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Abstract

Background: Placental efficiency is strongly associated with litter size, fetal weight and prenatal
mortality. Together with its rapid growth during late gestation, the Large White pig breed shows
a significant increase in placental size and weight, but this does not occur in the highly prolific
Chinese pig breeds. To understand the molecular basis of placental development during late
gestation in Chinese indigenous and Western breeds with different placental efficiency, female
placental samples were collected from six pregnant Erhualian gilts at gestation day 75 (E75) and day
90 (E90) and from six pregnant Large White gilts at gestation day 75 (L75) and day 90 (L90). Two
female placentas from one sow were used to extract RNA and then pooled in equal volumes.

Twelve pooled samples were hybridized to the porcine Affymetrix GeneChip.

Results: A total of 226 and 577 transcripts were detected that were differentially expressed
between E75 and L75 and between E90 and L90 (p < 0.01, q < 0.2), respectively. Gene Ontology
(GO) analysis revealed that these genes belong to the class of genes that participate in angiogenesis
and development. Real-time RT-PCR confirmed the differential expression of eight selected genes.
Significant differential expression of five genes in the VEGF pathway was also detected between the
breeds. A search of chromosomal location revealed that 44 differentially expressed genes located
to QTL regions related to reproduction. Differential expression of six candidate imprinted genes
was also confirmed. Three of the six genes (PLAGLI, DIRAS3, and SLC38A4) showed monoallelic

expression in the porcine placenta.

Conclusion: Our study detected many genes that showed differential expression between
placentas of two divergent breed of pigs, and confirmed the imprinting of three genes. These
findings help to elucidate the genetic control of placental efficiency and improve the understanding

of placental development.
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Background

The ratio of birth weight to placental weight can be used
as a measure of placental efficiency [1]. It is determined by
many factors, including the thickness and surface area of
the placenta, its vascular density, and the number and
activity of transporters [2,3]. In eutherian mammals,
intrauterine growth shows a balance between fetal growth
and the placental supply of nutrients and oxygen [4]. Fetal
body weight is correlated positively with placental weight.
In fact, birth size affects the long-term health of an indi-
vidual, and is critical in determining life expectancy. In
humans, smaller neonates are less likely to survive at birth
and have a greater susceptibility to disease [5]. Thus,
exploration of the genetic factors that regulate placental
efficiency is an important research area.

The porcine placenta is chorioallantoic; it originates from
the trophoblast and inner cell mass with no trophoblastic
invasion of uterine vessels [6]. It is responsible for the
exchange of respiratory gases, nutrients, and waste prod-
ucts between the maternal and the fetal systems. In fact,
prenatal fetal organs do not participate in any nutrient
metabolic pathways; all their metabolic demands are sup-
plied by transplacental exchange from mother to fetus [7].
The placenta is a provisional organ, which only emerges
during gestation. It secretes a variety of steroid and protein
hormones that act in a paracrine manner on the
endometrium and fetus to elicit changes in gene expres-
sion that support the growth and development of the con-
ceptus.

High placental efficiency is thought to allow smaller pla-
centas to maintain relatively larger fetuses, thereby con-
tributing to higher uterine capacity and litter size [8,9]. In
fact, placental insufficiency is the primary mechanism
through which intrauterine crowding of fetuses decreases
fetal survival [10]. In the pig, the period from gestation
day 75 to gestation day 90 is an important stage for pla-
cental and fetal development, during which the fetuses
grow rapidly and need adequate nutrition. Vonnahme et
al. [11] found that if one of two adjacent fetuses dies in
the uterus, in the Meishan pig the other conceptus fails to
increase its placental weight or surface area. In contrast,
the adjacent conceptus of a Large White pig accelerates its
placental growth. This indicates that Meishan and Large
White conceptuses use different strategies in the competi-
tion for nutrients during gestation. The Meishan increases
the vascular density of the placenta in order to obtain ade-
quate nutrition, while the Large White conceptus acceler-
ates its placental growth instead of enhancing placental
efficiency [12]. Previous studies that involved transloca-
tion of embryos from Meishan to Large White sows indi-
cated that the number of conceptuses transferred at
gestation day 30 is generally reduced during late gestation
as a result of the limited ability of the uterus to maintain
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a large number of fetuses to term [13]. It will be of great
interest to understand the molecular mechanism underly-
ing the differences in placental gene expression between
Chinese indigenous and Western breeds of pig.

In this study, we investigated differences in the expression
profiles of placental genes between Erhualian and Large
White pigs in late gestation by use of the Affymetrix Gene-
Chip. The Erhualian is a type of Taihu breed, and has
larger litters than the Meishan. Bioinformatics analysis
revealed that the differentially expressed genes are
involved in important biological processes such as angio-
genesis and embryonic development in utero. Real-time
RT-PCR was used to confirm the differential expression of
various genes. Significant differential expression of five
genes in the VEGF pathway was also detected between
Large White and Erhualian pigs using real-time RT-PCR.
The differentially expressed genes were also mapped to
QTL regions related to reproduction traits such as number
born alive, fully formed piglets, number of stillborn pig-
lets, etc. Differential expression of candidate imprinted
genes was also detected, and the imprinting status of three
genes was determined. Our results offer new insight
towards an understanding of the molecular basis of pla-
centa efficiency.

Results

Transcriptomes in the placenta

There are 24,123 probesets, which represent 20,201 tran-
scripts and 198 controls, on the Affymetrix porcine Gene-
Chip. The transcriptome analysis indicated that 7,842
probesets were expressed in the placenta (GEO accession
numbers: GSM299411-GSM299422). Through BLAST
sequence similarity analyses, 6087 transcripts were
matched to human Refseq entries. GO annotation was
used to classify these genes into groups representing dif-
ferent biological processes. The results revealed that these
genes were involved in metabolic processes, transport and
developmental process, etc. (Figure 1A). It is interesting
that many genes had high and stable expression in E75,
E90, L75 and L90. The strong expression of these genes in
the placenta suggests that they may have important roles
in placental development or nutrient transportation. We
further checked the relative expression of some homolo-
gous genes in data obtained from human http://symat
las.gnf.org/SymAtlas/symform. Some genes that are spe-
cifically expressed in the placenta (EBI3, HSD3BI,
HSD17B1), or are specifically expressed in a few tissues
including the placenta, in other species [14], such as
FOXF2, COL1A1, COL3A1, PERP, SPP1 and PAPPA, were
detected to have high expression in our study.

Identification of differentially expressed genes
We identified 226 (p < 0.01 and q < 0.2) transcripts that
were differentially expressed between E75 and L75 (see
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Gene Ontology (GO) molecular function classification of all genes expressed in placenta and differentially
expressed genes. (A) All expressed genes in placenta. (B) Differentially expressed genes in E75 vs L75. (C) Differentially

expressed genes in E90 vs L90. The x-axis shows the gene percentage of each GO category with regard to the placenta tran-
scripts or the declared differentially expressed genes and the y-axis represents each GO category.
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additional file 1). Among these genes, 160 transcripts
were matched to human Refseq entries through BLAST
sequence similarity analyses, while the other 29% of the
transcripts were non-annotated. Of the differentially
expressed genes, 94 transcripts were expressed at higher
levels in E75, while 132 transcripts were expressed more
abundantly in L75.

Between E90 and 190, 577 (p < 0.01 and q < 0.2) differ-
entially expressed transcripts were found (see additional
file 2). Among these genes, 435 transcripts were matched
to human Refseq entries through BLAST sequence similar-
ity analyses, while the other 25% of transcripts were non-
annotated. In total, 277 transcripts were expressed at
higher levels in E90, and 300 transcripts were expressed

- microarray
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more abundantly in L90. A total of 102 transcripts were
detected to have differential expression both in E75 vs L75
and in E90 vs L90. But only 96 transcripts had the same
expression trends in pigs of the two gestational ages.

Real-time RT-PCR verification of differentially expressed
genes

Thirteen genes (ALDH1A1l, DIO3, DIRAS3, PLAGLI,
PON2, ASCL2, WIF1, SLC38A4, VEGF, VEGFR-1, VEGFR-
2, VE-cadherin and f-arrestin2) were selected to confirm
the expression by the use of real-time RT-PCR. Among
these genes, eight genes were used to validate the microar-
ray data. The results indicated that expression patterns of
these genes were consistent with the microarray (Pearson
correlation coefficient >0.75, Figure 2A). The other five

P=0.013
R=0.85

P=0.144

PONZ  WIF SLC38A4

P=0.033
b

m E75
B 175
m ES0
m LS80

VEGFR-2 WVE-cadherin B-arrestin2

Real time RT-PCR results of 13 genes. (A) Validation of the Microarray data by real-time RT-PCR analysis of eight repre-
sentative genes. Expression levels of eight genes were detected in E75, L75, E90 and L90 by real-time RT-PCR (red) and micro-
array (blue). R represents the Pearson correlation coefficient. (B) real-time RT-PCR results of genes related to vascular
development and vascular permeability. The x-axis represents the genes and the y-axis shows the fold change in expression.
Different superscript alphanumeric characters indicate a statistically significant difference at p < 0.05.
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genes play important roles in placental angiogenesis and
vascular permeability, so we also detected their expression
by real-time RT-PCR. Four genes showed more than two-
fold differences between breeds in the microarray analy-
sis, but were not statistically significant. Gene S-arrestin2
is another important gene in the VEGF pathway but is not
on the microarray. Expression of VEGFR-1 was signifi-
cantly lower in E75 than L75, but significantly higher in
E90 than L90. VEGFR-2 showed significantly higher
expression in E90 than in L90. The expression levels of the
VE-cadherin and f-arrestin2 genes were significantly lower
in L90 than L75.

Cluster analysis

To gain insight into similarities at the transcriptome scale
among placentas from conceptuses of two breeds and two
ages, data from all the differentially expressed genes in the
placentas were used in a systematic cluster analysis. The
results showed that L75 and L90 were initially clustered
together because their expression profiles were similar;
E75 and E90 were clustered in another class (Figure 3).

GO analysis

GO dlassification on the basis of biological process was
used to categorize 226 genes that were differentially
expressed between E75 and L75. The results indicated that
the proteins encoded by these genes are associated with
metabolic process (56.5%), biological regulation
(32.5%), developmental process (21.4%) and electron
transport (5.2%) (Figure 1B). The GO biological process
classification of 577 genes that were differentially
expressed between E90 and 190 indicated that more genes
encoded proteins associated with cellular process
(65.5%), metabolic process (51.0%), developmental
process (22.6%) and transport (16.2%) (Figure 1C).

Expression analysis of candidate imprinted genes
Imprinted genes, which are expressed in a monoallelic
fashion depending on their parental origin, play impor-
tant roles in mammalian fetal development, growth and
behavior. They also influence the growth of the placenta.
A homolog search using the available sequences of
imprinted genes in the human and mouse genomes http:/
/www.geneimprint.com/site/home identified 19 candi-
date imprinted genes on the porcine Affymetrix Genechip
(see additional files 3 and 4). Eight candidate imprinted
genes showed differential expression between the two
breeds in the microarray analysis. One genes (DIRAS3)
had significantly higher expression in E75 than in L75,
and seven genes (PON2, PLAGL1, DCN, DIO3, NAPILS5,
ASCL2, SDHD) showed significant differential expression
between E90 and L90.

To further investigate the allelic expression of candidate
imprinted genes in the porcine placenta, cDNA sequences
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Figure 3

Hierarchical cluster of differentially expressed genes.
We have performed a data adjustment (median center and
normalization) in the cluster analysis. The color codes of red,
white, black and dark green represented expression levels of
high, average, low and absent respectively. A detailed view of
the genes expression levels in clustering patterns is shown in
the plot areas from A to E.

of from both breeds were compared. In the PLAGL1 gene,
one single nucleotide polymorphism (SNP) (T/C) was
detected at position 1428 (FJ746562). In the SLC38A4
gene, an SNP (C/T) was detected at position 21
(F1746563), and in the DIRAS3 gene, one SNP (T/G) was
revealed at position 428 (NM_001044598). Restriction
enzyme digestion (Taql, Btg I, and Apek 1) were used to
digest the genomic DNA and cDNA of placentas. At least
three heterozygotes were used to confirm the expression
of imprinted genes, and the results showed that PLAGL1
and SLC38A4 were paternal expressed. Unfortunately, we
could not detect the parental source of DIRAS3 gene,
because that maternal genetype also was heterozygotes
(Figure 4). No cSNPs were detected in other candidate
imprinted genes, thus the imprinting status was not deter-
mined for the remaining genes.
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Imprinting status of PLAGLI, SLC38A4 and DIRAS3 genes in porcine placentas. The results indicated that PLAGL/ and
SLC38A4 genes are paternal expression in porcine placenta. DIRAS3 gene is monoallelic expression in porcine placenta.

In silico mapping of differentially expressed genes to
reproduction QTL regions

Through in silico analysis, 44 differentially expressed tran-
scripts were found in porcine reproduction QTL chromo-
somal regions (see additional file 5). The traits associated
with these QTL regions included ovulation rate (33 tran-
scripts), age at puberty (8 transcripts), and uterine capac-

ity (3 transcripts) http://www.animalgenome.org/cgi-bin/
QTLdb/SS/browse (see additional file 5).

Discussion

During late gestation, Erhualian and Large White sows
show different uterine responses to the rapid growth of
the fetuses. For example, the placenta of the Erhualian pig
stops growing, whereas Large White pigs continue to
increase the surface area of the placenta [12,15,16]. This
indicates indirectly that there may be many genes
involved in the differences in placental development
between Erhualian and Large White pigs (Table 1).

Genes involved in vascular development and permeability
pathway

Placental vascular development and permeability are
important in transportation of nutrients, respiratory
gases, and waste products between the maternal and fetal
circulations. In many cases, to keep pace with fetal

growth, uterine and umbilical blood flow increases mark-
edly during late gestation [17-19]. Insufficient blood flow
leads to nutritional deficiency, and compromises fetal
growth, which affects not only the neonate but also the
health and productivity of the resulting adult throughout
life [20]. Thus it is important to investigate the expression
of genes in the VEGF pathway in order to understand pla-
cental efficiency. The results of this study showed that the
expression of these genes was significantly decreased from
L75 to L90, while no significant changes were found
between E75 and E90 (except in VEGFR-2). This indicates
that vascular development and permeability may be sta-
blein E75 and E90, but that the Large White showed nota-
ble variation accompanying further development of the
placenta during this period.

Vascular endothelial growth factor (VEGF) is produced
and secreted in the placenta; it serves as an angiogenic and
permeability enhancing factor in several species, includ-
ing the pig [21]. It has two specific receptors (VEGFR-1
and VEGFR-2). The interaction of VEGF and VEGFR-2
could improve the mitogenic ability of VEGF, and lead to
survival, migration, and differentiation of endothelial
cells, and mediation of vascular permeability [22]. Com-
pared with VEGFR-1, VEGFR-2 plays a major role in the
biological activity of VEGF [23]. A number of signal trans-
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Table I: Candidate genes may have important function in placenta.

http://www.biomedcentral.com/1471-2164/10/337

Gene

Fold change Function Ref p value q value

E75/L75 E90/L90
HOXAI3 1.45 angiogenesis 30 P <0.001 q=0.05
TSP-1 0.50 angiogenesis 31 P <0.001 q=0.09
HAND2 4.61 angiogenesis 32 P =0.009 q=0.19
GR 3.10 increase concentrations of glucose 36,37 P <0.001 q=0.03
PTGSI 3.06 3.94 glucocorticoid responsive elements 38 P =0.001 q=0.06
MEDI4 1.45 GR coactivators 39 P = 0.005 q=0.17
CHD8 0.23 0.34 embryonic development 42 P <0.001 q=0.02
FUT8 2.70 embryonic development 43 P=0.015 q=10.23
PREP]| 1.62 embryonic development 44 P <0.001 q=0.05
SLCI6AI10 3.09 3.75 transporter member 45 P <0.001 q=0.04
SLC2A12 3.85 transporter member 46 P = 0.046 q=033
SLC25A24 1.67 transporter member 47 P <0.001 q=0.07
SLCIAI 1.90 transporter member 48 P =0.009 q=0.19
SLC20A1 0.17 241 transporter member - P <0.001 q=0.05
DIRAS3 2.60 2.96 inhibits growth 53 P =0.030 q=0.09
PLAGLI 0.65 1.94 growth retardation 54 P=0.013 q=0.22
DCN 0.13 placental development 58 P=10.019 q=0.25

The "Ref" is the number of the paper in the Reference.

duction pathways downstream of VEGFR-2 play impor-
tant roles, especially in vasculogenesis. In the results of
our real-time RT-PCR, the expression of VEGFR-2 had no
significant difference between E75 and L75, but was sig-
nificantly higher in E90 than in L90. This indicates that
the Erhualian placenta maybe have higher blood vessel
density comparing with the Large White placenta. Thus
Erhualian pigs can provide sufficient nutrients despite a
markedly smaller placenta. Of interest, the expression of
VEGFR-1 in the E75 placenta was lower than that in the
L75, but at gestation day 90 in the Large White placenta,
this gene was down-regulated and showed no significant
difference from that of the Erhualian. VEGFR-1 may
decrease the binding of VEGF to VEGFR-2 by sequestra-
tion of VEGF, thereby preventing its binding to VEGFR-2
[24]. Of course, VEGFR-1 and -2 may also form het-
erodimers whose signal efficiency is equal to or even
greater than that of the VEGFR-2 homodimer [25]. Even
so, recent data indicate that VEGFR-1 plays a positive reg-
ulatory role in vascular permeability [26]. VE-cadherinl, a
cell-cell adhesion molecule specific to the endothelium,
also interacts with VEGFR-2. This complex may promote
cell internalization, lead to decomposition of intercellular
junctions, and promote endothelial permeability [27]. #
arrestin 2 also aids endocytosis of VE-cadherin. A knock-
down experiment indicated that B-arrestin 2-/- inhibits the
effect of VEGF on both endocytosis of VE-cadherin and
endothelial permeability [28]. The expression of S-arrestin
2 and VE-cadherin in placentas from Erhualian pigs was
lower than in Large White placentas on day 75 of gesta-
tion, but there was no significant difference on day 90.

Various genes related to vascular development were also
detected in the microarray analysis. HOXA13, which is
essential for placental vascular patterning and labyrinth
endothelial specification, showed no differential expres-
sion between breeds at gestation day 75, but had higher
expression in E90 than in L90 [29]. TSP-1, which is a neg-
ative regulator of angiogenesis, showed higher expression
in L75 than in E75 [30]. HAND? is required for vascular
development and regulation of angiogenesis [31]. It was
expressed at a higher level in the Erhualian than the Large
White. All these results indicate that the vascular develop-
ment and permeability of the placenta is different in the
Erhualian and Large White. During placental develop-
ment in the Large White, this difference increases. This
may explain the different response of the placenta of
Erhualian and Large White pigs to rapid fetal develop-
ment in late gestation.

Hormone related genes

The placenta is an endocrine organ which synthesizes
many kinds of hormones that regulate its development
and alter maternal physiology to support gestation. It can
influence and regulate the expression of the fetal hormone
genes [32]. Regulation of endocrine signals in the pla-
centa, especially in late gestation, may over-ride maternal
signals, owing to the commencement of accelerated
growth of the fetus. This parasecretion may lead to the
death of both mother and offspring [33]. In our results,
some specific hormone related genes were shown to have
differential expression between the two breeds of pig. Glu-
cocorticoids are steroid hormones that play important
roles in metabolic, immunological and development, in
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particular in stimulation of several processes that collec-
tively serve to increase and maintain concentrations of
glucose in blood [34]. They exert their actions by binding
to the complexes which is composed with hormone-
receptor and glucocorticoid responsive elements com-
plexes [35]. In our experiment, we found that the level of
expression of GR (glucocorticoid receptor) was higher
expression in E90 than L90. The PTGS1 gene, which is a
glucocorticoid responsive element, also could regulate
angiogenesis in endothelial cells [36,37]. Its expression
level was both higher in E75 and E90 than L75 and L90.
MED14 (Mediator complex subunit 14), which is the GR
coactivators, also showed higher expression in E90 than
in L90 [38]. All these results showed that the Erhualian
placenta may be more efficiently to able obtain glucose
from the uterus than that of the Large White. Moreover,
the level of expression of the. estrogen receptor 1, miner-
alocorticoid receptor, growth hormone regulated TBC
protein 1, thyroid hormone receptor associated protein 2
and thyroid hormone receptor associated protein 3 all
were significantly higher in the Erhualian than in the
Large White at the same stage of gestation. All these differ-
entially expressed genes are major regulators of the func-
tion of hormone gene. Therefore, we presume that the
Erhualian placenta can provide an environment that sup-
ports optimal absorption of nutrients. The placenta of this
breed may be able to extract nutrition from the uterus
more efficiently than that of the Large White.

Candidate genes for placental development and nutrient
transportation

A reduction in placental size may mediate negative regu-
lation of maternal nutrition on the birth weight and the
number of secondary muscle fibers in the offspring
[39,40]. During late gestation, the Large White placenta
increases in size and surface area. In contrast, the Erhual-
ian placenta remains unchanged in size and weight [12].
The genes that are involved with placental development
are poorly understood. In our study, the expression of the
gene CHDS8 was higher in the Large White than in the
Erhualian on gestation day 75 and 90. In the mouse,
Nishiyama et al. [41] found that Chd8 could inhibit p53-
dependent apoptosis through binding to p53. Chd8(-/-)
mice died early during embryogenesis. It has strong
expression in the placenta and other reproductive tissues.
Therefore we presume that this gene may play roles in pla-
cental development. In fact, there are some analogous
genes among those investigated in our study. For example,
FUTS8 is associated with in-utero development of the
embryo [42]. It showed very high expression in the pla-
centa and may potentially be the genes that influence pla-
cental development. The Prepl gene regulates multiple
aspects of embryonic development in the mouse through
a Pbx-Meis network [43]. It was also found to have higher
expression in Erhualian placentas than in those of Large
White pigs. The GO molecular function classification

http://www.biomedcentral.com/1471-2164/10/337

showed that the percentage of differentially expressed
genes that encoded proteins associated with developmen-
tal process was 21.4% on gestation day 75 and 22.6% on
gestation day 90. All these results provide indications of
potential genes that warrant further study in investigating
the disparity in placental development between indige-
nous Chinese and exotic pig breeds.

One of the primary regulators of maternofetal transfer of
nutrition is the density of transporter proteins in the pla-
centa. In our results, we also detected some genes in the
solute carrier family. SLC16A10, which is a member of a
family of plasma membrane amino acid transporters,
mediates the Na(+)-independent transport of aromatic
amino acids across the plasma membrane [44]. It showed
up-regulation in the Erhualian placenta on both gestation
day 75 and gestation day 90, in comparison to that of the
Large White. Slc2a12 has been designated as a new mem-
ber of the glucose transporter family in the mouse [45].
SLC25A24 plays important roles in the net uptake and
efflux of adenine nucleotides [46]. SLC1A1 also partici-
pates in glutamate transport [47]. These genes showed no
difference in expression between E75 and L75, but
showed higher expression in E90 than in L90. Differential
expression was also detected in genes of other solute car-
rier families. The SLC20A1 gene was expressed at higher
levels in L75 than in E75, but in placentas on gestation
day 90, it had higher expression in E90. All these results
suggest that Erhualian placentas can supply more trans-
porters and transport nutrients more efficiently.

Imprinted genes

The genome of the fetus inherits two copies of most genes,
one from the mother and the other from the father. Gen-
erally, the two single strands have similar transcription
activities and equivalent function. However, imprinted
genes escape this rule, and preferentially express mater-
nally or paternally derived alleles. They have evolved in
mammals because of the conflicting interests of maternal
and paternal genes in relation to the transfer of nutrients
from the mother to her offspring [48]. They play central
roles in fetal growth through controlling the fetal demand
for, and the placental supply of, maternal nutrients [49].
Detecting the imprinting status of genes, especially in the
placenta, is very important. The information available is
very useful in comparisons of mouse, human, cattle and
pig genes because of the conservation of expression and
function of imprinted genes [50]. In this study, we
detected the imprinting status of three potentially
imprinted genes in the porcine placenta. The SLC38A4
gene is paternal expression in the pig. This is the same as
the mouse, but not cattle [51]. The Diras3 gene displays
paternal-specific expression both in mice and humans
[52]. We found that it is also expressed in a monoallelic
fashion in the porcine placenta. The PLAGL1 gene was
found to be imprinted in the porcine placenta. In the
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human and mouse, these genes are paternally expressed
[53]. From our evaluation of the conservation of imprint-
ing status among species, we assume that these genes have
the same function and expression in the pig as in the other
species. In the mouse, Diras3 inhibits growth, and trans-
genic expression of this gene produces individuals of
small stature [54]. The Plagll gene encodes a growth sup-
pressor protein that is related to developmental disorders
such as growth retardation and transient neonatal diabe-
tes mellitus (TNDM) [53,55]. Moreover, it regulates an
imprinted gene network that is critically involved in the
control of embryonic growth [56]. In our study, DIRAS3
had higher expression in the placentas of E75 than L75.
The expression of PLAGLI increased from E75 to E90, but
decreased from L75 to L90. The DCN gene, a strong can-
didate for function in placental development [57], was
found to have higher expression in the Large White pla-
centa. These expression patterns may be related to the
phenotype, in that the Erhualian has a smaller fetus and
placenta than the Large White pig.

Conclusion

We have reported differential gene expression in placentas
at gestation day 75 and 90 from pig breeds with different
placental efficiency. Cluster analysis indicated that E75
has more similarity on the transcriptome scale with E90
than with L75 and L90. This finding could indicate that
from gestation day 75 to gestation day 90, Erhualian and
Large White pigs show a large variance in placental devel-
opment. We also identified some differentially expressed
genes that are related to angiogenesis and vascular perme-
ability, transport, fetal development and hormonal regu-
lation. The up-regulation of genes associated with the
promotion of proliferation of blood vessels and trans-
porter proteins in Erhualian pigs may be responsible for
providing sufficient nutrients to support fetal develop-
ment. The results of this study provide an opportunity to
elucidate the genetic control of placental efficiency and
improve our understanding of placental development.

Methods

Animal and tissue preparation

All animal procedures were performed according to proto-
cols approved by the Biological Studies Animal Care and
Use Committee of Hubei Province, P. R. Six Erhualian and
six Large White sows were mated with 6 boars of each cor-
responding breed. These boars and sows have no com-
mon grandparents, they can be treated as unrelated
animals. Three sows of each breed were killed and necrop-
sied on days 75 and 90 of gestation, respectively. The
uterus was removed immediately and the occupied fetal
placentas of each fetus were collected, washed briefly with
PBS, and then snap frozen in liquid nitrogen for later
experiments.

http://www.biomedcentral.com/1471-2164/10/337

Porcine Affymetrix GeneChip hybridization and data
analysis

Two female placentas from each sow were used to extract
RNA and then the samples pooled in equal volumes. In
total, 12 pools were prepared from the 12 sows, i.e. three
biological replicates at each stage and for each breed were
prepared for hybridization. The RNAs were sent to a com-
mercial service for hybridization to the porcine Affymetrix
GeneChip. In brief, 10 micrograms of total RNA was tran-
scribed to first- and second-strand cDNAs according to the
manufacturer's instructions (Affymetrix, Inc., Santa Clara,
CA). After purification and testing on an Agilent Bioana-
lyser 2100 machine, the double-stranded cDNA served as
a template for the in vitro transcription reaction for cRNA
amplification. The cRNA was labeled with biotin using the
GeneChip One-Cycle target labeling kit (Affymetrix;
Expression Analysis Technical Manual). The labeled cRNA
was quantified, fractionated, and hybridized with the
GeneChip Porcine Genome Array according to the stand-
ard procedures provided by the manufacturer. Chips were
washed and stained with a GeneChip Fluidics Station 450
(Affymetrix). The chips were then scanned with an
Affymetrix GeneChip Scanner 3000 (Affymetrix).

Data from the cel files were converted to gene signal files
by MAS 5.0 (microarray analysis system 5.0, Affymetrix)
default normalization. The data were normalized between
slides using the quantile normalization method proposed
by Bolstad et al. [58] in R software. The natural logarithm
was taken for measures of expression for each chip and
used for the next step of the analysis. Differentially
expressed genes were identified by analyzing these nor-
malized data using a general linear model in SAS (SAS
Institute, Cary, NC) on a gene by gene basis. The model
for this experiment was Yy = p + By + D; + BD;; + Ej. Yy is
the base-e logarithm of the normalized measurement of
expression level from breed i (i = 1, 2), pregnancy dayj (j
=1, 2), and individual k (k = 1, 2, 3). In the equation, p
represents an overall mean value, B is the main effect for
breed, D is the main effect for day of gestation, BD is the
interaction effect of breed and day, and E is the stochastic
error. The q values were calculated using the method of
Storey and Tibshirani [59]. An estimate of the upper
bound of the positive false discovery rate was represented
by the largest q value in a list of genes identified to be dif-
ferentially expressed. Expression on the Affymetrix Gene-
Chip porcine genome array probeset was determined by
comparing the expression signals of perfect match (PM)
and mismatch (MM) 25-mer probes. In our data set, if
there is more than two P (present) in the triplicate detec-
tion data for E75, L75, E90 or L90 for a probeset, then we
count this gene as expressed in the placental transcrip-
tome.
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Cluster analysis and annotation of gene ontology Hierar-
chical cluster analysis of differentially expressed genes in
the placentas was conducted using Gene Cluster 3.0 and
tree view software (Stanford University, 2002). The Data-
base for Annotation, Visualization and Integrated Discov-
ery (DAVID 2.0 and 2.1 beta) provides a comprehensive
set of tools to summarize gene annotation data visually
(]60]; http://david.abcc.ncifcrf.gov/). Functional annota-
tions were pursued for the differentially expressed genes
selected. The TC accession numbers were first updated
from TIGR 5.0 to TIGR 11.0 and the corresponding
Human Gene IDs were pulled out so that the DAVID anal-
ysis software could be interrogated. The data were then
analyzed for each of the above comparisons using DAVID
2.0 and 2.1 beta.

Real-time RT-PCR confirmation of differentially expressed
genes

Real-time RT-PCR was used to verify the differential
expression of eight genes that were detected by the
Affymetrix GeneChip. The primers used are listed in addi-
tional file 6. Each real-time RT-PCR reaction (in 25 pL)
contained 2xSYBR Green Realtime PCR Master Mix, 0.4
uM primers, and 0.5 pL of template cDNA. The cycling
conditions consisted of an initial, single cycle of 5 min at
95°C, followed by 40 cycles of 30 sec at 95°C, 30 sec at
60°C, 15 sec at 72°C, and fluorescence acquisition at
83°C for 1 sec. The cDNA was synthesized using reverse
transcriptase (Promega), oligo(dT) and random primers
with 5 pug RNA treated with DNase I (Ambion, Austin,
Texas) from the same placental samples as those used in
the microarray. The PCR amplifications were performed
in triplicate for each sample. The gene expression levels
were quantified relative to the expression of RPL32 using
Gene Expression Macro software (Bio-Rad, Richmond,
CA), by employing an optimized comparative Ct (AACt)
value method. Dissociation curves were generated to
ensure that a single amplicon was produced for each gene.
The differences in gene expression levels between groups
were compared using the Student's t-test. A p value < 0.05
was considered significant. The Pearson correlation coeffi-
cient was calculated and used to estimate the correlation
of real time RT-PCR results and microarray results.

Detection of imprinting

The differentially expressed candidate imprinted genes
were further investigated for their imprinting status in the
placental samples collected in this study. The unigene
mRNA and expressed sequence tags (EST) were assembled
to produce a contig, and then used to design primers using
Primer 5.0. Sequencing of the PCR products from Erhual-
ian and Large White pigs was used to detect SNPs in the
cDNA region. Restriction fragment length polymorphisms
(RFLP) were used to confirm the SNPs. The PCR products
were separated in 2% agarose gels containing 0.5 g/ml
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ethidium bromide after digestion by restriction enzymes.
All genomic DNA obtained from 132 piglets was used to
detect heterozygous animals. Total RNA from the placenta
of a heterozygous fetus was treated with the TURBO DNA-
free kit (Ambion, Austin, USA) and was reverse tran-
scribed to cDNA. The primer pairs shown in Table 1 were
employed to amplify the genomic DNA and ¢cDNA from
the same heterozygous samples. The amplicons were
digested with restriction enzymes. Sequencing was further
conducted to confirm the genotype. The epigenetic status
was determined by comparing the allelic expression of
genomic DNA and ¢cDNA from the same samples.

Integration of differentially expressed genes in porcine
QTL regions

The Pig Quantitative Trait Loci (QTL) database http://
www.animalgenome.org/cgi-bin/QTIL.db/SS/browse has
gathered all pig QTL data published during the past 10
years. The reproductive traits include total number born,
total number born alive, fully formed piglets, number of
stillborn, ovulation rate, age at puberty and uterine capac-
ity. We downloaded all Affymetrix probesets that were
located in these QTL regions. The differentially expressed
probesets located in these regions were identified through
comparison analysis.

Abbreviations

APPA: pregnancy-associated plasma protein A; ALDH1A1:
aldehyde dehydrogenase family 1, subfamily A1; ASCL2:
achaete-scute complex homolog 2; CHDS8: chromodo-
main helicase DNA binding protein 8; COL1A1: collagen,
type I, alpha 1; COL3A1: collagen, type III, alpha 1; DCN:
decorin; DIO3: deiodinase, iodothyronine type III;
DIRAS3: DIRAS family, GTP-binding RAS-like 3; EBI3:
Epstein-Barr virus induced gene 3; ESR1: estrogen receptor
1; EST: expressed sequence tags; FOXF2: forkhead box F2;
FUTS: fucosyltransferase 8; GO: Gene Ontology; GR: glu-
cocorticoid receptor; HAND?2: heart and neural crest
derivatives expressed 2; HOXA13: homeo box Al3;
HSD17B1: hydroxysteroid (17-beta) dehydrogenase 1;
HSD3B1: hydroxy-delta-5-steroid dehydrogenase, 3 beta-
and steroid delta-isomerase 1; IHH: Indian hedgehog
homolog; NAP1L5: nucleosome assembly protein 1-like
5; PCR: polymerase chain reaction; PERP: PERP, TP53
apoptosis effector; PKNOX1: PBX/knotted 1 homeobox 1;
PLAGL1: pleiomorphic adenoma gene-like 1; PON2:
paraoxonase 2; PREP1: PBX/knotted 1 homeobox 1;
PTGS1: prostaglandin-endoperoxide synthase 1; QTL:
quantitative trait locus; SDHD: succinate dehydrogenase
complex, subunit D, integral membrane protein;
SLC16A10: solute carrier family 6, member 10; SLC1A1:
solute carrier family 1, member 1; SLC20A1: solute carrier
family 20, member 1; SLC25A24: solute carrier family 25,
member 4; Slc2al2: solute carrier family 2, member 12;
SLC38A4: solute carrier family 38, member 4; SNP: single
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TSP-1: thrombospondin 1; VEGF: vascular endothelial
growth factor; VEGFR-1: soluble vascular endothelial
growth factor receptor-1; VEGFR-2: soluble vascular
endothelial growth factor receptor-2; WIF1: WNT inhibi-
tory factor 1.
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