.541 genes
detected by both 454-sequencing and cDNA microarray.
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Computation of expression correlation values

For comparison of relative expression profiles across 454-
sequencing and cDNA microarray we computed tissue
sample correlations for examining the reproducibility
within and across technologies. Twelve RA vectors, six RA
vectors from 454-sequencing and the six RA vectors from
c¢DNA microarray, corresponding to the six tissue samples
were paired in 12 x 12 = 144 possible combinations and
the Pearson's correlation coefficient between the vectors
in each combination was computed. The correlation val-
ues were grouped into nine bins corresponding to the
three tissue comparisons (heart versus heart, heart versus
skeletal muscle and skeletal muscle versus skeletal mus-
cle) and the three technology comparisons (within 454-
sequencing, within ¢cDNA microarray and across 454-
sequencing/cDNA microarray). Average correlations were
computed for these nine bins and used to evaluate the
reproducibility within and across 454-sequencing and
cDNA microarray. For comparing across-tissue mRNA
expression ratios from the two transcript-based technolo-
gies against iTRAQ-based protein ratios we first prepared
log2-transformed values of the expression ratios between
heart and skeletal muscle for all three technologies. These
values were organized in three vectors and pair-wise Pear-
son's correlation coefficients were calculated for the two
comparisons 454-sequencing versus iTRAQ-based pro-
teomics and cDNA microarray versus iTRAQ-based pro-
teomics. In the comparison of expression ratios across
transcripts and proteins a straight line was fitted for the
data points described by the standard equation Ax+By+C
= 0, where -A/B is the slope and C is the intersection
between the line and the y-axis. Distances for all data
points (m, n) to the fitted line were calculated based on
the standard formula d = |[Am+Bn+C|/Y(A2+B2). These
distances were used to evaluate the concordance of genes
across transcript and protein ratios.

Identification of differentially expressed genes

Statistical analysis was carried out in the R computing
environment version 2.6.0 using the limma package [43]
version 2.11.14 from Bioconductor. To identify differen-
tially expressed genes between heart and skeletal muscle,
normalized log2-transformed ratio between tissue and
reference were used for cONA microarray and log2-trans-
formed RA values for 454-sequencing. The empirical
Bayes method was applied and the P-values were adjusted
for multiple testing using the false discovery rate ("fdr").
A 5% significance level (adjusted P-values < 0.05) thresh-
old was applied for differentially expressed genes.
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Additional File 1

Distribution of transcript relative abundance from microarray and
454-sequencing. Image file showing the distribution of RA values from
muscle (grey) and heart (white) generated using microarray and 454-
sequencing. RA values were log2 transformed and binned for optimal vis-
ualization.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-30-S1.ppt]

Additional File 2

List of 148 overlapping genes between microarray, 454-sequencing
and iTRAQ-based proteomics with indication of concordance between
transcript and protein expression ratios. Table file with details for 148
genes overlapping between microarray, 454-sequencing and iTRAQ-based
proteomics. Table contains number, UniGene 1D, name, log2 ratios for
the three technologies and indications of concordance between transcript
and protein expression ratios. Concordance was based on the distance
between a point and the fitted straight line being less than one time the
standard deviation of all distances. The table is sorted so that the genes
that are not in concordance according to both 454-sequencing and micro-
array are listed first.

Click here for file
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2164-10-30-S2 xls]
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