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Abstract
Background: High throughput methods, such as high density oligonucleotide microarray
measurements of mRNA levels, are popular and critical to genome scale analysis and systems
biology. However understanding the results of these analyses and in particular understanding the
very wide range of levels of transcriptional changes observed is still a significant challenge. Many
researchers still use an arbitrary cut off such as two-fold in order to identify changes that may be
biologically significant. We have used a very large-scale microarray experiment involving 72
biological replicates to analyze the response of soybean plants to infection by the pathogen
Phytophthora sojae and to analyze transcriptional modulation as a result of genotypic variation.

Results: With the unprecedented level of statistical sensitivity provided by the high degree of
replication, we show unambiguously that almost the entire plant genome (97 to 99% of all
detectable genes) undergoes transcriptional modulation in response to infection and genetic
variation. The majority of the transcriptional differences are less than two-fold in magnitude. We
show that low amplitude modulation of gene expression (less than two-fold changes) is highly
statistically significant and consistent across biological replicates, even for modulations of less than
20%. Our results are consistent through two different normalization methods and two different
statistical analysis procedures.

Conclusion: Our findings demonstrate that the entire plant genome undergoes transcriptional
modulation in response to infection and genetic variation. The pervasive low-magnitude remodeling
of the transcriptome may be an integral component of physiological adaptation in soybean, and in
all eukaryotes.
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Background
How many genes are truly involved in the response of
organism to a challenge such as pathogen infection, and
what are the roles of those genes? Global assays of gene
expression, for example by microarray analysis, are typi-
cally conducted to test the hypothesis that a small, defined
set of genes are responsible for an organism's response to
some challenge. Gene expression changes below a certain
threshold (commonly 2 fold) are often disregarded as
being irrelevant and/or unreliable. A major challenge in
evaluating the importance of low magnitude transcrip-
tional changes is that the level of replication used in a typ-
ical microarray experiment is insufficient to detect small
changes given the technical and biological variability in
the system. Although several methods appear to be prom-
ising for precise quantification of gene expression, it
remains uncertain what constitutes a significant change in
response to treatments [1,2].

High-density oligonucleotide arrays such as Affymetrix
GeneChips can detect up to 90% of all the mRNAs in a
transcriptome [3-5]. For example, nearly 90% of all yeast
mRNAs could be detected in cells grown under both rich
and minimal media growth conditions, with approxi-
mately 50% being present at average levels between 0.1
and 1 copy per cell [3]. Of the 31,000 genes on Affymetrix
Rat Genomic 230 2.0 GeneChip microarrays, 18,200
(58.7%) could be detected in growing rat bone [5]. In a
study with human abdominal aortic aneurysms, of the
18,057 genes common to Affymetrix and Illumina arrays,
11,542 (64%) were expressed in either aneurysmal or nor-
mal abdominal aorta [6]. Approximately 26,500 of the
soybean genes (70%) on the Affymetrix GeneChip could
be detected in soybean cyst nematode (SCN)-colonized
root pieces[4].

Markedly varied numbers of genes, from only a few up to
several thousands, have been reported to be differentially
expressed in response to diverse challenges, depending on
the system and the statistical methodology. For instance,
of the approximately 6,200 protein-encoding genes in the
Saccharomyces cerevisiae (yeast) genome, over 1,000
showed significant changes in mRNA levels during sporu-
lation [7]. In rat, 8,002 out of 18,200 expressed genes
(44.0%) had a significant change in gene expression dur-
ing growth, about half up-regulated and half down-regu-
lated [5]. In Arabidopsis thaliana, 939 out of approximately
24,000 genes showed a statistically significant response to
cold stress, with 655 up-regulated and 284 down-regu-
lated [8].

One of the most profound challenges an organism can
suffer is pathogen infection. In a meta-analysis of 32 stud-
ies involving 785 transcriptomic experiments with 77 dif-
ferent host-pathogen interactions [9], 5042 human genes
showed transcriptional changes in response to at least one

challenge, and a cluster of 511 co-regulated genes was
identified as representing a common infection response.
During infection of the plant Arabidopsis by the bacterial
pathogen Pseudomonas syringae, approximately 2,000 of
the approximately 8,000 genes monitored showed signif-
icant expression level changes [10]. In soybean, the
Affymetrix GeneChip has been used to profile gene
expression during infection with soybean rust fungus and
soybean cyst nematode (SCN) [4,11-14]. During nema-
tode infection, 429 of 35611 soybean transcripts (which
account for 1.2%), while 1850 out of 7430 SCN genes
(24.9%) showed expression changes [4].

To identify genes involved in the responses of several soy-
bean genotypes to infection by the oomycete pathogen
Phytophthora sojae, we conducted a very large-scale micro-
array experiment using Affymetrix GeneChips. Three soy-
bean genotypes (V71-370, Sloan and VPRIL9) were
included within each of the 29 experimental blocks. Rep-
licates of each set of the three genotypes, incubated in the
same growth chamber, were harvested at three different
times (9 am, 10:30 am, and 12 pm). For each soybean
line, approximately 30 seedlings were inoculated on the
roots with P. sojae and after 5 days, 7.5 mm root segments
were collected from immediately above and below the
upper margin of the visible lesion (referred to from here
as the "Upper" and "Lower" infection courts). From
approximately 20 mock-inoculated plants, 15 mm root
segments ("Mock") were collected from positions on the
roots matching the lesions on the pathogen-inoculated
plants. RNA was extracted from each of the samples,
labeled and hybridized to Affymetrix soybean GeneChips.
This paper reports our analyses of a total of 648 Gene-
Chips with the samples obtained from 24 blocks from
which a full set of 27 successful microarray assays were
obtained.

Results
The entire soybean transcriptome is significantly 
remodeled by genotypic differences and Phytophthora 
infection
The primary GeneChip data were pre-processed using GC-
RMA background correction, quantile normalization and
median polish summarization. To identify factors that sig-
nificantly affected expression of individual genes, Linear
Mixed-Model Analysis (LMMA) was used, and three meth-
ods to control the False Discovery Rate (FDR) were
employed.

LMMA indicated that 89% of the detectable genes (i.e. those
with a significant hybridization signal determined by the
MAS5 presence-absence test) were significantly affected by
infection in both the upper and lower infection courts, even
when using the most conservative FDR method (BH-FDR) at
a level of 0.0001 (Table 1). With the least conservative
method (q-value) at a level of 0.05, 98.3% of the detectable
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genes were identified as significantly affected. The analysis
also identified very large numbers of genes whose transcrip-
tion level was significantly affected by genotype. For
instance, at moderate stringency (TST-adjusted p ≤ 0.01),
25,923 genes (91.4% of all detectable genes) showed signif-
icant expression differences among the three soybean lines.
Furthermore, 24,669 (87.0%) showed a genotype-sensitive
response to infection (significant genotype × infection inter-
action; TST-adjusted p ≤ 0.01). Genes showing significant
responses to infection and/or infection × genotype interac-
tion constituted 98.2% to 99.4% of the detectable transcrip-
tome (27,831 or 28,187 genes with TST-adjusted p ≤ 0.01 or
0.05 respectively). Genes showing significant responses to
genotype and/or infection × genotype interaction consti-
tuted 97.7% to 99.4% of the detectable transcriptome
(27,710 or 28,172 genes with TST-adjusted p ≤ 0.01 or 0.05
respectively). The experiment was also able to identify a large
number of genes that responded significantly to the subtle
differences in the times of harvest (9 am, 10:30 am, 12

noon) (4,453 genes = 15.7% at TST-adjusted p ≤ 0.01),
although as expected this number was smaller than the over-
all response to infection and genotype.

To verify that our statistical analysis was effectively con-
trolling false discovery, we separated the 24 blocks into
two "sub-groups" consisting of odd-numbered and even-
numbered blocks respectively. We then included the effect
of sub-group in our linear mixed model and used LMMA
to identify genes showing significant differences between
the sub-groups. Very few genes showed differences under
even the most relaxed criteria (45 at TST-FDR adjusted p ≤
0.05; Table 2), while at moderate criteria (TST-FDR
adjusted p ≤ 0.01) none showed differences. Similarly,
when the 24 blocks were randomized into 6 sub-groups,
each containing 4 blocks, only 20 genes showed signifi-
cant differences among sub-groups (TST-FDR adjusted p ≤
0.01). These small numbers of genes that show differences
among sub-groups may reflect genes that are unusually

Table 1: Linear mixed-model analysis (LMMA) of soybean gene expression changes under infection by P. sojae.

Fixed factorsa

FDRb Significant genesc Genotyped Treatmente Timef Genotype × Treatment

0.05 BH Number 26,262 27,285 5,335 25,100
Percent 92.6 96.2 18.8 88.5

TST Number 27,156 27,732 9,960 26,500
Percent 95.8 97.8 35.1 93.5

q-value Number 27,430 27,872 12,602 27,008
Percent 96.8 98.3 44.4 95.3

0.01 BH Number 25,062 26,761 2,965 23,552
Percent 88.4 94.4 10.5 83.1

TST Number 25,923 27,139 4,453 24,669
Percent 91.4 95.7 15.7 87.0

q-value Number 26,337 27,316 5,561 25,206
Percent 92.9 96.3 19.6 88.9

0.001 BH Number 23,542 26,015 1,575 21,445
Percent 83.0 91.8 5.6 75.6

TST Number 24,191 26,351 2,025 22,381
Percent 85.3 92.9 7.1 78.9

q-value Number 24,657 26,582 2,488 23,012
Percent 87.0 93.8 8.8 81.2

0.0001 BH Number 21,988 25,272 960 19,577
Percent 77.6 89.1 3.4 69.1

TST Number 22,611 25,560 1,173 20,293
Percent 79.8 90.2 4.1 71.6

q-value Number 23,150 25,836 1,381 20,922
Percent 81.7 91.1 4.9 73.8

aModel: y = Genotype + Treatment + Time + Genotype × Treatment + Block + Block × Genotype + Block × Treatment + Block × Time + Block × 
Genotype × Treatment + Error, where y refers to the log2 scale median polish summarized gene expression values, the main factors (Genotype, 
Treatment and Time) and the interaction Genotype × Treatment were fixed factors while all the remaining terms were random factors. GC-RMA 
background correction and quantile normalization were performed prior to median polish summarization. LMMA was carried out using Proc Mixed 
of SAS v9. bThe p-values for each of the fixed factors were computed based on normality assumption and adjusted for multiple testing using BH, 
TST and q-value methods at levels from 0.0001 to 0.05. cNumbers of detectable genes significant for each factor at the indicated adjusted p value, 
and percentages of the total number of detectable genes. dGenotypes were V71-370, Sloan and VPRIL9. eTreatments include Upper, Lower, and 
Mock. fTime refers to sample harvest time window at 9:00 am, 10:30 am, and 12:00 pm.
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sensitive to small variations in conditions used to assay
the different biological replicates.

To verify that our results did not depend on the preproc-
essing methods (background subtraction and data nor-
malization), we preprocessed the GeneChip data with the

Bioconductor MAS5 algorithm and re-analyzed the results
by LMMA. For the fixed factors, genotype, treatment, and
genotype × treatment interaction, the agreement between
the results of the two methods was between 92% and 98%
at all levels of significance (Table 3). For the time factor
the agreement was less, but still at least 77.0%.

Table 2: Differences among sub-groups as revealed by LMMA analyses of data sets preprocessed by GC-RMA (TST-FDR)

FDRa Fixed factorsb 2 Sub-Groupsc 6 Sub-Groupsd

Number significante Percentage significantf Number significante Percentage significantf

0.05 Genotype 26,043 91.9 25,975 91.6
Treatment 27,191 95.9 27,180 95.9
Time 4,748 16.7 4,735 16.7
Genotype × Treatment 24,837 87.6 24,774 87.4
Sub 45 0.2 235 0.8
Sub × Genotype 458 1.6 238 0.8
Sub × Treatment 251 0.9 429 1.5
Sub × Genotype × Treatment 805 2.8 364 1.3

0.01 Genotype 24,808 87.5 24,732 87.2
Treatment 26,652 94.0 26,645 94.0
Time 2,692 9.5 2,692 9.5
Genotype × Treatment 23,275 82.1 23,213 81.9
Sub 0 0 20 0.1
Sub × Genotype 68 0.2 42 0.1
Sub × Treatment 35 0.1 74 0.3
Sub × Genotype × Treatment 143 0.5 53 0.2

0.001 Genotype 23,268 82.1 23,150 81.7
Treatment 25,891 91.3 25,881 91.3
Time 1,468 5.2 1,465 5.2
Genotype × Treatment 21,141 74.6 21,056 74.3
Sub 0 0 0 0
Sub × Genotype 4 0 3 0
Sub × Treatment 5 0 9 0
Sub × Genotype × Treatment 13 0 2 0

0.0001 Genotype 21,694 76.5 21,474 75.7
Treatment 25,128 88.6 25,073 88.4
Time 895 3.2 894 3.2
Genotype × Treatment 19,265 68.0 19,131 67.5
Sub 0 0 0 0
Sub × Genotype 0 0 0 0
Sub × Treatment 2 0 0 0
Sub × Genotype × Treatment 1 0 0 0

0.00001 Genotype 20,105 71 19,845 70
Treatment 24,310 86 24,264 86
Time 585 2 583 2
Genotype × Treatment 17,518 62 17,377 61
Sub 0 0 0 0
Sub × Genotype 0 0 0 0
Sub × Treatment 0 0 0 0
Sub × Genotype × Treatment 0 0 0 0

aFalse discovery rate (FDR) was controlled the two-stage linear step-up method (TST-FDR). bThe fixed factors used in the LMMA model included 
genotype (V71-370, Sloan and VPRIL9), treatment (Upper, Lower, and Mock), time (9 am, 10:30 am, and 12 pm), sub (sub-group), and the 
interactions (genotype × treatment, sub × genotype, sub × treatment, and sub × genotype × treatment). c "2 Sub-Groups" refers to the 12 odd-
numbered blocks compared to the 12 even-numbered blocks. d "6 Sub-Groups" refers to 6 randomly selected groups of blocks (four blocks in each 
group). eNumber of significant genes for a factor determined by LMMA analysis with FDR control. fThe number of significant genes as a percentage 
of the total number of detectable genes.
(page number not for citation purposes)
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To independently verify the results of the LMMA analysis,
we employed the non-parametric Wilcoxon signed rank
test to analyze the significance of infection responses; data
from each of the infection chips were paired with the cor-
responding data from mock inoculation. The genes iden-
tified as significant by this method matched those
identified by LMMA with an agreement of > 99%, with
either method of pre-processing (GC-RMA or MAS5)
(Table 4).

Transcriptional changes display both consistency and 
fluctuation
To assess to what extent the transcriptional changes we
observed were biologically reproducible, we compared
our results to those obtained from a pilot experiment car-
ried out two years previously with cultivars V71-370 and
Sloan. That pilot experiment had a near identical design
except that all plants were harvested at one time during
the morning. Also, the upper and lower infection courts
were harvested together. To enable comparison with the
72 sample experiment, in which the upper and lower
infection courts were harvested separately, the results
from the upper and lower courts were averaged. The over-
all correlation in the expression changes measured for all
genes by microarray analysis in the two experiments was
very high (R2 = 0.85) indicating a high level of reproduci-
bility. Even genes showing less than two-fold perturba-

tions by infection showed excellent consistency between
the two experiments. For example, in V71-370,
Gma.3473.1.S1_at (small heat shock protein) was down-
regulated 1.2 fold and 1.7 fold in the two experiments,
and in Sloan down-regulated 1.7 fold and 2.2 fold. As
another example, Gma.6640.1.S1_at (secretory peroxi-
dase) was up-regulated 1.46 fold and 1.07 fold in V71-
370, and down-regulated 1.08 fold and 1.16 fold in Sloan.
In a third example, GmaAffx.60616.1.S1_at (Hcr9-OR2A)
was down-regulated 1.5 fold and 1.35 fold in V71-370,
and down-regulated 1.47 fold and 1.8 fold in Sloan. Only
one measurement showed a statistically significant differ-
ence between the two experiments (GmaAffx.18905.1.S1
cell death associated protein: in Sloan; FDR adjusted p <
0.05). This agreement is remarkable given that this is a
two-organism interaction and that two experiments were
conducted two years apart with different batches of soy-
bean seed.

During the pilot experiment, transcript levels of 22 genes,
including 4 housekeeping genes, were also measured by
quantitative real-time PCR (qRT-PCR), using the same
RNA preparations as for the microarrays. For the 22
selected genes, the correlation between the microarray
measurements from the two experiments was 0.90 (R2)
and the correlation between the microarray and qRT-PCR
measurements was 0.88 (R2) (Table 5) [see also Addi-

Table 3: Comparison of preprocessing data sets by GC-RMA or MAS5 algorithms on the significance of fixed factors as revealed by 
LMMA analyses

FDR (TST)a Fixed factorb Number significant genesc Number matchesd Percentage matchese

GC-RMA MAS5

0.05 Genotype 27,156 26,651 25,896 97.2
Treatment 27,732 27,585 27,099 98.2
Genotype × Treatment 26,500 25,932 24,977 96.3
Time 9,960 9,038 6,961 77

0.01 Genotype 25,923 25,162 24,024 95.5
Treatment 27,139 26,864 26,079 97.1
Genotype × Treatment 24,669 23,643 22,327 94.4
Time 4,453 3,655 2,941 80.5

0.001 Genotype 24,191 23,161 21,780 94
Treatment 26,351 25,962 24,873 95.8
Genotype × Treatment 22,381 20,924 19,507 93.2
Time 2,025 1,551 1,348 86.9

0.0001 Genotype 22,611 21,270 19,800 93.1
Treatment 25,560 25,126 23,817 94.8
Genotype × Treatment 20,293 18,691 17,256 92.3
Time 1,173 857 768 89.6

aFalse discovery rate (FDR) was controlled using the two-stage linear step-up method (TST). bThe fixed factors used in the LMMA model included 
genotype (V71-370, Sloan and VPRIL9), treatment (Upper, Lower, and Mock), time (9 am, 10:30 am, and 12 pm), and the genotype × treatment 
interaction. cNumber of significant genes for a factor was determined by LMMA analysis with FDR control. dThe number of genes called significant 
following GC-RMA and following MAS5 pre-processing. eThe number of matches as a percentage of the minimum of the number of significant genes 
called following GC-RMA or MAS5 preprocessing.
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tional file 1]. In most cases, the agreement between the
qRT-PCR results and the microarray results was very good.
In only two cases (GmaAffx.64261.1.A1_at quinone oxi-
doreductase and GmaAffx.75675.1.A1_at phenylalanine
ammonia-lyase, both in V71-370) were statistically signif-
icant differences (FDR-adjusted p < 0.05) observed
between the qRT-PCR and the array results; possibly in
these cases the two assay methods differed in their sensi-
tivity to the presence of mRNAs from close paralogs and
homeologs of the assayed genes.

To further explore the biological reproducibility of the
measured gene expression differences, we divided the 24
blocks into 6 sub-groups, each consisting of 4 consecutive
blocks (12 measurements) and compared the results for
each of the sub-groups for the same set of 22 genes (Table
5). Since the 24 blocks each constitute independent bio-
logical replicates spread over 8 months, each of the 6 sub-
groups also constitute independent biological replicates.
In most cases, only minor fluctuations were observed.
Two genes showed significant fluctuations
(Gma.17993.1.S1_at P21 protein and
GmaAffx.32612.1.S1_at HI4'OMT; least significant differ-
ence, FDR adjusted p < 0.05).

Comparing the power of large and small experiments
To compare the power of our experiment with experi-
ments of a size comparable to those more commonly
found in the literature, we again divided the 24 blocks

into 6 sub-groups, each consisting of 4 consecutive blocks,
and then reanalyzed the data by LMMA for each sub-
group separately. As expected, each individual data set
had less power than the overall data set. An average of
40.4%, 65.7% and 33.8% genes were detected as signifi-
cant for genotype, treatment and genotype × treatment
interaction, respectively, with TST-FDR control at a level
of 0.01 [see Additional file 2]. However, different sub-
experiments detected different subsets of the genes
detected in the overall data set (Figure 1). Thus genes sig-
nificant in all the 6 sub-groups comprised only 48.9% of
those detected in the overall experiment [see Additional
file 3]. This lack of agreement among the gene lists
became worse at more stringent (lower) FDR levels. As is
well-known, increased stringency produces more precise
results (fewer false positives) but at the expense of a some-
times major decrease in power, i.e. an increase in the
number of false negatives. However, the union of all genes
that were significant in any of the six sub-groups com-
prised 81.0% of the genes with significant changes
detected in the overall experiment [see Additional file 3].
These results demonstrate that the most common error
made with small experiments is false negatives, rather
than false positives, and the common practice of combin-
ing results of multiple experiments by only considering
the intersection of the gene lists is unnecessarily extremely
conservative. A simple union, the techniques of meta-
analysis, or where possible a joint analysis, may be most

Table 4: Comparison of significant infection responses identified with SAS Proc Mixed LMMA or the non-parametric Wilcoxon signed 
rank test.

Data Pre-Processinga Genotype Infection Responseb Wilcoxonc LMMAd Number Matchesg Percentage matchesh

Significante % sigf Significant % sig

GC-RMA V71-370 Upper vs. Mock 23,016 81.2 20,418 72.0 20,406 99.94
Lower vs. Mock 23,739 83.7 21,772 76.8 21,749 99.89

Sloan Upper vs. Mock 24,369 86 22,758 80.3 22,712 99.8
Lower vs. Mock 24,872 87.7 23,556 83.1 23,513 99.82

VPRIL9 Upper vs. Mock 24,851 87.7 23,543 83.0 23,482 99.74
Lower vs. Mock 25,260 89.1 24,180 85.3 24,087 99.62

MAS5 V71-370 Upper vs. Mock 22,300 78.7 19,486 68.7 19,478 99.96
Lower vs. Mock 23,406 82.6 21,772 74.8 21,189 99.96

Sloan Upper vs. Mock 23,984 84.6 22,758 78.5 22,208 99.82
Lower vs. Mock 24,578 86.7 23,556 81.7 23,153 99.94

VPRIL9 Upper vs. Mock 24,714 87.2 23,543 82.5 23,366 99.91
Lower vs. Mock 25,144 88.7 24,180 85.4 24,165 99.81

aThe data used for the analyses were either preprocessed using GC-RMA or using MAS5 algorithm as described in the Methods. bInfection 
responses relative to mock-inoculated tissue were evaluated for the upper infection court (Upper vs. Mock) and the lower infection court (Lower 
vs. Mock). cWilcoxon signed ranks test implemented by the wilcox.test function of R package stats version 2.6.0. dLinear mixed model analysis 
performed in SAS Proc Mixed. Model: y = Genotype + Treatment + Time + Genotype × Treatment + Block + Block × Genotype + Block × 
Treatment + Block × Time + Block × Genotype × Treatment + Error, where y refers to the log2 scale median polish summarized gene expression 
values, the main factors (Genotype, Treatment and Time) and the interaction Genotype × Treatment were fixed factors while all the remaining 
terms were random factors. eTotal number of significant genes with TST-FDR adjusted p ≤ 0.01. fPercentage of the total number of detectable 
genes that are significant. gNumber of significant genes found with both Wilcoxon and LMMA. hThe number of matches found with both methods, 
as a percentage of the total number of significant genes found by Wilcoxon or LMMA, whichever was smaller.
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Table 5: Consistency of selected gene expression differences among independent experiments, measured by qRT-PCR and/or 
microarray.

Pilot experiment 72-replicate experiment (array)
5 day 5 day (average upper and lower versus mock)

Geno-
typea

Gene IDb Annotationc Inoc/Mock qRT array Wholef Subg A Sub B Sub C Sub D Sub E Sub F

V71-370 Gma.441.1.S1_
at

Ubiquitin 
(AtRUB1) [HK]

meand 1.17 1.08 1.07 1.08 1.04 1.05 1.21 1.09 -1.01

s.e.e 0.9 0.08 0.03 0.09 0.05 0.08 0.08 0.04 0.09

Gma.16125.1.S
1_s_at

Ribosomal 
protein S27-like 
[HK]

mean 1.12 1.16 1.15‡ 1.17 1.19 1.14 1.16 1.19 1.08

s.e. 0.15 0.14 0.06 0.10 0.12 0.14 0.16 0.12 0.11

GmaAffx.90824
.1.S1_s_at

26S proteasome 
subunit RPN2a 
[HK]

mean -1.25 -1.16 -1.08 -1.00 -1.23 -1.08 -1.12 1.00 -1.02

s.e. 0.18 0.15 0.04 0.10 0.08 0.09 0.08 0.06 0.08

GmaAffx.90181
.1.A1_at

Actin mean 2.0 1.25 -1.03 1.07 -1.00 -1.11 1.07 -1.11 -1.05

s.e. 0.8 0.5 0.07 0.17 0.17 0.20 0.17 0.16 0.16

GmaAffx.60616
.1.S1_at

Hcr9-OR2A mean -1.7 -1.5 -1.35‡ -1.28 -1.31 -1.20 -1.20 -1.37 -1.8

s.e. 0.49 0.22 0.04 0.10 0.11 0.12 0.09 0.10 0.09

Gma.447.1.S1_
at

Defense 
associated acid 
phosphatase

mean -2.8 -1.47 -1.9‡ -1.34 -1.34 -2.9 -1.5 -2.8 -1.9

s.e. 0.40 0.27 0.05 0.18 0.23 0.06 0.16 0.06 0.11

GmaAffx.64261
.1.A1_at

Quinone 
oxidoreductase

mean 3.6 8.5*‡ 5.6‡ 5.3 5.4 5.3 7.4 4.4 7.2

s.e. 0.7 2.7 0.6 1.8 1.3 1.1 1.9 0.9 1.7

Gma.6640.1.S1
_at

At5g66390 
(secretory 
peroxidase)

mean 1.5 1.46‡ 1.07‡ 1.06 1.15 -1.10 1.10 1.11 1.11

s.e. 0.43 0.10 0.05 0.12 0.11 0.10 0.11 0.09 0.13

GmaAffx.18905
.1.S1_at

Cell death 
associated 
protein

mean 2.5 2.4‡ 2.3‡ 2.0 1.9 2.7 2.8 2.4 2.4

s.e. 0.41 0.7 0.21 0.42 0.42 0.6 0.46 0.46 0.37

Gma.17993.1.S
1_at

P21 protein mean 60 70‡ 30‡ 29 34 26 40 36 24

s.e. 13 19 3.7 11 9 7 7 10 9

GmaAffx.75675
.1.A1_at

Phenylalanine 
ammonia-lyase

mean 3.9 7.6*‡ 4.4‡ 4.4 4.4 4.7 4.0 4.6 4.9

s.e. 0.41 0.9 0.29 0.9 0.7 0.7 0.46 0.7 0.7

GmaAffx.2799.
1.A1_at

NtPRp27-like 
protein

mean 12 20‡ 7.8‡ 5.9 7.8 8.0 7.8 9.6 8.3

s.e. 0.6 5 0.6 1.4 1.4 1.1 0.9 1.2 1.3
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Gma.16733.2.S
1_at

WRKY4 
transcription 
factor

mean 4.9 6.8‡ 2.9‡ 3.9 3.5 2.6 3.1 2.9 2.6

s.e. 0.6 1.7 0.37 1.0 1.2 0.8 0.9 1.1 0.7

GmaAffx.29692
.1.S1_at

Chitinase 
(class II)

mean 1.9 2.9‡ 2.0‡ 2.4 2.1 1.6 1.9 1.8 2.2

s.e. 0.47 0.7 0.11 0.34 0.27 0.22 0.20 0.29 0.23

Gma.16911.1.S
1_at

Cytochrome 
P450 family 
protein

mean -1.23 1.6 1.24‡ 1.07 1.20 1.29 1.21 1.28 1.47

s.e. 0.26 0.33 0.05 0.11 0.11 0.11 0.11 0.10 0.08

GmaAffx.7209.
1.A1_at

UDP-glucose 6-
dehydrogenase

mean -1.02 1.36 -1.02 1.09 1.17 -1.05 -1.03 -1.24 -1.01

s.e. 0.10 0.21 0.07 0.14 0.22 0.11 0.13 0.13 0.15

GmaAffx.47171
.1.A1_at

Putative 
resistance 
protein

mean -1.03 1.43‡ 1.6‡ 1.35 1.5 1.5 1.6 1.7 1.9

s.e. 0.12 0.38 0.08 0.17 0.17 0.21 0.16 0.16 0.19

Gma.3473.1.S1
_at

Protein, small 
heat shock

mean -1.26 -1.20 -1.7‡ 1.7 -1.6 -3.4 -1.7 -2.1 -2.3

s.e. 0.26 0.22 0.06 0.30 0.16 0.08 0.14 0.11 0.08

GmaAffx.90984
.1.A1_at

Germin-like 
protein

mean 14 5.7‡ 2.1‡ 2.0 2.2 1.9 1.9 2.0 2.4

s.e. 2.5 2.2 0.16 0.35 0.44 0.31 0.33 0.47 0.39

GmaAffx.32612
.1.S1_at

HI4'OMT mean 18 24‡ 14‡ 9.6a 8.9a 20b 12a 21b 22b

s.e. 1.8 6.5 1.5 3.2 2.3 3.3 2.8 4.7 6

GmaAffx.90059
.1.S1_at

HcrVf2 protein mean 7.4 3.7‡ 3.0‡ 3.2 2.7 2.9 3.2 2.9 3.2

s.e. 2.0 0.8 0.22 0.5 0.37 0.26 0.41 0.42 0.8

GmaAffx.79817
.1.S1_at

SGT1 mean 1.13 1.04 -1.01 1.07 -1.10 1.00 -1.04 -1.11 1.13

s.e. 0.14 0.07 0.04 0.15 0.08 0.14 0.06 0.05 0.07

Sloan Gma.441.1.S1_
at

Ubiquitin 
(AtRUB1) [HK]

meand -1.04 1.19 1.12‡ 1.07 1.20 1.07 1.23 1.10 1.08

s.e.e 0.10 0.14 0.04 0.09 0.06 0.09 0.12 0.08 0.11

Gma.16125.1.S
1_s_at

Ribosomal 
protein S27-like 
[HK]

mean -1.18 1.03 -1.07 1.02 -1.04 -1.14 1.10 -1.17 -1.14

s.e. 0.5 0.18 0.06 0.08 0.06 0.15 0.22 0.07 0.10

GmaAffx.90824
.1.S1_s_at

26S proteasome 
subunit RPN2a 
[HK]

mean 1.5 1.01 -1.06‡ -1.15 -1.03 -1.01 -1.06 -1.03 -1.07

s.e. 0.20 0.11 0.04 0.09 0.06 0.13 0.09 0.06 0.04

GmaAffx.90181
.1.A1_at

Actin mean -1.36 1.49‡ -1.19‡ -1.29 -1.18 -1.28 -1.13 -1.33 1.10

s.e. 0.26 0.40 0.06 0.10 0.22 0.16 0.12 0.13 0.22

Table 5: Consistency of selected gene expression differences among independent experiments, measured by qRT-PCR and/or 
microarray. (Continued)
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GmaAffx.60616
.1.S1_at

Hcr9-OR2A mean -1.7 -2.2‡ -1.9‡ -1.45 -1.8 -2.0 -1.9 -1.7 -2.3

s.e. 0.41 0.12 0.05 0.12 0.09 0.14 0.09 0.12 0.08

Gma.447.1.S1_
at

Defense 
associated acid 
phosphatase

mean -1.43 -1.47 -1.8‡ -1.8 -1.6 -2.0 -1.8 -2.2 -1.48

s.e. 0.14 0.21 0.06 0.15 0.12 0.17 0.13 0.09 0.17

GmaAffx.64261
.1.A1_at

Quinone 
oxidoreductase

mean 3.1 2.3‡ 2.6‡ 3.9 4.7 -1.24 2.7 3.0 3.0

s.e. 0.6 0.40 0.39 1.5 1.5 0.23 0.8 1.1 1.1

Gma.6640.1.S1
_at

At5g66390 
(secretory 
peroxidase)

mean 1.14 -1.08 -1.16‡ -1.38 -1.21 -1.20 1.30 -1.10 -1.33

s.e. 0.49 0.22 0.06 0.15 0.10 0.15 0.16 0.17 0.13

GmaAffx.18905
.1.S1_at

Cell death 
associated 
protein

mean 3.4 1.5‡ 2.9†‡ 3.5 4.5 2.1 3.2 2.9 2.2

s.e. 0.5 0.32 0.27 0.9 0.7 0.5 0.7 0.6 0.39

Gma.17993.1.S
1_at

P21 protein mean 72 94‡ 43a‡ 41a 45a 44a 21b 100c 55a

s.e. 27 27 7 18 20 16 9 24 17

GmaAffx.75675
.1.A1_at

Phenylalanine 
ammonia-lyase

mean 9.3 15‡ 6.3‡ 7.2 7.7 6.0 4.4 7.2 6.2

s.e. 2.8 2.7 0.44 1.3 1.2 1.1 0.40 1.5 0.7

GmaAffx.2799.
1.A1_at

NtPRp27-like 
protein

mean 14 15‡ 8.3‡ 5.8 8.6 9.8 6.0 11 11

s.e. 2.4 3.4 0.7 0.8 1.5 1.9 1.0 2.5 1.9

Gma.16733.2.S
1_at

WRKY4 
transcription 
factor

mean 5.8 5.3‡ 3.5‡ 6.9 3.8 2.7 4.3 3.1 2.3

s.e. 1.3 1.2 0.44 2.2 1.1 0.8 1.1 1.1 0.5

GmaAffx.29692
.1.S1_at

Chitinase 
(class II)

mean 2.5 2.7‡ 3.1‡ 3.2 2.7 2.7 2.9 3.5 4.2

s.e. 0.35 0.6 0.21 0.6 0.34 0.6 0.27 0.7 0.5

Gma.16911.1.S
1_at

Cytochrome 
P450 family 
protein

mean 3.4 4.0‡ 3.1‡ 2.9 3.4 2.9 2.8 4.2 3.0

s.e. 0.8 1.0 0.18 0.5 0.37 0.40 0.28 0.46 0.44

GmaAffx.7209.
1.A1_at

UDP-glucose 6-
dehydrogenase

mean 1.8 2.2‡ 1.02 1.49 1.28 -1.7 -1.08 1.16 1.04

s.e. 0.27 0.6 0.11 0.21 0.28 0.12 0.14 0.31 0.26

GmaAffx.47171
.1.A1_at

Putative 
resistance 
protein

mean -1.07 1.08 1.21‡ 1.23 1.18 1.11 1.16 1.35 1.30

s.e. 0.16 0.34 0.07 0.18 0.15 0.16 0.14 0.18 0.17

Gma.3473.1.S1
_at

Protein, small 
heat shock

mean -1.41 -1.6 -2.2‡ 1.03 -3.6 -3.3 -1.9 -2.4 -1.9

s.e. 0.16 0.09 0.05 0.37 0.05 0.08 0.08 0.11 0.15

Table 5: Consistency of selected gene expression differences among independent experiments, measured by qRT-PCR and/or 
microarray. (Continued)
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GmaAffx.90984
.1.A1_at

Germin-like 
protein

mean 5.3 2.5‡ -1.06 1.10 1.18 -1.18 -1.06 -1.12 -1.23

s.e. 1.7 0.5 0.07 0.20 0.21 0.12 0.10 0.10 0.14

GmaAffx.32612
.1.S1_at

HI4'OMT mean 57 16‡ 25a‡ 18a 22a 24a 18a 43b 41b

s.e. 16 4.2 2.8 6 5 7 4.9 12 8

GmaAffx.90059
.1.S1_at

HcrVf2 protein mean 3.9 2.5‡ 2.7‡ 5.5 4.0 1.3 2.3 2.8 2.4

s.e. 1.1 0.38 0.25 0.8 0.7 0.17 0.35 0.44 0.7

GmaAffx.79817
.1.S1_at

SGT1 mean 1.21 -1.19 -1.04 1.08 -1.02 1.01 -1.02 -1.08 -1.18

s.e. 0.28 0.05 0.05 0.18 0.06 0.20 0.07 0.05 0.04

aGenotypes used for this comparison were cultivars V71-370 and Sloan; b22 genes selected for qRT assays. cThe functional annotation of the 
selected genes. [HK] indicates housekeeping genes used to normalize the qRT-PCR results dThe average expression difference between inoculated 
and mock samples, calculated as a fold-change. Negative values indicate downward change in response to infection. The presence of letter suffixes 
(a, b, c) after mean values indicates the presence of significant variation among the subgroup means, as determined by Least Significant Difference 
with a cutoff of an FDR-adjusted p value of 0.05. In those cases, means with the same suffix are not significantly different from one another. If no 
suffixes are present, there are no significant differences among any of the means. Symbol * indicates gene expression differences measured by 
microarray analysis in the pilot experiment that differ significantly from the measurements obtained by qRT-PCR analysis, determined using t tests 
with a cutoff of an FDR-adjusted p value of 0.05. Symbol † indicates gene expression differences measured by microarray analysis in the whole 72 
replicate experiment that differ significantly from the measurements obtained by microarray analysis in the pilot experiment, determined using t 
tests with a cutoff of an FDR-adjusted p value of 0.05. Symbol ‡ indicates expression changes in the pilot microarray experiment and the whole 72 
replicate experiment that are significant at a cutoff of a TST-FDR-adjusted p value of 0.01. eThe standard errors are calculated from log-transformed 
expression differences from 3 technical replicates in the case of the qRT-PCR results, from 4 biological replicates in the case of the pilot array data, 
from 72 biological replicates in the whole main experiment, and from 12 biological replicates in the main experiment sub-groups. fAll the 72-
replicates as a whole experiment. gSub-groups of the whole experiment each comprising 12 consecutive replicates.

Table 5: Consistency of selected gene expression differences among independent experiments, measured by qRT-PCR and/or 
microarray. (Continued)
appropriate for combining data from multiple independ-
ent experiments.

Low-magnitude transcriptomic remodeling differs among 
functional categories
Many researchers use two-fold change as an arbitrary cut-
off. Our results show that 13.1 to 23.5% of the signifi-
cantly changed genes in the upper infection court and
29.8% to 36.8% in the lower infection court changed by
two-fold or greater in the three tested genotypes (Figure 2)
[see Additional file 4]. However, 8.2 to 15.0% of the genes
with significantly changes showed only subtle changes
(fold change of less than 1.2-fold). To examine the func-
tional significance of gene expression changes of various
magnitudes, we plotted the distribution of changes for
genes in six functional categories relevant to infection,
namely defense and disease, signal transduction, tran-
scription, intracellular trafficking, cell structure and
metabolism (Figure 3) [see Additional files 5 to 7]. In the
lower infection court of the susceptible cultivar, Sloan,
which had the greatest level of infection, 23,556 genes
showed significant changes in response to infection.
Compared to the entire set of modulated genes, the distri-
bution of changes was significantly different for all six cat-
egories (p ≤ 0.01, Kolmogorov-Smirnov test for two

samples) (Figure 3). The disease and defense category and
to a lesser extent metabolism showed a bias towards
strongly up-regulated genes, whereas transcription and to
a lesser extent signal transduction and intracellular traf-
ficking, showed a bias towards down-regulation of genes.
Similar patterns were observed in the upper infection
court of Sloan and in both courts of the resistant cultivar
V71-370 [see Additional files 5 to 8]. To test if significant
changes in distribution were present among genes show-
ing low magnitude modulation, the distribution compar-
ison was restricted to genes showing less than two-fold or
less than 1.5-fold modulation. Five of the categories (all
except disease and defense), and three categories (tran-
scription, cell structure and metabolism), respectively,
showed significantly different distributions from the over-
all gene set (p ≤ 0.01). Even among genes with less than a
1.2-fold change, those in the transcription and metabo-
lism categories still showed significantly different distri-
butions (p ≤ 0.01) (Table 6) [see Additional file 8].

Discussion
Infection profoundly affects the physiology of host cells,
including the levels of mRNAs within each cell. The ability
to measure changes in host mRNA levels during infection
is greatly limited by the intrinsic variability of the tissue
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and the difficulty of accurately reproducing infection
across multiple replicates. As result, typical studies report
significant changes in only a few percentage of the genes
being assayed [3-5,7,8,10]. Similar difficulties limit the
power of many other experiments that measure transcrip-

tional responses to genetic and physiological perturba-
tions. Here we have shown, by means of an experiment of
unprecedented statistical power, that significant changes
in the levels of nearly all host transcripts can be measured
during infection of soybean with the eukaryotic pathogen
Phytophthora sojae. Up to 36.8% of the changes were
greater than 2-fold in magnitude but the majority were of
lower magnitude. Up to 15% of the changes were less than
1.2-fold in magnitude. Similar widespread reprogram-
ming of the transcriptome was also detected in response
to genotypic differences among soybean cultivars, and
even in response to different times of the day at which
plants were harvested.

An experiment such as this, combining 72 biological rep-
licates, each comprised of 20–30 plants, is very successful
at identifying overall trends, in this case identifying over-
all responses to pathogen infection. In many of the indi-
vidual genes we examined, the overall measurement also
was a very good representation of a consistent response to
infection observed across many independent experi-
ments. On the other hand, some genes showed significant
fluctuations from experiment to experiment. A major
challenge in the future will be to design experiments that
can dissect these changes and ask whether the fluctuations
simply result from technical variations in the assay,
whether the fluctuations result from small uncontrolled
variations in the conditions in which the biological mate-
rial is grown, or the more interesting possibility that fluc-
tuations in mRNA are a normal physiological event. It is
possible for example that organisms have evolved the
ability to tolerate significant changes in the levels of
mRNAs or other cellular components, and there is no evo-
lutionary advantage to imposing extremely ranges on
mRNA levels.

By re-analyzing subsets of our data that represented the
scale of replication more commonly found in microarray
experiments (4 replicates), we showed that approximately

Venn diagram showing the intersection between the sub-groups A and F and the whole experiment (W)Figure 1
Venn diagram showing the intersection between the 
sub-groups A and F and the whole experiment (W). 
Sub-group A is the first four blocks and F is the last four 
blocks of the whole experiment, which includes a total of 24 
blocks. GC-RMA preprocessed data of A, F, and W were 
analyzed separately using the same LMMA model in SAS Proc 
Mixed. Genes with significant genotype × treatment interac-
tion were determined using a cutoff of a TST-FDR adjusted p 
≤ 0.01, as described in the methods. AW indicates the inter-
section between the A and W, FW the intersection between 
F and W, and AF the intersection of the two sub-groups A 
and F. W|(A+F) refers to genes in W but not in A or F, A|W 
to genes in A but not W, and F|W to genes in F but not W. 
AF|W refers to genes in A and F but not W; the three genes 
in this set were not found significant in the other four sub-
groups (B, C, D, or E).

Table 6: Distributions of expression differences of genes in functional categories compared with the overall differences distribution

Functional categoryb

Fold change Rangea Disease & Defense Signal Transduction Transcription Intracellular Traffic Cell Structure Metabolism

Full < 0.0001c < 0.0001 < 0.0001 0.0008 0.006 < 0.0001
± 2.0X 0.03 0.0002 < 0.0001 0.002 < 0.0001 < 0.0001
± 1.5X 0.34 0.018 < 0.0001 0.017 0.0003 < 0.0001
± 1.2X 0.57 0.37 0.0008 0.23 0.36 0.0004

aThe fold changes were calculated by contrast analysis with SAS Proc Mixed using GC-RMA normalized data. "Full" = full range from the greatest 
down-regulation to the greatest up-regulation; "± 2.0X" = from down-regulated 2.0x to up-regulated 2.0x; "± 1.5X" = from 1.5x down-regulated to 
1.5x up-regulated; "± 1.2X" = from -1.2x down-regulated to 1.2x up-regulated. bFunctional category of each gene drawn from annotation of the 
Affymetrix soybean GeneChip by the Goldberg group at the University of California, Los Angeles http://estdb.biology.ucla.edu/seed. cp-value 
obtained by resampling for the Kolmogorov-Smirnov test for distribution differences between a particular functional category and the whole gene 
set for genes with significant infection responses in the lower court of Sloan; p values were adjusted for FDR by the TST method. Results for other 
cultivars and infection courts are shown [see Additional file 8].
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Distribution of gene expression changes for different contrastsFigure 2
Distribution of gene expression changes for different contrasts. Only genes with significant changes (TST-FDR-
adjusted p ≤ 0.01) are included. A negative fold-change indicates a reduction by that factor. (A-D) Infection responses in resist-
ant genotype V71-370 and susceptible genotype Sloan. "Upper" and "lower" denote infection courts as described in the text 
and the methods. Distributions of gene expression changes for VPRIL9 infection responses are shown [see Additional file 4]. 
(E) Gene expression differences between V71-370 and Sloan following mock inoculation; genes with higher mRNA levels in 
V71-370 or Sloan are shown as having a positive or negative differences, respectively. For (A)-(E), the fold changes were calcu-
lated using LMMA contrast analysis using GC-RMA normalized data. (F) Differences among 4,453 genes with significant 
responses to time of harvest in mock-inoculated Sloan plants: genes with higher mRNA levels in 12 noon samples or 9 am sam-
ples are shown as having a positive or negative differences, respectively. The fold changes were calculated from the average dif-
ference of the two treatments using the GC-RMA normalized data. The mean, median and mode of each distribution were 
calculated using the log-fold changes. The bin size of the mode was 0.01.
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Distributions of expression changes for genes within specific functional categoriesFigure 3
Distributions of expression changes for genes within specific functional categories. Six functional categories rele-
vant to infection are shown. Distributions are shown for genes showing significant infection responses (Lower vs Mock) in 
Sloan as revealed by LMMA analysis of GC-RMA preprocessed microarray data with TST-FDR adjusted p value ≤ 0.01. Distri-
bution comparisons for other cultivars and infection courts are shown [see Additional files 5 to 7]. Histograms show the 
number of genes in each fold change range. The line graph connects points corresponding to the numbers of genes in all cate-
gories in each fold change range. A negative fold change indicates a reduction in expression by that factor. p values in each 
panel indicate the result of a Kolmogorov-Smirnov test comparing the distribution of expression changes within the category 
to the distribution for all genes. The mean and median of each distribution were calculated using the log-fold changes.
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half of the transcriptional changes that we detected could
not be observed with the small-scale experiments. Taking
the intersection of six independent subsets greatly reduced
the number of detected changes further, showing that this
common practice for combining the results of multiple
experiments is extremely and unnecessarily conservative.
On the other hand, taking the union of multiple gene lists
more closely approximated the results from the full-scale
experiment.

A recent expression QTL study in Saccharomyces cerevisiae
showed variations in the levels of 79%, 69% and 47% of
the detectable transcripts in response to treatment, geno-
type and treatment × genotype interactions respectively
[15]. Those findings, together with ours, suggest that
widespread, low-magnitude transcriptional remodeling
may be a normal process during physiological adaptation
in eukaryotes, but one that is missed by conventional
experimental designs. The extensive treatment × genotype
interactions observed in both these studies suggest that
the transcriptional reprogramming is genetically control-
led.

The overall physiological response of an organism or cell
to a stimulus may require coordinated changes in a wide
array of cellular components. Those changes in turn may
require compensating or reinforcing changes in an even
wider array of functionally-connected cellular compo-
nents. As a result, understanding how a specific set of tran-
scriptional changes relates causally to a physiological
change at a whole system level, is a major challenge. Our
analysis suggests that low magnitude expression changes
may be of functional significance. The observation that
the patterns of low-magnitude transcriptional remodeling
were significantly different among most functional cate-
gories, in some cases even among genes with less than
20% perturbation, is consistent with the hypothesis that
low amplitude remodeling has functional significance.
However, we cannot rule out that some percentage of
genes may show low magnitude transcriptional modula-
tion that has no functional significance, that is, they rep-
resent a low uncontrollable level of transcriptional
variation that soybean (and other organisms) may have
evolved to tolerate. Interestingly, most of the transcrip-
tional remodeling of defense and disease response genes
was of high magnitude, while low-magnitude remodeling
was widespread in the other functional categories. We
speculate that strong transcriptional modulation of dis-
ease and defense-related genes is required for the host to
directly engage the pathogen, while the numerous other
genes that function in other categories are coordinately
modulated to support or adjust to the direct response.

Biological gene regulatory networks are highly intercon-
nected systems. Non-linear, synergistic interactions are
common. Large numbers of genes with low magnitude

transcriptional modulation could potentially be just as
important in conferring phenotypes and mediating phys-
iological adaptation as the small numbers of genes that
show large magnitude modulations. However, under-
standing the role of pervasive low magnitude remodeling
may require using computational modeling approaches at
a systems level, as well as improved technologies for accu-
rately and cheaply measuring those changes. Systems
approaches will also be needed to develop a deeper under-
standing of how consistent small magnitude changes and
stochastic fluctuations are integrated to produce pheno-
types.

Conclusion
Our findings, consistent through two different normaliza-
tion methods and two different statistical analysis proce-
dures, suggest that almost the entire soybean genome
undergoes significant transcriptional remodeling in
response to pathogen infection and genetic variation. The
majority of the transcriptional differences are less than
two-fold in magnitude. The low amplitude modulation of
gene expression (less than two-fold changes) is highly sta-
tistically significant, even for modulations of less than
20%. These findings demonstrate that low amplitude
transcriptional modulation forms an integral component
of physiological adaptation in soybean, and, we speculate,
in all eukaryotes.

Methods
Plant materials and pathogen isolate
Three soybean genotypes with varying degrees of resist-
ance to Phytophthora sojae were used for this study. V71-
370 is a resistant genotype, VPRIL9 is moderately suscep-
tible and Sloan and is highly susceptible[16,17]. P. sojae
isolate, PT2004C2.S1, isolated from Ohio in 2004, and
virulent to soybean differentials with Rps1a, Rps1b, Rps1k,
Rps2, Rps3a, Rps3c, Rps4, Rps5, Rps6, or Rps7, was used in
this study.

Inoculation assay
Inoculation assays were performed using the slant board
technique [16]. Briefly, 7-day-old soybean seedlings,
grown in vermiculite, were thoroughly rinsed under tap
water and placed in inoculation trays (20–30 plants per
sample). The plants were wounded at 2 cm below the
beginning of the root zone by scraping the epidermis with
a scalpel and then were inoculated with a mycelial agar
slurry from a 7-day-old culture or agar alone. Root tissue
samples 7.5 mm long were collected at 5 days post inocu-
lation (dpi) from immediately below (the treatment
"Lower") and above (the treatment "Upper") the upper
lesion margin from each seedling with characteristic
lesions. In each case, the root tissue samples from like
treatments and harvests were pooled. Thus each set of 30
pathogen-inoculated plants yielded two pooled samples,
one pooled from 30 sections from the lower infection
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courts and one pooled from 30 sections from the upper
infection courts. For the mock-inoculated plants (the
treatment "Mock"), 15 mm tissue sections were taken
spanning from 7.5 mm below to 7.5 mm above the posi-
tion corresponding to the average lesion length measured
from the inoculated samples. Thus each set of 20 mock-
inoculated plants yielded one pooled mock sample. All
the plants for each block were grown in the same growth
chamber (Environmental Growth Chambers, Chagrin
Falls, Ohio; Model M-48 with TC2 microcontroller unit)
with day and night temperatures settings of 27°C and
21°C, respectively and relative humidity averaging 75 to
90%.

Overall experimental design
The data for this study comes from control inoculations
that formed part of a large study of a recombinant inbred
line population that was organized into 29 blocks. All
plants for a block were raised, inoculated and incubated
together in the same growth chamber. Each block
included the same three control genotypes (V71-370,
Sloan and VPRIL9). Three replicates of the three geno-
types were inoculated with P. sojae (generally 30 plants) or
mock-inoculated (generally 20 plants), then harvested 5
days later at three different times during the morning of
harvest (9 am, 10:30 am, and 12 pm). Each block yielded
27 sets of samples, which were the complete combina-
tions of the 3 genotypes, 3 treatments and 3 time win-
dows. Thus the experiment was balanced with respect to
the factors, soybean genotypes, treatment ("Upper",
"Lower", and "Mock") and inoculation time window.
Since the differences between the samples harvested at 9
am, 10:30 am and 12 pm were small, in this study we refer
to the 3 × 29 sets of samples obtained from the 29 blocks
as biological replicates. The 24 blocks in which all the
control samples passed quality control were used for sta-
tistical analyses.

RNA extraction and microarray assay
Total RNA was isolated from each of the pooled plant
samples using the QIAGEN RNeasy® Plant Mini Kit, fol-
lowing the manufacturer's protocol for total RNA extrac-
tion from plant and filamentous fungal tissue with the
following minor modifications. 250 mg of fine tissue
powder was used with appropriate scaled-up buffer vol-
umes, and the Buffer RLT-suspended samples were thor-
oughly vortexed for 2 minutes and then incubated in
56°C water-bath for 3 min and kept in ice for 1 min
before the first spin. The quantity and quality of total RNA
were checked with both a NanoDrop ND-1000 Spectro-
photometer and an Agilent 2100 Bioanalyzer.

Microarray procedures were performed at the Core Labo-
ratory Facility (CLF) of the Virginia Bioinformatics Insti-
tute. The standard eukaryotic gene expression assay
protocols were followed as described in the Affymetrix

GeneChip® Expression Analysis Technical Manual. Briefly,
as the first step, biotin-labeled cRNA was generated using
the One-Cycle Target Labeling and Control Reagents
(Affymetrix) and 1 μg of total RNA. Second, 20 μg of
biotin-labeled cRNA was fragmented in Fragmentation
Buffer. Third, fragmented cRNA was hybridized to a soy-
bean GeneChip at 45°C for 16 h in an Affymetrix hybrid-
ization oven (model 640). Fourth, the GeneChips were
washed and stained with streptavidin-phycoerythrin
using the fluidics protocol EukGE-WS2v5-450 in the
Affymetrix® GeneChip® Fluidics Station 450. Finally, the
stained chips were scanned with an Affymetrix GCS3000
7G Scanner. The Affymetrix GeneChip® Operating Soft-
ware (GCOS, v1.4.0.036) was used to provide instrument
control, first-level data analysis, and data management for
the entire GeneChip System. Samples within experimen-
tal blocks were randomized before being provided to the
CLF, to reduce possible block effects arising from process-
ing samples together during the microarray analysis work
flow.

Low level data pre-processing
Quality control was performed using a variety of tools
from the MAS5 and AffyPLM quality control toolsets.
These included analysis of percentage of probes called
present, the scaling factor and average background of each
chip. In addition, ratios of 3' to 5' probes for β-Actin were
used to check for RNA degradation. Calculation of the
interquantile ranges of the normalized unscaled standard
error and of the relative log expression was used to remove
outliers. All chips in the 24 blocks selected for this study
passed these QC tests. Low-level analysis of the raw Gene-
Chip data began with filtering the non-expressed genes
based on the Affymetrix Microarray Suite version 5
(MAS5) algorithm for calls (as implemented in the Bio-
conductor package affy, http://bioconductor.org/pack
ages/2.0/bioc/html/affy.html) taking into account the
experimental design. The default parameter τ (0.015) in
the MAS5 present call was used, and a probe set (which
approximately represents a gene, as 95% of the soybean
probe sets are unique) was declared to be detectable (or
present) if it had a present call in 40% of the chips.

The principal data pre-processing method used in our
data analyses was GC-RMA, which included a GC-RMA
background correction, quantile normalization, and com-
putation of gene summary values from the corrected
probe-level data. Background correction was performed
with the model-based procedure [18] using sequence
information as implemented in the Bioconductor package
gcrma http://bioconductor.org/packages/2.0/bioc/html/
gcrma.html. Quantile normalization [19] and Tukey's
median-polish algorithm based gene summary values
were computed using a modified C program capable of
processing several thousand GeneChips simultaneously
(L. Bao, unpublished results).
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As an alternative method for data pre-processing, we used
the Affymetrix MAS5 default algorithms available in the
affy package. Global scaling was implemented to assure
that all the chips had the same trimmed mean signal
intensity using all soybean probe sets.

Our finding that most detectable transcripts show signifi-
cant changes raises important questions about the
assumptions underlying normalization procedures. MAS5
assumes that the sum of the expression levels of all tran-
scripts remains constant. Quantile normalization assumes
this also, and assumes in addition that the distribution of
probe signals remains constant across all arrays. Invariant
set approaches assume that a pre-determined set of genes
show no changes. The assumption that the sum of the
expression levels of all transcripts remains constant is a
highly robust one because the amount of labeled cRNA
added to a microarray hybridization is always normal-
ized. Thus even if the amount of mRNA per cell in the
source tissue varied (which should be reflected in varia-
tion in the sum of the expression levels of all transcripts)
this variation is cancelled by the experimental procedure.
Accurately capturing changes in the amount of mRNA per
cell in source tissue is currently technically infeasible.

To estimate whether normalization had systematically
biased the measured transcriptional changes, we deter-
mined the mode of the changes. Under the assumption
that the most common transcriptional changes will be the
smallest in magnitude, the mode should lie close to 1.0
(i.e. no change). In fact the mode in each contrast studied
ranged between 0.99 and 1.01.

Linear mixed model analysis of gene expression levels
A total of 648 soybean GeneChips from 24 complete
experimental blocks were selected for the high-level data
analyses. The high-level analyses were performed sepa-
rately for each soybean probe set, using Linear Mixed
Model Analysis (LMMA) in the PROC MIXED procedure
of SAS (SAS 9.1 for Windows, SAS Institute Inc., Cary, NC,
USA) [20]. The fixed factors of the linear mixed model
included genotype, treatment (Upper, Lower and Mock),
and time (9 am, 10:30 am, and 12 pm), and the genotype
by treatment interaction. Random factors included in the
model were: block, the interactions block by genotype,
block by treatment, block by time and block by genotype
by treatment, and residual. Variance components were
estimated by the method of Residual Maximum Likeli-
hood, and F-tests were performed for all fixed factors.

All F-tests across all genes and all the fixed factors were
considered as one family of tests, and the resultant collec-
tion of p-values was used to compute adjusted p-values
based on two False Discovery Rate (FDR) controlling
methods, the linear step-up method of Benjamini and

Hochberg [21] and the two-stage linear step-up method
(TST) of Benjamini et al [22]. In addition, the p-values
were used to compute the q-values for the positive FDR
criterion as described by Storey and Tibshirani [23].
Because the differences between the FDR methods were
small, we mainly report results obtained with the TST
method.

We also estimated and tested individual contrasts of inter-
est, most of which were linear functions of the cultivar by
treatment interactions. Because the F-test for the genotype
by treatment interaction was found to be significant for
the majority of probe sets (24,669 out of 28,351), we
employed a one-step approach for testing the significance
of individual contrasts, i.e. we tested all contrasts of inter-
est for all genes rather than for only those genes with sig-
nificant F-test for the genotype by treatment interaction.
We were interested in identifying the differentially
expressed genes for the contrast "infection response",
which compares gene expression between pathogen and
mock inoculation in a given cultivar and infection court,
and these are used to determine which genes are up- or
down-regulated within a given infection court as a result
of the pathogen attack in a given cultivar. The infection
responses were split into two subtypes, i.e., Upper vs.
Mock, and Lower vs. Mock. The collection of the t-tests for
all contrasts across all genes was considered as a family of
tests, and significant contrasts were determined with the
same FDR methods as those used for the F-tests.

Wilcoxon signed rank tests of differential gene expressions
As an alternative high-level analysis to LMMA, we used the
non-parametric Wilcoxon Signed Rank Test using the wil-
cox.test function (R package stats version 2.6.0). For each
gene and within each cultivar, we formed two pairs of
samples, Upper and Mock, and Lower and Mock, respec-
tively. Each consisted of the GC-RMA log2 scale signal
intensity data for the paired treatments (e.g. Upper and
Mock) (sample size = 3 × 24 = 72). The collection of p-val-
ues across all genes was considered as a family of tests, and
significant contrasts were determined with the same FDR
methods as those used earlier. The same procedure was
used to perform the Wilcoxon signed rank test and FDR
control with the preprocessed data generated by MAS5.

Kolmogorov-Smirnov test for two distribution patterns
We used the Kolmogorov-Smirnov (KS) test to test for sig-
nificant differences in the distributions of gene expression
changes for specific categories of genes. The expression
changes in response to pathogen inoculation were consid-
ered for genes in which the change was significant by
LMMA contrast analysis of infection responses using SAS
Proc Mixed. The distributions of expression changes were
examined for genes in six functional categories related to
infection: "defense and disease", "signal transduction",
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"transcription", "intracellular trafficking", "cell structure"
and "metabolism". For this purpose we used the functional
category of each gene drawn from annotation of the
Affymetrix soybean GeneChip by the Goldberg group at the
University of California, Los Angeles http://estdb.biol
ogy.ucla.edu/seed; we have reviewed this annotation exten-
sively and found it very reliable. In each case, the
distribution within the functional category was compared
to the distribution for the total gene set, including the genes
within the functional category, to test the null hypothesis
that the observed distribution of expression changes
affected all genes irrespective of functional category. This is
a more conservative test than testing the distribution of a
subset of genes against the remainder of the genes. To test
for distribution differences within specific ranges of gene
expression changes, three ranges were chosen: all genes
with less than two-fold regulation (up or down); all genes
with less than 1.5-fold regulation (up or down); and all
genes with less than 1.2-fold regulation (up or down). Then
the distribution of changes was compared between a func-
tional category and all genes within the chosen expression
range. For all these tests we used the ks.test function in the
R package stats (version 2.7.0). Because we compared the
distribution of the genes in a category to that of all genes,
and because the gene expression profiles have complex cor-
relation structures and thus the values for individual genes
may not be independent [24], we computed an empirical p
value for each test by the following procedure. For any gene
category with n genes, we randomly sampled n genes from
the list of all significant genes and recomputed the KS test
statistic. This process was repeated 10,000 times, and the
collection of ordered KS statistics was then used to compute
an empirical p-value for the category. Finally, FDR control
was performed on the set of p-values from all KS tests using
the TST method [22].

Quantitative real time RT-PCR (qRT-PCR) assay
To provide a comparison between the microarray assays
and another commonly used measure of gene expression
differences, qRT-PCR, gene expression differences
(infected versus mock) for a set of selected genes were
measured by qRT-PCR during a pilot experiment. The
pilot experiment included four biological replicates and
was conducted using the same methods as described
above, with the following modifications: for each of the
two cultivars (V71-370 and Sloan) four replicates of 30
plants (grown together in the same growth chamber) were
harvested 5 days after inoculation, and a single segment of
infected tissue (treatment "Inoculated") comprising the
upper and lower infection courts was excised from each
plant. RNA was extracted from each pool of 30, then equal
amounts of the RNAs were pooled from four biological
replicates for microarray analysis. In parallel, an equal
number of mock-inoculated plants were harvested and
RNA extracted pooled in the same way.

For qRT-PCR assays, 22 soybean genes of interest (includ-
ing 4 housekeeping (HK) genes) with varied levels of gene
expression were selected (Table 5). Equal amounts of RNA
from each of the four biological replicates were pooled for
the qRT-PCR assays. The primers [see Additional file 9]
were designed using the Beacon Designer 4.0 (Premier Bio-
soft International, Palo Alto, CA) and synthesized by Inte-
grated DNA Technologies, Inc.(Coralville, IA). The
amplicons for development of standard curves were pre-
pared first using the purified total RNA as a template and
the SuperScript™ III First-Strand Synthesis System for RT-
PCR (Invitrogen™ Life Technologies) and then using con-
ventional PCR with the synthesized cDNA as template. The
amplicons were purified using a QIAquick PCR Purification
Kit (Qiagen) and checked for quality in the Bioanalyser.

qRT-PCR assays were carried out by the Virginia Bioinfor-
matics Institute Core Laboratory Facility. Briefly, total
RNA (1 μg) was transcribed to cDNA using first strand
cDNA synthesis reagents (Invitrogen Corp., Carlsbad, CA)
in a total volume of 20 μl. Standard curves were produced
with serial 10-fold dilutions of cDNA products starting
from 10 pg/μl. Each 25 μl qRT-PCR reaction consisted of
300 nM sense and anti-sense primers, 1 μl 10× diluted
cDNA, and 12.5 μl SYBR Green I PCR Mastermix (Applied
Biosystems, Foster City, CA). Each reaction was run in
triplicate for both the standard and samples. PCR reac-
tions were performed on a Bio-Rad i-cycler (BioRad, Her-
cules, CA) under the following conditions: 95°C for 3
min, 40 cycles of 95°C for 10 s, 56°C for 45 s to calculate
cycle threshold (CT) values, followed by 95°C for 1 min,
55°C for 1 min, and 80 times of 55°C for 10 s, increasing
temperature by 0.5°C each cycle to obtain melt curves.
The BioRad iCycler IQ 3.1 Optical System Software was
used and PCR efficiency (E) was estimated using the equa-
tion (1+E) = 10(-1/slope) [25]. Pathogen-inoculated vs Mock
expression ratio of a gene of interest was calculated from
the equation:

Where E denotes PCR efficiency, CT denotes cycle thresh-
old value, ΔCT is the cycle threshold difference between a
mock sample and its corresponding pathogen-inoculated
sample, gene denotes the gene of interest, NF denotes the
normalization factor calculated from the geometric mean
of the raw ratios (i.e., (1 + Eh) ΔCTh, here h denotes a house
keeping gene) of the three selected housekeeping genes
[26]. Four housekeeping genes (the first four rows of
Table 5, including actin) were initially evaluated, based
on the microarray data from the pilot experiment. The
best three (marked [HK] in Table 5) were selected using
the gene-stability measure and ranking method [26].

Ratio =
+ Δ( )1 Egene

CTgene

NF
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been deposited in NCBI's Gene Expression Omnibus [27]
and are accessible through GEO Series accession number
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acc.cgi?acc=GSE11611.
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