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Abstract

Background: The freshwater snail Lymnaea stagnalis (L. stagnalis) has served as a successful model
for studies in the field of Neuroscience. However, a serious drawback in the molecular analysis of
the nervous system of L. stagnalis has been the lack of large-scale genomic or neuronal
transcriptome information, thereby limiting the use of this unique model.

Results: In this study, we report 7,712 distinct EST sequences (median length: 847 nucleotides) of
a normalized L. stagnalis central nervous system (CNS) cDNA library, resulting in the largest
collection of L. stagnalis neuronal transcriptome data currently available. Approximately 42% of the
cDNAs can be translated into more than 100 consecutive amino acids, indicating the high quality
of the library. The annotated sequences contribute 12% of the predicted transcriptome size of
20,000. Surprisingly, approximately 37% of the L. stagnalis sequences only have a tBLASTx hit in the
EST library of another snail species Aplysia californica (A. californica) even using a low stringency e-
value cutoff at 0.01. Using the same cutoff, approximately 67% of the cDNAs have a BLAST hit in
the NCBI non-redundant protein and nucleotide sequence databases (nr and nt), suggesting that
one third of the sequences may be unique to L. stagnalis. Finally, using the same cutoff (0.01), more
than half of the cDNA sequences (54%) do not have a hit in nematode, fruitfly or human genome
data, suggesting that the L. stagnalis transcriptome is significantly different from these species as
well. The cDNA sequences are enriched in the following gene ontology functional categories:
protein binding, hydrolase, transferase, and catalytic enzymes.
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Conclusion: This study provides novel molecular insights into the transcriptome of an important
molluscan model organism. Our findings will contribute to functional analyses in neurobiology, and
comparative evolutionary biology. The L. stagnalis CNS EST database is available at http:/

www.Lymnaea.org/.

Background

The freshwater pond snail, Lymnaea stagnalis (L. stagnalis,
Linnaeus, 1758), belongs to the phylum Mollusca (Gastro-
poda, Basommatophora, Pulmonata, Lymnaeidae). Simi-
lar to other gastropods such as the marine snail Aplysia
californica (A. californica) and the terrestrial snail Helix
aspersa, L. stagnalis has served successfully as a model for a
wide spectrum of studies in molecular, cellular, and
behavioral neurobiology. As compared to the mamma-
lian brain with 101! neurons and Drosophila melanogaster
(D. melanogaster) ganglia comprising 200,000 neurons, L.
stagnalis has a relatively simple central nervous system
(CNS) consisting of a total of ~20,000 neurons, many of
them individually identifiable, organized in a ring of
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The dissected central ring ganglia of Lymnaea stagna-
lis. LBuG and RBuG: left and right buccal ganglia; LCeG and
RCeG: left and right cerebral ganglia; LPeG and RPeG: left
and right pedal ganglia; LPIG and RPIG: left and right pleural
ganglia; LPaG and RPaG: left and right parietal ganglia; VG:
visceral ganglion. Scale bar: | mm.

interconnected ganglia (Figure 1). Most neurons of the L.
stagnalis CNS are large in size (diameter: up to ~100 um),
thus allowing electrophysiological dissection of neuronal
networks that has yielded profound insights in the work-
ing mechanisms of neuronal networks controlling rela-
tively simple behaviors such as feeding [1,2], respiration
[3,4], locomotion [5], and reproduction [6,7]. Studies
using the CNS of L. stagnalis as a model have also identi-
fied novel cellular and molecular mechanisms in neuro-
nal regeneration [8-11], synapse formation [12-15],
synaptic plasticity [16], learning and memory formation
[17,18], the neurobiology of development [19-22] and
aging [23-25], the modulatory role of neuropeptides [26-
28], and adaptive responses to hypoxic stress [29-32].
Contrasting the large body of dedicated studies in neuro-
biology, the molecular analysis of genomic information
of L. stagnalis is rather limited. The only available tran-
script sequence data set of L. stagnalis includes 1,320
expressed sequence tags (ESTs; derived from 771 different
sequences) generated from L. stagnalis CNS libraries that
were not normalized [33]http://www.nematodes.org/
NeglectedGenomes/MOLLUSCA/. The lack of adequate
transcriptome and genome information of L. stagnalis is
currently a large drawback for the use of this species in
functional and comparative molecular studies [34].

Mollusks have more than 100,000 extant species and
comprise the second largest phylum after the Arthropods
[35,36], indicating the phylum has been highly adaptive
to environmental changes since its origin in the Cambrian
period [35]. The gastropods are the largest group within
the mollusca encompassing over 80% of the extant spe-
cies [37]. However, in contrast to their abundance and
importance in neurobiology, large-scale genomic infor-
mation relating to neuronal function is limited to one spe-
cies, A. californica [38]. There are two additional on-going
genomic sequencing projects of mollusks: Lottia gigantea
(L. gigantean; http://genome.jgi-psf.org/Lotgil
Lotgil.download.html) and Biomphalaria glabrata (B. gla-
brata; http://www.ncbi.nlm.nih.gov/sites/ent
rez?Db=genomeprj&cmd=ShowDetailView&TermToSe-
arch=12878); however, the genomic sequence informa-
tion from these two species is currently not yet available.
As L. stagnalis and A. californica genera are believed to have
diverged over 600 million years ago, the sequencing of the
CNS transcriptome from L. stagnalis holds significant
promise for functional, evolutionary, comparative and
environmental studies of Mollusks and other species.
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We have carried out transcriptome sequencing of a nor-
malized cDNA library constructed from the L. stagnalis
CNS. This study provided 10,375 EST sequences, which
cluster to 7,712 unique sequences. Despite a substantial
fraction of the cDNAs being homologous to A. californica
sequences in the existing known sequence database, data
analysis revealed that the majority of the L. stagnalis
cDNAs are novel and have no known homologues. There-
fore, our findings argue for the sequencing of the full tran-
scriptome of this species. This study forms the basis for
functional genomic research of L. stagnalis not only as a
model system for various areas of neuroscience research
but also for general evolutionary and comparative genom-
ics.

Results

Overall statistics of the L. stagnalis cDNA library
Double-end sequencing was performed on 5376 clones
that were randomly selected from the L. stagnalis CNS nor-
malized library. After deleting the vector sequences, we
successfully obtained a total of 10,375 EST sequences
(GenBank EST Acc. number: ES291075 - ES291826;
ES570937 - ES580561), which cluster to 7,712 unique
sequences. The median length of the sequence reads was
838 nucleotides (mean 803 nt), the shortest being 20, and
the longest cDNA being 1044 nucleotides. In fact, close to
90% of the raw sequences (9272) are longer than 700
nucleotides (Figure 2A). The mean and median G+C con-
tent of the cDNA library is 36%.

Post-processing and sequence assembly

To estimate the level of sequence redundancy and overlap
within our library, we first ran a BLAST search against the
raw sequence library itself, and noticed that a large
number of sequences overlap, most likely as the result of
bi-directional sequencing. We then assembled the cDNA
sequences by using the CAP3 software [39], which identi-
fied 6,139 singlet sequences, and 1,573 clusters (default
parameters were used as suggested by the authors of
CAP3), yielding 7,712 sequences with unique cDNA
sequences. The median length of these assembled cDNAs
is 847 nucleotides (with mean of 862 nt), the shortest
being 20 nucleotides, and longest being 3,227 nucle-
otides. Figure 2A compares the distribution of the
sequence length before and after the sequence assembly.
We next translated the 7,712 assembled cDNA sequences
into six possible open reading frames (ORFs), and
selected the largest ORF for each sequence. Figure 2B
shows that 3,248 cDNA sequences contain ORFs that are
longer than 100 amino acids, which is a strong indication
that these cDNAs cover protein coding regions.

Comparison with previously published L. stagnalis EST
sequences

Previously, Davison and Blaxter [33] sequenced a small
set of ESTs from unnormalized libraries of L. stagnalis CNS

http://www.biomedcentral.com/1471-2164/10/451

and the EST set contained 1,320 sequences with an aver-
age length of 665 nt. Using these data as query we
searched for homology hits in our cDNA library. Using a
stringent cutoff requiring sequence identity of at least
90% and a minimum alignment length of 30 nucleotides,
509 (38.6%) sequences in our library have a hit in the pre-
vious library, and 711 (54%) of the sequences in the ear-
lier library have a hit in ours. These differences may be
accounted for 1) by the sizes of the libraries used, and 2)
the previous ESTs may include redundant sequences.

Comparison with NCBI non-redundant protein and
nucleotide sequence libraries

We next ran BLASTx searches (using translated nucle-
otides as a query to search against protein sequence
library) and mapped the L. stagnalis cDNA sequences to
the NCBI (http://www.ncbi.nlm.nih.gov/; up to May,
2009) non-redundant protein library (nr), which is com-
monly used as the principle target database to search for
protein homologies. This database was constructed by
pooling the sequences from the following databases, fol-
lowed by clustering and removing redundant entries:
translated protein coding region of all the sequence
entries in the GenBank, RefSeq database (high quality
proteins from human and mouse), PDB (protein structure
database), SwissProt, PIR (Protein Information Source),
PRF (Protein Research Foundation).

In addition, we carried out BLAST searches against the
NCBI non-redundant nucleotide sequence data base (nt),
which stores all the nucleotide sequences submitted to
GenBank to account for the possibility that some of the
shorter cDNA sequences were derived from 3' or 5'
untranslated regions (UTR) of mRNA transcripts instead
of mapping to the protein coding region. This also covers
c¢DNAs that are derived from non-coding RNA transcripts
such as rRNA.

The results of these two BLAST searches are plotted in Fig-
ure 3. For each e-value cutoff, we divided the L. stagnalis
sequences into four categories: (i) having a hit in "nr (pro-
tein)" but not in "nt (nucleotide)”, (ii) having a hit in
both "nr" and "nt", (iii) having a hit in "nt" but not in
"nr", and (iv) having a hit in neither "nr" nor "nt". Our
prediction was that the third category likely represents 3'
or 5' UTRs or noncoding RNA transcripts. A closer inspec-
tion of the reads in category (iii) revealed that most of
these reads that actually map to EST or cDNA sequences in
"nt" do not have a corresponding entry in "nr", mostly
because that these nt sequences are either too short or do
not contain an open reading frame. The fourth category,
on the other hand, likely represents novel sequences that
only exist in L. stagnalis. However, it is also possible that
some of the sequences in this category are reads from the
5' or 3' UTRs or from non-coding transcripts. The analysis
was restricted to those cDNA sequences that are longer
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than 100 or 500 bases and the results are shown in Figure
3A and 3B.

Using an e-value cutoff of 1e-6, only 34% (2,606) of the
L. stagnalis cDNAs had a statistically significant hit to a
protein in the non-redundant database (Figure 3A). Even
at an e-value cutoff of 0.001, 52% (3,930) of L. stagnalis
cDNA sequences longer than 100 bases (Figure 3A) and
50% (3,630) of cDNA sequences longer than 500 bases
(Figure 3B) have no significant BLAST matches in the non-
redundant protein and nucleotide databases. This is likely
caused by the relatively low coverage of DNA or genomic
sequences from the Mollusca phylum in the current
sequence databases, including the A. californica and B. gla-
brata EST databases.

We next investigated the phylogenetic distribution of the
top BLAST hits. For each L. stagnalis cDNA, we found the
phylum of its best BLAST match, and then catalogued the
best matches according to their phylogenetic origin and
counted the matches for each phylum. Table 1 shows the
frequency of the matches with an e-value cutoff 1e-10 as
used by Moroz et al (2006) [38]. The hits to chordate
sequences are significantly higher than the other phyla,
including Lophotrochozoan. However, this raises a ques-
tion about the usefulness of such an analysis for sequence
mapping as the frequency of hits is obviously associated

http://www.biomedcentral.com/1471-2164/10/451

with the number of the sequences available in the data-
base. The number of sequences from each of the meta-
zoan phyla in the database is largely variable as the
different phyla are not all equally covered. Thus, such a
presentation has the potential to introduce a serious bias
towards phyla that are better presented in the databases.

Comparison with A. californica sequences

A. californica is currently the only other mollusk species
for which an effort has been made to obtain the complete
CNS transcriptome sequences [38]. To better understand
the sequence diversity between these mollusk species, we
compared the L. stagnalis cDNA sequences (7712
sequences with an average length of 862 nucleotides) with
the EST sequences from A. californica reported by Moroz et
al [38]. The published A. californica EST dataset includes
199,689 sequences surveyed from a wide range of tissues,
with an average length of 563 nucleotides. Table 2 pro-
vides data on the cumulative populations of hits between
the L. stagnalis and A. californica ESTs. We first conducted
the Blastn analysis between the two datasets. At e-value
cutoff of 1E-6, approximately 13% of the L. stagnalis
cDNAs has a BLASTn hit in the A. californica EST library,
and approximately 6% of the A. californica library has a
match in this L. stagnalis cDNA library (Table 2). At a less
stringent e-value cutoff of 0.01, hits for an additional ~7%
of the L. stagnalis cDNAs were found in the A. californica

Table I: Phylogenetic distribution of the top hits in the NCBI nr library

Phylogenetic group Number of cDNAs

(e-value < le-10)
Chordata 944
Arthropoda (e.g. insects and Crustaceans) 562
Lophotrochozoan, including Mollusca, Annelida (segmented worms) 302
Echinodermata 273
Chnidaria (e.g. Hydra and jelly fish) 212
Nematoda (including C. elegans) 57
Platyzoa 47
Bacteria 46
Plants 41
Fungi 33
Total 2583
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Table 2: Blast hits of L. stagnalis cDNA sequences in the published A. californica EST library

Blast Number of L. stagnalis ESTs having a blast hit in A.

Number of A. californica ESTs having a blast hit in L.

E-value californica

stagnalis

Blastn Tblastx Blastn Tblastx

le-20 523 (6.8%) 1629 (21.1%) 7,200 (3.6%) 15,801 (7.9%)
le-10 822 (10.7%) 1987 (25.8%) 10,247 (5.1%) 20,081 (10.1%)
le-6 981 (12.7%) 2225 (28.9%) 12,083 (6.1%) 23,704 (11.9%)
le-3 1297 (16.8%) 2661 (34.5%) 16,823 (8.4%) 29,955 (15.0%)
0.01 1555 (20.2%) 2924 (37.9%) 26,121 (13.1%) 37,721 (18.9%)
0.1 3311 (42.9%) 3766 (48.8%) 80,725 (40.4%) 76,575 (38.3%)
Total 7712 199,689

Comparison of blastn (search a nucleotide database using a nucleotide query) and tblastx searches (search translated nucleotide database using a

translated nucleotide query).

EST library, and an additional ~7% of the A. californica
library produced hits in this L. stagnalis cDNA library
(Table 2). Because these two species are distantly related
organisms, the low hits resulted from our Blastn analysis
may be simply due to the difference in their genetic codes.
We thus carried out a tblastx analysis to search a translated
nucleotide database using a translated nucleotide query.
As presented in Table 2, at e-value cutoff of le-6, the
tblastx hits of L. stagnalis ESTs in A. californica database
reached 28.9%, whilst the percentage of tblastx hits of A.

californica sequences in the L. stagnalis EST database was
11.9%. Taking together, these data indicate a relative low
percentage of matches between A. californica and L. stagna-
lis EST sequences.

It is possible that some of these L. stagnalis cDNAs are not
expressed at high levels in A. californica and are not detect-
able in the transcriptome studies; therefore we compared
the L. stagnalis cDNA sequences against the A. californica
genomic trace files, downloaded from NCBI GenBank. At

Table 3: Blast hits in the A. californica trace library using the L. stagnaliscDNA as query

Blast E-value Number of hits % cumulative %
I.E-20 264 3.42% 264 3.42%
I.E-10 405 5.25% 669 8.67%
|.E-06 327 4.24% 996 12.91%
|.E-03 455 5.90% 1,451 18.81%
0.01 450 5.84% 1,901 24.65%
0.1 1,622 21.03% 3,523 45.68%
| 3,387 43.92% 6,910 89.60%
>| 802 10.40% 7,712 100.00%
Sum 7,712
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the e-value cutoff of 1e-6, about 13% of the L. stagnalis
cDNAs have a hit in the A. californica trace library (Table
3). Another possible explanation for the relatively low
match between L. stagnalis and A. californica could be that
a large proportion of corresponding ESTs match to differ-
ent parts of the same (orthologous) mRNAs and are there-
fore not identified as a match. To test this we took the
1,074 L. stagnalis ESTs with a best scoring match to NCBI
nr and ran the respective NCBI nr match sequences
against the A. californica EST database using a tBLASTx
search. We expected that orthologous non-overlapping
ESTs from both species would thus be bridged by their
corresponding longer NCBI nr sequence match. Surpris-
ingly only ~0.2% (2 out of 1074) of the L. stagnalis ESTs
could be matched with an A. californica EST with an e-
value < 0.01. Although there are several limitations with
respect to comparing EST datasets, especially when they
are relatively small in size, these findings together seem to
suggest that there is high sequence divergence between A.
californica and L. stagnalis.

Comparison with Biomphalaria glabrata sequences

The freshwater snail Biomphalaria glabrata (B. glabrata)
belongs to the family Planorbidae of the pulmonate gas-
tropod mollusk. Recently the whole genome sequencing
of B. glabrata has been completed http://
www.ncbi.nlm.nih.gov/Taxonomy/Browser/
wwwtax.cgi?id=6526, however, the trace sequences have
not yet been assembled. Currently, there are 19,523 EST
sequences of various B. glabrata tissues, not limited to the
CNS, deposited into the GenBank. We thus compared the
B. glabrata EST sequences with our L. stagnalis EST
sequences. Our blastn and tblastx analyses are shown in
Table 4. At e-value cutoff of 1e-6, the rate of Blastn hits of
L. stagnalis ESTs in B. glabrata database was ~5% and the
rate of tblastx hits was ~11%. In contrast, the Blastn hits
of B. glabrata ESTs in our L. stagnalis database was ~12%
and the tblastx hits were ~17%. These results indicate 1)
that there is a significant level of redundancy in the B. gla-
brata EST library because many B. glabrata ESTs match to
the same L. stagnalis sequences; 2) there is a relative low
match between B. glabrata and L. stagnalis EST sequences,

http://www.biomedcentral.com/1471-2164/10/451

suggesting a substantial difference between the transcrip-
tomes of the two animals.

Comparison with other model organisms

We investigated the occurrence of the L. stagnalis cDNAs in
three different organisms: the model organisms nematode
worm (C. elegans) and fruitfly (D. melanogaster), and
human. We ran BLAST searches against the combined pro-
tein, mRNA, and noncoding RNA libraries in worm, fruit-
fly and human respectively; the results are shown in
Figure 4. As seen in Figure 4A, with an e-value cutoff at 1e-
6, 1,694 L. stagnalis cDNA sequences have a BLAST hit to
a protein, an mRNA, or a RNA sequence in worm; 1,915
c¢DNAs have a hit in fly, and 2,065 cDNAs have a hit in
human. Remarkably, 70% (5463) of the cDNAs do not
have any BLAST hit in any of these three organisms. Simi-
lar results are shown in Figure 4B, with a BLAST cutoftf at
0.01. In this case, 54% (4,179) of the cDNA sequences do
not have any BLAST hit. This relatively low concordance
reflects the substantial evolutionary distance between L.
stagnalis and the three species from different animal
phyla.

Gene Ontology Mapping

We mapped the cDNA sequences to the UniProt protein
database, since this is the only comprehensive database
for which GO annotation data is available. Using the e-
value cutoff of le-6, 2,242 (29%) sequences can be
mapped to a UniProt entry; using an e-value of 1e-10,
2,038 (26%) can be mapped to a UniProt entry. We iden-
tified the corresponding Gene Ontology entries mapped
to GOslim terms by using the tools provided by the GOA
website http://www.ebi.ac.uk/GOA/. Table 5 shows the

most frequently occurring GO functional categories.

Alignment of known presynaptic genes

We identified a number of genes from the L. stagnalis
library that are functionally related to presynaptic activity
and other neuronal functions. We then generated multi-
ple sequence alignments of these L. stagnalis proteins with
their orthologous genes from other species and generated
the corresponding phylogenetic trees (Figure 5, 6, and 7).

Table 4: Blast hits in the B. glabrata EST library using the L. stagnaliscDNA as query

Blast E-value Number of L. stagnalis ESTs having a blast hit in B.

Number of B. glabrata ESTs having a blast hit in L.

glabrata library stagnalis

Blastn Tblastx Blastn Tblastx
le-10 307 (4%) 682 (8.8%) 2098 (10.7%) 2689 (13.8%)
le-6 375 (4.9%) 868 (11.3%) 2372 (12.1%) 3378 (17.3%)
le-03 594 (7.7%) 1288 (16.7%) 3244 (16.6%) 4891 (25.1%)
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(A)
worm A fly
(1694) e (1915)
human
(2065)
not found in 3
organisms: 5463
(E-value <1e-6)
(B)
worm A fly
(1694) e (1915)
468
human
(2065)
not found in 3
organisms: 4179
E-value < 0.01
Figure 4

Distribution of BLAST hits of Lymnaea cDNA
sequences in other model organisms. The Venn diagram
shows the occurrence of BLAST hits in the protein, mMRNA
and noncoding RNA sequences in worm (C. elegans), fruit fly
(D. melanogaster) and human, at two different BLAST e-
value cutoffs. (A) e-value < le-6, (B) e-value < 0.01.

We found that, as expected, the L. stagnalis sequences are
most closely related to their orthologs in A. californica.
Typical examples are the clathrin adaptor-protein com-
plex 2 (AP-2) mu-1 subunit and the clathrin AP-1 theta-1
subunit shown in Figure 5 and Figure 6, respectively. The
phylogenetic trees clearly show the conservation of these

http://www.biomedcentral.com/1471-2164/10/451

proteins across species. The L. stagnalis orthologue is more
closely related to A. californica than other invertebrates
and is distant from vertebrates. Intriguingly, L. stagnalis
has an ortholog of the vertebrate syntaxin 7 gene, but its
equivalent has so far not been found in the A. californica
library (Figure 7).

Discussion

In summary, we reported in this study the CNS expressed
c¢DNA sequences of 5376 randomly selected clones from a
normalized CNS cDNA library, thus providing what is
currently the largest database of L. stagnalis cDNA
sequences. Because molluscan species have not been fre-
quently used in the sequencing projects, this is currently
the second largest CNS transcriptome study in the entire
Mollusca phylum. Although the transcriptome informa-
tion is far from complete, we found only ~25% BLAST hits
of L. stagnalis cDNA sequences in A. californica sequences,
which suggests substantial genetic differences between
these two gastropod mollusks. This argues for further large
scale sequencing of L. stagnalis that will shed light on the
extent of diversification of the genome in both molluscan
species.

Normalized cDNA library

In this study we used a normalized cDNA library to reduce
the high variation among the abundant clones, thus
increasing the probability of sequencing rare transcripts
[40]. We found that over 90% of the sequences are
between 700 and 1000 bp long, indicating the overall
good quality of the sequencing processes. We have
sequenced 5376 clones and obtained 10,375 EST
sequences which cluster to 7,712 unique sequences. The
comparison between our library and the previous pub-
lished Lymnaea EST sequences generated from a non-nor-
malized library [33] showed that 509 (38.6%) sequences
in our library have a hit in the previous library, and 711
(54%) of the sequences in the earlier library have a hit in
ours. The higher percentage of hits using the previous
library to search the present ESTs is likely due to that 1)
the previous sequencing of an unnormalized EST library
includes a large proportion of redundant sequences; and
2) this study sequenced ESTs from normalized libraries
which reduces the probability of redundant sequences,
and thus yielded a higher coverage. In addition, the previ-
ous library comprised sequences from the 5' end of tran-
scripts, whereas the present EST database includes a mix of
5'and 3' sequences. It thus is also possible that a propor-
tion of sequences of the previous ESTs generate more than
one hit in our database.

Novel transcripts in L. stagnalis

It is intriguing that a large proportion of the L. stagnalis
cDNAs contain novel sequences that apparently have no
significant match in any of the existing databases. In fact,

Page 9 of 15

(page number not for citation purposes)



BMC Genomics 2009, 10:451

Table 5: GO category distribution of the Lymnaea cDNAs
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GO terms GO terms cDNA frequency
GO:0005515 protein binding 723
GO:0016787 hydrolase activity 350
GO:0016740 transferase activity 237
GO:0003824 catalytic activity 221
GO:0016491 oxidoreductase activity 187
GO:0005198 structural molecule activity 138
GO:0016874 ligase activity 90
GO:0030234 enzyme regulator activity 78
GO:0030528 transcription regulator activity 64
GO:0005215 transporter activity 51
GO:0015075 ion transmembrane transporter activity 45
GO:0004871 signal transducer activity 45
GO:0016829 lyase activity 44
GO:0004872 receptor activity 44
GO:0045182 translation regulator activity 42
GO:0016853 isomerase activity 38
Total 2406

as shown in Figure 3B, even after restricting analyses to
sequences that are longer than 500 nucleotides and a less
restrictive BLAST e-value cutoff of 1le-6, approximately
half of the cDNAs (3,630) have no homologous
sequences in the existing databases. Many of these novel
transcripts can also be translated into long sequences of
amino acids. For example one cDNA (Contig 596; Supple-
mentary Material, http://www.Lymnaea.org/) has 3216
nucleotides containing 505 consecutively translated
amino acids. Interestingly, the closest sequence homolog
for this sequence is a RNA polymerase in potato
(gi|68124015|emb|CAJ01915.1] DNA-directed ~RNA
polymerase [Solanum tuberosum]). Nevertheless, the large
collection of gene sequences identified in this study
include structural proteins, heat shock proteins, transcrip-
tion factors, ion channels, receptors, and protein kinases.

Alignment and phylogenetic trees

We have aligned a number of presynaptic protein
sequences from L. stagnalis to those of other model organ-
isms. The L. stagnalis presynaptic protein sequences tested
here are highly homologous to other species, consistent
with the notion that both invertebrates and vertebrates
share similar molecular mechanisms of synaptic transmis-
sion (see [41]). Interestingly, we identified a syntaxin 7
sequence in the L. stagnalis CNS transcriptome. Syntaxin 7
is one of the endosomal SNARE (soluble N-ethylmaleim-
ide-sensitive factor attachment protein receptors) proteins
that may be involved in a conserved late endosomal
fusion pathway [42,43]. Notably, this protein has so far
not been reported in A. californica.

Our results demonstrate that the L. stagnalis CNS tran-
scriptome data complement the transcriptome sequenc-

ing project of A. californica [38]. Based on the A. californica
CNS sequence data, we expect a total of ~20,000 neuronal
gene products in the L. stagnalis CNS. We currently
obtained 2,406 transcripts corresponding to known bio-
logical processes. These annotated transcripts contribute
12% of the predicted transcriptome size. The hits of L.
stagnalis sequences to the A. californica transcriptome are
~29% (e-value: 1E-6; tblastx), and an additional 9% were
found to match A. californica sequences with an e-value
cutoffat 0.01. Amongst 7712 L. stagnalis sequences tested,
over 97% (7484 out of 7712 sequences) of them have
lengths greater than 300 nucleotides, and over 42% (3248
out of 7712) sequences contain ORFs that are longer than
100 amino acids. Assuming that the A. californica EST set
has a good coverage [38], it is a somewhat low match
which indicates the possibility that the CNS transcriptome
sequences of the two species are considerably different.
Although both species are classified as heterobranches
[44] within the gastropods, the two branches diverged
over 600 million years ago. Thus it is not surprising to see
these apparently large transcriptome sequence variations
between these two species. However, our sequencing
effort comprises only a fraction of the neuronal transcrip-
tome and a larger scale sequencing project is required in
order to make a full comparison between these two spe-
cies.

Conclusion

This study currently provides the largest database of L.
stagnalis CNS EST sequences, and demonstrates the substan-
tial genetic differences between two gastropod mollusks,
L. stagnalis and A. californica. This study establishes a firm
basis for functional genomic research in this species, for
comparative and environmental genomics, and for identi-
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Figure 5
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52| | Danio rerio
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oo

Protein sequence alignment and phylogenetic tree of clathrin adapter-protein-2 (AP-2) mu-| subunit. The align-
ment (A) and the phylogenetic tree (B) were generated by Clustalw. FPS013.CR.J08 is the Lymnaea orthologue identified in this

study.
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Figure 6

Protein sequence alignment and phylogenetic tree of clathrin adapter-protein-1 (AP-1) theta-1 subunit. The
alignment (A) and the phylogenetic tree (B) were generated by Clustalw. FPSOI12.CR.F02 is the Lymnaea orthologue identified

in this study.
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Figure 7
Protein sequence alignment and phylogenetic tree of syntaxin 7. The alignment (A) and the phylogenetic tree (B)

were generated by Clustalw. FPSO| 10.CR.A09 is the Lymnaea orthologue identified in this study.
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fication of novel proteins important for neuronal func-
tions, thus directly supporting and advancing ongoing
functional work in this and related model systems.

Methods

Animals

L. stagnalis were obtained from a culture at the VU Univer-
sity, Amsterdam, and were raised and maintained in
aquaria at the University of Calgary, as previously
described [13,45]. Animals were kept in water at 20°C
under a 12 hr light/dark cycle, and fed green leaf lettuce
twice a week. Two-month old snails having shell lengths
of 15 to 20 mm were used in this study. Specifically, the
snails were anesthetized with 10% (v/v) Listerine for 10
min. The central ring ganglia and attached buccal ganglia
were dissected out and prepared for total RNA extraction.
Three central ring ganglia were used for total RNA extrac-
tion.

cDNA synthesis and cDNA library normalization

c¢DNA synthesis and normalization were carried out by
Bio S&T Inc. (Montreal, QC, Canada). Specifically, total
RNA was extracted from snail ganglia using the modified
Trizol method (Invitrogen, USA). Purification of mRNA
was carried out using Oligotex mRNA kit (Qiagen, USA),
and cDNA synthesis using the SMART™ cDNA library con-
struction kit (Clontech, USA). The clones contain Sfil-A
and Sfil-B restriction sites, which allowed directional
cloning. Full-length cDNA was synthesized with two set of
primers for driver and tester cDNA. Single-stranded cDNA
was used for hybridization instead of double-stranded
cDNA [40]. Excess amount of sense-stranded cDNA was
hybridized with antisense-stranded cDNA. After hybridi-
zation, duplex structures were removed by hydroxyapatite
chromatography. Normalized tester cDNA was re-ampli-
fied with the tester specific primer L4N without amplifica-
tion of the driver cDNA that cannot be amplified using the
L4N primer.

c¢DNA normalization efficiency was strictly monitored by
Bio S & T Inc. (Montreal, QC, Canada). Specifically a par-
allel normalization of an internal control was performed
in addition to the normalization of the cDNA population.
In the parallel normalization, a modified reporter gene
(chloramphenicol resistance gene with same adaptor-
primer sequences) was added to the cDNA population
before normalization at a desired redundancy rate (e.g.
1.0%) as a control. cDNA was cloned using a modified
pBluescript SK-vector (MBI-Fermentas, Canada). Because
pBluescript is ampicillin resistant, the percentage of this
control gene is determined before and after normaliza-
tion. The frequency of chloramphenicol resistant clones
was determined and used to estimate the reduction during
normalization. In this study, reduction was 40x.

http://www.biomedcentral.com/1471-2164/10/451

Following normalization, ss-cDNA were amplified by
PCR and purified. Re-amplified cDNAs were then sub-
jected to Sfil digestion and size fractionation in a 1% aga-
rose gel. cDNA fragments larger than 0.5 Kb were purified
for cloning. The cloning vector was a modified pBluescrip-
Il SK-with Sfil A&B inserts between EcoRI and Xhol. The
ligated cDNAs were then transformed into DH10B (Invit-
rogen, USA). The clones were arrayed in a one clone/well
format and amplified by overnight culture. The average
insert size was 1.5 kb based on a test sample of 20 random
clones. cDNA clones were prepared as glycerol stock in
384-well plates for sequencing.

DNA Sequencing

Double-end cDNA sequencing was carried out by the
Genome Sciences Centre at the British Columbia Cancer
Agency (Vancouver, BC, Canada) using the Sanger
sequencing method. For sequencing of 5'-ends, T3 (or
M13F) primer was used; for sequencing of 3'-ends, T7 (or
M13R) primer was used. The sequences listed are all in the
forward strand, 5' to 3'.

Sequence analysis and bioinformatics

The raw cDNA sequences were subjected to 5'-trimming to
eliminate the vector and 3'-trimming to eliminate low
quality portions. The sequences were then clustered and
assembled into 7712 sequences using the program CAP3
[39]. We used the BLAST program [46] to search for
homology sequences in the following sequence databases:
NCBI non-redundant protein (nr) and nucleotide (nt)
databases, Swissprot protein database, and EST databases
including the previously published EST library of A. cali-
fornica |38]. We wrote PERL scripts to conduct the subse-
quent bioinformatic analyses (available upon request).

Authors' contributions

ZPF and NN carried out the molecular genetic studies; ZZ
conducted the bioinformatics analysis; ZPF, ZZ, and NN
participated in the sequence alignment; ZPF and ZZ
drafted the manuscript; ZPF, ZZ, REVK, VAS, RPC, and
ABS participated in producing the final version of the
manuscript. KJ developed the sequence database. ZPF,
REVK, NIS, and ABS participated in the design of the
study. ZPF, NIS and ABS conceived of the study, and ZPF
coordinated the study. All authors read, edited and
approved the final manuscript.

Acknowledgements

We thank Dr. Mike Fainzilber from the Weizmann Institute of Science for
his support, and comments to this study. We thank Mr. Wali Zaidi from the
University of Calgary for technical assistance with ganglia isolation. We
acknowledge funding support from the Weizmann Institute of Science to
MF; the NSERC (Canada) Discovery grants to GES, JIG, LTB, RPC (#38863-
07), WW (238920), and ZFP (249962-07); the BBSRC (UK) to VAS; SPARC
award to MSY; CIHR (Canada) operating grants to JC, NIS, WW (IAP-
84665), and ZFP (MOP-151437); IBIVU to PvN.

Page 14 of 15

(page number not for citation purposes)



BMC Genomics 2009, 10:451

References

21.

22.

Yeoman MS, Pieneman AW, Ferguson GP, ter Maat A, Benjamin PR:
Modulatory role for the serotonergic cerebral giant cells in
the feeding system of the snail, Lymnaea. I. Fine wire record-
ing in the intact animal and pharmacology. | Neurophysiol 1994,
72:1357-1371.

Straub VA, Staras K, Kemenes G, Benjamin PR: Endogenous and
network properties of Lymnaea feeding central pattern gen-
erator interneurons. | Neurophysiol 2002, 88:1569-1583.

Winlow W, Syed NI: The respiratory central pattern generator
of Lymnaea. Acta Biol Hung 1992, 43:399-408.

Syed NI, Bulloch AG, Lukowiak K: In vitro reconstruction of the
respiratory central pattern generator of the mollusk Lym-
naea. Science 1990, 250:282-285.

Syed NI, Winlow W: Coordination of locomotor and cardiores-
piratory networks of Lymnaea stagnalis by a pair of identified
interneurones. | Exp Biol 1991, 158:37-62.

Ter Maat A: Egg laying in the hermaphrodite pond snail Lym-
naea stagnalis. Prog Brain Res 1992, 92:345-360.

van Minnen |, Smit AB, Joosse J: Central and peripheral expres-
sion of genes coding for egg-laying inducing and insulin-
related peptides in a snail. Arch  Histol Cytol 1989,
52(Suppl):241-252.

Hui K, Fei GH, Saab B}, Su J, Roder JC, Feng ZP: Neuronal calcium
sensor-l modulation of optimal calcium level for neurite
outgrowth. Development 2007, |34:4479-4489.

Koert CE, Spencer GE, van Minnen J, Li KW, Geraerts WP, Syed NI,
Smit AB, van Kesteren RE: Functional implications of neuro-
transmitter expression during axonal regeneration: serot-
onin, but not peptides, auto-regulate axon growth of an
identified central neuron. J Neurosci 2001, 21:5597-5606.

van Kesteren RE, Carter C, Dissel HM, van Minnen |, Gouwenberg Y,
Syed NI, Spencer GE, Smit AB: Local synthesis of actin-binding
protein beta-thymosin regulates neurite outgrowth. | Neuro-
sci 2006, 26:152-157.

Hermann PM, Wildering WC, Bulloch AG: Functional recovery of
respiratory behavior during axonal regeneration in snails
(Lymnaea stagnalis) is experience dependenté. Behav Neurosci
2000, 114:410-423.

Syed NI, Ridgway RL, Lukowiak K, Bulloch AG: Transplantation
and functional integration of an identified respiratory
interneuron in Lymnaea stagnalis. Neuron 1992, 8:767-774.
Feng ZP, Klumperman J, Lukowiak K, Syed NI: In vitro synaptogen-
esis between the somata of identified Lymnaea neurons
requires protein synthesis but not extrinsic growth factors
or substrate adhesion molecules. | Neurosci 1997, 17:7839-7849.
van Kesteren RE, Syed NI, Munno DW, Bouwman |, Feng ZP, Ger-
aerts WP, Smit AB: Synapse formation between central neu-
rons requires postsynaptic expression of the MENI tumor
suppressor gene. | Neurosci 2001, 21:RCI61.

Gardzinski P, Lee DW, Fei GH, Hui K, Huang GJ, Sun HS, Feng ZP:
The role of synaptotagmin | C2A calcium-binding domain in
synaptic vesicle clustering during synapse formation. | Physiol
2007, 581:75-90.

Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS,
Lodder H, Schors RC van der, van Elk R, Sorgedrager B, Brejc K,
Sixma TK, Geraerts WP: A glia-derived acetylcholine-binding
protein that modulates synaptic transmission. Nature 2001,
411:261-268.

Lukowiak K, Haque Z, Spencer G, Varshay N, Sangha S, Syed N:
Long-term memory survives nerve injury and the subse-
quent regeneration process. Learn Mem 2003, 10:44-54.
Benjamin PR, Staras K, Kemenes G: A systems approach to the
cellular analysis of associative learning in the pond snail Lym-
naea. Learn Mem 2000, 7:124-131.

Croll RP, Voronezhskaya EE: Early elements in gastropod neuro-
genesis. Dev Biol 1996, 173:344-347.

Croll RP, Chiasson BJ: Postembryonic development of serot-
oninlike immunoreactivity in the central nervous system of
the snail, Lymnaea stagnalis. | Comp Neurol 1989, 280:122-142.
Croll RP: Insights into early molluscan neuronal development
through studies of transmitter phenotypes in embryonic
pond snails. Microsc Res Tech 2000, 49:570-578.

Voronezhskaya EE, Hiripi L, Elekes K, Croll RP: Development of
catecholaminergic neurons in the pond snail, Lymnaea stag-
nalis: 1. Embryonic development of dopamine-containing

23.

24.

25.

26.

27.

28.

29.

30.

31
32.

33.

34.
35.

36.
37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

http://www.biomedcentral.com/1471-2164/10/451

neurons and dopamine-dependent behaviors. | Comp Neurol
1999, 404:285-296.

Wildering WC, van der RM, de Vlieger TA, Janse C: Age-related
changes in junctional and non-junctional conductances in
two electrically coupled peptidergic neurons of the mollusc
Lymnaea stagnalis. Brain Res 1991, 547:89-98.

Klaassen LJ, Janse C, van der RM: Multiple synaptic connections
of a single neuron change differentially with age. Neurobiol
Aging 1998, 19:341-349.

Patel BA, Arundell M, Allen MC, Gard P, O'Hare D, Parker K, Yeo-
man MS: Changes in the properties of the modulatory cere-
bral giant cells contribute to aging in the feeding system of
Lymnaea. Neurobiol Aging 2006, 27:1892-1901.

Perry S), Straub VA, Kemenes G, Santama N, Worster BM, Burke JF,
Benjamin PR: Neural modulation of gut motility by myomodu-
lin peptides and acetylcholine in the snail Lymnaea. | Neuro-
physiol 1998, 79:2460-2474.

van Kesteren RE, Tensen CP, Smit AB, van Minnen J, van Soest PF,
Kits KS, Meyerhof W, Richter D, van Heerikhuizen H, Vreugdenhil E,
et al: A novel G protein-coupled receptor mediating both
vasopressin- and oxytocin-like functions of Lys-conopressin
in Lymnaea stagnalis. Neuron 1995, 15:897-908.

Wildering WC, Hermann PM, Bulloch AG: Rapid neuromodula-
tory actions of integrin ligands. | Neurosci 2002, 22:2419-2426.
Cheung U, Moghaddasi M, Hall HL, Smith ]}, Buck LT, Woodin MA:
Excitatory actions of GABA mediate severe-hypoxia-
induced depression of neuronal activity in the pond snail
(Lymnaea stagnalis). | Exp Biol 2006, 209:4429-4435.

Fei G, Guo C, Sun HS, Feng ZP: Chronic hypoxia stress-induced
differential modulation of heat-shock protein 70 and presyn-
aptic proteins. | Neurochem 2007, 100:50-61.

Hermann PM, Bulloch AG: Developmental plasticity of respira-
tory behavior in Lymnaea. Behav Neurosci 1998, 112:656-667.
Inoue T, Haque Z, Lukowiak K, Syed NI: Hypoxia-induced respi-
ratory patterned activity in Lymnaea originates at the
periphery. | Neurophysiol 2001, 86:156-163.

Davison A, Blaxter ML: An expressed sequence tag survey of
gene expression in the pond snail Lymnaea stagnalis, an inter-
mediate vector of trematodes [corrected]. Parasitology 2005,
130:539-552.

Kemenes G, Benjamin PR: Lymnaea. Curr Biol 2009, 19:R9-11.
Brusca RC, Brusca GJ: Invertebrates 2nd edition. Sunderland, MA: Sin-
auer Associates, Inc; 2003.

Chase R: Behavior and its neural control in gastropod molluscs New York:
Oxford University Press; 2002.

Bieler R: Gastropod phylogeny and systematics. Annu Rev Ecol
Syst 1992, 23:311-338.

Moroz LL, Edwards JR, Puthanveettil SV, Kohn AB, Ha T, Heyland A,
Knudsen B, Sahni A, Yu F, Liu L, et al.: Neuronal transcriptome of
aplysia: neuronal compartments and circuitry. Cell 2006,
127:1453-1467.

Huang X, Madan A: CAP3: A DNA sequence assembly pro-
gram. Genome Res 1999, 9:868-877.

Soares MB, Bonaldo MF, Jelene P, Su L, Lawton L, Efstratiadis A: Con-
struction and characterization of a normalized cDNA
library. Proc Natl Acad Sci USA 1994, 91:9228-9232.

Atwood HL, Karunanithi S: Diversification of synaptic strength:
presynaptic elements. Nat Rev Neurosci 2002, 3:497-516.
Antonin W, Holroyd C, Fasshauer D, Pabst S, Von Mollard GF, Jahn
R: A SNARE complex mediating fusion of late endosomes
defines conserved properties of SNARE structure and func-
tion. EMBO | 2000, 19:6453-6464.

Achuthan A, Masendycz P, Lopez JA, Nguyen T, James DE, Sweet M},
Hamilton JA, Scholz GM: Regulation of the Endosomal SNARE
Protein Syntaxin 7 by Colony Stimulating Factor-1 in Macro-
phages. Mol Cell Biol 2008, 28(20):6149-59.

Ponder WF, Lindberg DR: Towards a phylogeny of gastropod
molluscs: an analysis using morphological characters. Zool |
Linn Soc 1997, 119:88-265.

Syed NI, Lukowiak K, Bulloch AG: Specific in vitro synaptogene-
sis between identified Lymnaea and Helisoma neurons. Neu-
roreport 1992, 3:793-796.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. | Mol Biol 1990, 215:403-410.

Page 15 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7807217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7807217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1299128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2218532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1919413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1919413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1302883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2510786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2510786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2510786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18039973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18039973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18039973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11466431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11466431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11466431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16399682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16399682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10832801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1314624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9315904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9315904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9315904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17317745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17317745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17317745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11357121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11357121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12551963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12551963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12551963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10837501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8575634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8575634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2918092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10862113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10862113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10862113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9952348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9952348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1860075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16289475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9582220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7576638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11923405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11923405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17227434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17227434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17227434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9676981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11431497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11431497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15991497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15991497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19138593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17190607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7937745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12094207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12094207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18710945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18710945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18710945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1421138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Overall statistics of the L. stagnalis cDNA library
	Post-processing and sequence assembly
	Comparison with previously published L. stagnalis EST sequences
	Comparison with NCBI non-redundant protein and nucleotide sequence libraries
	Comparison with A. californica sequences
	Comparison with Biomphalaria glabrata sequences
	Comparison with other model organisms
	Gene Ontology Mapping
	Alignment of known presynaptic genes

	Discussion
	Normalized cDNA library
	Novel transcripts in L. stagnalis 
	Alignment and phylogenetic trees

	Conclusion
	Methods
	Animals
	cDNA synthesis and cDNA library normalization
	DNA Sequencing
	Sequence analysis and bioinformatics

	Authors' contributions
	Acknowledgements
	References

