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Abstract

Background: Microarray expression profiling is becoming a routine technology for medical research and
generates enormous amounts of data. However, reanalysis of public data and comparison with own results is
laborious. Although many different tools exist, there is a need for more convenience and online analysis with
restriction of access and user specific sharing options. Furthermore, most of the currently existing tools do not
use the whole range of statistical power provided by the MAS5.0/GCOS algorithms.

Description: With a current focus on immunology, infection, inflammation, tissue regeneration and cancer we
developed a database platform that can load preprocessed Affymetrix GeneChip expression data for immediate
access. Group or subgroup comparisons can be calculated online, retrieved for candidate genes, transcriptional
activity in various biological conditions and compared with different experiments. The system is based on Oracle
9i with algorithms in java and graphical user interfaces implemented as java servlets. Signals, detection calls, signal
log ratios, change calls and corresponding p-values were calculated with MAS5.0/GCOS algorithms. MIAME
information and gene annotations are provided via links to GEO and EntrezGene. Users access via https protocol
their own, shared or public data. Sharing is comparison- and user-specific with different levels of rights. Arrays
for group comparisons can be selected individually. Twenty-two different group comparison parameters can be
applied in user-defined combinations on single or multiple group comparisons. ldentified genes can be reviewed
online or downloaded. Optimized selection criteria were developed and reliability was demonstrated with the
"Latin Square" data set. Currently more than 1,000 arrays, 10,000 pairwise comparisons and 500 group
comparisons are presented with public or restricted access by different research networks or individual users.

Conclusion: SiPaGene is a repository and a high quality tool for primary analysis of GeneChips. It exploits the
MAS5.0/GCOS pairwise comparison algorithm, enables restricted access and user specific sharing. It does not aim
for a complete representation of all public arrays but for high quality analysis with stepwise integration of
reference signatures for detailed meta-analyses. Development of additional tools like functional annotation
networks based on expression information will be future steps towards a systematic biological analysis of
expression profiles.
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Background

Standardization in gene expression analysis is of central
importance. However, the many different concepts of bio-
informatic exploitation including image processing, nor-
malization and extraction of useful information are a
matter of continuous discussion. Large repositories at the
National Center for Biotechnology Information (NCBI)
and European Bioinformatics Institute (EBI) archive raw
data of arrays produced with different platforms [1-3].
Many different tools and strategies are available for analy-
sis and re-analysis [4-10]. Different knowledge bases sup-
port functional interpretation [11,12]. Some tools may be
specific for particular platforms; others are applicable to
any platform if data are adapted to a general format.

This diversity of information and possibilities of analysis
require that scientists have to familiarize themselves with
laborious, time-consuming and inconvenient technical
aspects, need to learn professional pre-processing, per-
form bioinformatic set up work and develop program spe-
cific expertise. This is time consuming and prevents many
scientists from exploitation of these precious data. Fur-
thermore, many processes of data analysis are repeatedly
performed in different laboratories, individual concepts
are developed and data become widely distributed but
with little option to combine or share this individually
generated information. Publications usually focus on par-
ticular aspects that were of interest at the time of writing
the manuscript while questions on other parts of the data-
sets arise only thereafter.

Thus, recent approaches for example with Celsius [13],
ArrayExpress [14,15], GEO profiles [16,17] or GS-LAGE
[18], aim to warehouse array data in combination with
various options for re-analysis. However, these databases
do not offer sufficient privacy, provide in part a limited
number of tools and thus are not made for primary anal-
ysis. Other database concepts focus on gene specific ency-
clopedic presentation of differences in signal intensity
between various cell types, tissues or pathological condi-
tions like HugeIlndex [19] or relate to microarray data of a
particular research field like Oncomine [20,21]. These
usually do not provide the algorithms of the primary anal-
ysis used for the publication of the data. A third category
of databases like BASE [22,23] used in the LCB data ware-
house [24] or MARS [25] were set up to store a compre-
hensive list of experimental parameters and the array raw
data with restricted access and to provide tools for primary
analysis. However, public access in these databases is still
very limited.

Finally, all databases mentioned have no options for anal-
yses based on GCOS comparison statistics, a particular
algorithm that was generated to exploit the technical spe-
cificities (multiple oligonucleotides per probe set with
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perfect match and mismatch sequences) of the most com-
monly used microarray on the market. Especially for com-
parison of small numbers like 5 or less arrays per group,
which is a common situation, GCOS comparison statistics
is a valuable tool to estimate significance of differential
expression.

Being aware of the many advantages but also restrictions,
we set up an Oracle 9i database called SiPaGene with the
concept to store pre-analyzed array data which can be
retrieved online, reanalyzed in subgroups, shared between
partners and stepwise developed to a tool for functional
annotations by constantly expanding information. We
focused on array data generated with the GeneChip® tech-
nology as a leading commercial platform and applied the
standards of signal and comparison statistics imple-
mented in the software tools MAS5.0/GCOS [26].

Construction and content

User and sample information

Access to the database is encrypted via https and either via
anonymous public login exclusively to public data sets or
via personalized and password protected login as regis-
tered users to both, public and personal data. Information
about the client including name, e-mail address, login
and password is stored in a table and linked to specific
arrays and data. Users may access data of their own arrays
or arrays generated by others who are willing to share with
them.

Each array is specified by a name consisting of six different
attributes to facilitate identification and recognition: 1)
the donor group, 2) the type of tissue or cell that has been
investigated, 3) an optional stimulus to which the tissue
or cell was exposed, 4) an optional kinetic label for the
stimulus, 5) the type of array used for hybridization, and
6) an incremental count that identifies each individual
array of a group with the same attributes 1) to 5). These
parameters describe the experiment with sufficient preci-
sion and will give future options to select specific experi-
ments based on these attributes. The parameters are
presented in an abbreviated format and stored with
extended description for full text search.

Information on public arrays and experiments is provided
by an array specific link to the public repository (GEO or
ArrayExpress), which provides all corresponding raw data
and metadata.

Information derived from GCOS data analysis

Scanning of Affymetrix GeneChip arrays produces DAT-
files that will be converted into CEL-files. The GCOS soft-
ware provided by Affymetrix is specialized for the Gene-
Chip technology with probe sets consisting of perfect- and
miss-match oligonucleotides. We experienced advantages
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of this analysis concept especially for comparison of small
sample sizes. Based on this software and its standard set-
tings for detection and change calls, we perform signal
analysis by global normalization and scaling to a target
value of 150 for all array types. For each array, signal val-
ues, detection calls and detection p-values are exported
from GCOS as txt-files and imported into a specific table
in the SiPaGene database. This table is linked to the name
of the array, probe set IDs, and information about owner-
ship and sharing with other users.

The algorithm for pairwise array comparison in the GCOS
software provides signal log ratios (SLR), change calls and
change p-values. These three parameters that are calcu-
lated for each probe set, are imported into the comparison
table in the SiPaGene database and are linked to the name
of the experiment and the baseline array as well as to a
table with ownership and sharing status for pairwise com-
parisons.

Group comparisons

Group comparisons are performed between two groups of
arrays and combine data from pairwise comparisons and
signal information from all arrays combined to one
group. Names of these group comparisons are deduced
from the 6 attributes that define the names of the arrays
involved. These names are stored in a separate description
table and are linked to the tables that contain the array
names, the pairwise comparisons and the ownership and
sharing information for group comparisons and pairwise
comparisons. Thus, the right for access to the complex
ownership information for a group comparison is imme-
diately linked to the name of a group comparison, which
facilitates sharing from the perspective of the user. To start
the first group comparison for two groups of arrays, access
is restricted exclusively to the owner by the ownership sta-
tus of all pairwise comparisons needed for a group com-
parison.

Information generated by group comparisons

The different parameters derived from signal calculation
by the GCOS software were used to calculate mean,
median and standard deviation of signal values as well as
the percentage of "present” calls for the groups of experi-
ment arrays and baseline arrays separately. We included
"marginal” calls into the number of "present" calls. Calcu-
lating the mean of the Signal Log Ratio (SLR) values, the
conversion of this value into the fold change, and the per-
centage of ,increased” and ,decreased” calls summarizes
pairwise comparison information of all possible compar-
isons. Furthermore, the percentage of "no change" calls is
calculated between all experiment and baseline arrays,
between all arrays of the experiment group and between
all arrays of the baseline group. Finally, different Welch t-
tests are performed: i) with the log transformed signal val-
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ues between experiment and baseline group, ii) with SLR
values by comparing the SLR of the experiment versus
baseline group with the SLR of the comparisons either
within the experiment or the baseline group alone or with
the SLR of both group-internal comparisons together. All
these data are stored in the table for group comparisons,
which is linked to the name of the group comparison.

Ownership and data sharing

To define ownership and data sharing between users,
array-specific and comparison-specific ownership and
sharing information is necessary. This is in accordance
with our concept that group comparisons between sets of
arrays are the core information stored in and retrieved
from the SiPaGene database. The rights to access data are
classified in 4 groups: 1) a user is owner of the array and
the pairwise comparison; 2) sharing allows another user,
who is defined by the owner, to retrieve candidate genes
from group comparisons (read a group comparison); 3)
the previous sharing level is extended to the right that new
group comparisons with sub-selections of arrays from a
shared group comparison can be regrouped and a new
comparison can be initiated (write a group comparison);
4) the user defined by the owner has all rights of the
owner including the rights to give other defined users
access to the shared group comparison. All other users
that are not explicitly the sharing partners of the owner
have no access to the data. The owner can revoke sharing
rights at any time and can never be excluded from access
to his own arrays and comparisons.

Annotation of gene and array information to each probe
set

All signal and comparison information is linked to its par-
ticular probe set. Each probe set is linked to gene annota-
tion and ontology data as provided by Affymetrix.
Additional links are connecting to Entrez Gene entries of
the corresponding gene.

All together, arrays and probe set IDs are the central
anchors for all signal and comparison values as well as
information about genes, comparisons and rights of
access (figure 1).

Utility

General aspects, access and administration

A three-tier architecture was applied to interact with the
SiPaGene database (figure 2). Special diligence was
applied to respect privacy of data and to offer several
options to share with other clients. With an Internet
browser and a secure http connection https://www.sipa
gene.de/sipagene, the client contacts the Tomcat server to
create his own account, to login and to work via graphical
user interfaces (GUI) programmed as java servlets. The
different GUIs allow access for a registered or an anony-
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Overview of the information stored in the SiPaGene database: The four different categories of information
about rights, samples and comparisons, values and genes are linked as relational network. Arrows indicate that
individual subcategories are connected via primary key identifiers. This demonstrates that arrays and probe set IDs are the
central anchors for the huge lists of signal and comparison values.

mous (public) user. For personal accounts, after registra-
tion, a random password will be sent by e-mail that can be
changed by the client. Three incorrect attempts to login
will block the account and a new random password with
activation link will be sent to the client's e-mail account.
Passwords are stored MD5-encrypted in the database.
User specific sharing is only possible with personal
accounts. Access enables to perform new group compari-
sons, to search and select from existing group compari-
sons, to select different types of default queries, to define
query parameters individually and to explore candidate
genes with different options. Administration is performed
directly with the oracle server. This includes generating the
GCOS data analysis of individual arrays and pairwise
comparisons, importing the data with a batch processing

java program, managing the user accounts, and adminis-
trating the general aspects of oracle 9i (figure 2).

Perform a group comparison

To analyse gene expression data, group comparisons have
to be performed. These are initiated by selecting in three
steps the experiment group, the baseline group and the
individual arrays for each group. Thereafter, a java pro-
gram calculates the values of the 17 different parameters
for the group comparison as outlined in the description of
the structure. As soon as the calculation process is com-
pleted, the name of the group comparison will appear in
the selection menu for group comparison queries.
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Figure 2

Three-tier model with secure login and exchange of information between the client and the SiPaGene data-
base. Java servlets provide graphical user interfaces to perform comparisons and queries or to organize sharing information.

Find group comparisons of interest

A growing number of public data sets are available and
can be searched and selected for analysis in the ,find”
area. Queries can be performed globally or in each of the
six annotation categories with free text search fields or by
selecting from the list of abbreviated annotations. Further-
more, array- or experiment-IDs from the GEO public
repository can be retrieved. All group comparisons associ-
ated with such query parameters will be shown and can be
tagged to narrow down the number of comparisons of
interest. Depending on the selected option, all accessible,
all found, or only the tagged comparisons will be shown
in the drop-down menus of the subsequent pages for
choosing group comparisons for analysis.

Perform a query

There are two options to retrieve candidate genes, using
either the single group comparison or the multiple group
comparisons. The query form for single group compari-
sons displays all different query parameters and allows to
combine these by the Boolean operator AND for all
parameters in the same column as well as with OR or NOT
in different columns (up to 5). The different parameter
fields offer to select for candidate genes by individual
GeneChip probe set IDs, gene title, gene ontology annota-
tions, cut-off levels for signal intensities and the frequency
of significant detection for each group. Furthermore,
thresholds for parameters of comparative statistics may be
applied. These include the mean value of all pairwise SLR
results from n x m comparisons with n and m representing
the number of arrays in the experiment and the baseline

group, respectively. The fold change (FC) parameter is
deduced from the SLR value by the standard conversion
FC = 2SLR for SLR = 0 and FC = 2-SLR for SLR < 0 and thus
represents an alternative parameter for the same type of
information. Another set of parameters combines infor-
mation about the frequency of differential expression
between both groups. These consist of the percentage of
increased, decreased, or not changed expression of all n x
m comparisons as well as not changed expression between
arrays of only the experiment or only the baseline group.
These parameters help to identify candidate genes more or
less consistent in differential expression. Finally, Welch t-
tests can be retrieved, one based on signal information,
three based on SLR information as outlined above. The
advantage of the SLR based t-tests is that more measure
points are included. Thus, for small sample groups statis-
tical interpretation is stabilized and strict Bonferroni cor-
rection for these tests is effective to minimize false
discovery. These tests are helpful for the refinement of the
selection process especially in comparisons with minor
differences. Based on practical experience [27], default fil-
ter strategies were developed and programmed for con-
venient selection of increased and decreased candidate
probe sets.

The multiple group comparison page allows selecting and
comparing candidate genes from different group compar-
isons using all parameters described above. Each parame-
ter of a group comparison can be combined with another
parameter of the same or another group comparison with
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AND, OR or NOT. Up to 20 different combinations are
currently possible.

Candidate genes

The probe sets identified by either of the two types of que-
ries are displayed in a table consisting of the different
query parameters except from gene ontology but includ-
ing a link to Entrez Gene information. This table can be
downloaded as txt- or Excel-file. Furthermore, the signals
of each array and candidate probe set can be downloaded
as separate lists in txt- or Excel-format for additional anal-
yses like clustering. Each probe set ID is linked to a
detailed outline of all parameters and signals of each indi-
vidual array of the comparison.

Management of ownership, data sharing and comparisons
Each array, pairwise and group comparison is linked to
ownership and sharing information. The client who owns
the data can define and control all sharing conditions. The
GUI for "Rights" requires to identify the collaboration
partner and subsequently to define the status of sharing
for each group comparison owned by the client. This will
transfer also the corresponding rights to access pairwise
comparisons if the collaboration partner is allowed to per-
form subgroup analyses of a group comparison. Thus
access is exclusively restricted to the particular set of data
shared with the selected partner.

If comparisons are no more of interest and will not be
used in the future, clients are encouraged to delete this
information to increase efficiency of data storage and
retrieval. The page to manage comparisons is accessible
via the site "Comparison" and displays only comparisons
initiated by the client himself.

In figure 3 the most important graphical user interfaces
are summarized.

Case study: The Affymetrix Latin Square spike-in data set
The Latin Square experiment provided by Affymetrix [28]
is a relevant example to test the database. It consists of no
more than triplicates and therefore reflects a frequent sit-
uation of current profiling experiments. With specific
mRNAs of known concentration spiked into the different
experiment samples in a Latin Square format, it enables to
determine the performance of the query options of SiPa-
Gene. In detail, 14 groups of triplicate experiments (42
arrays) with transcriptomes of the HelLa cell line (ATCC
CCL-13) are spiked with various concentrations of 14 x 3
different mRNAs (table 1). These 42 mRNAs are not
expressed in the Hel.a transcriptome and represent artifi-
cial sequences, or eukaryotic controls, which are detecta-
ble by complementary probe sets on the HG-U133Atag
array. They interfere with 22 additional probe sets of the
HG-U133Atag array as described previously [29] and con-
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sist of at least 9 of the 11 oligonucleotides complementary
to any of the spikes. An additional probe set exists
(205397_x_at), which was already described by Affyme-
trix but has reduced binding specificity with only 5 out of
11 oligonucleotides complementary to the spike for probe
set 205398_s_at. Within all 22300 transcripts, the fraction
of true positives (TP) consists of 65 probe sets (including
205397_x_at).

To compare all 14 different experimental groups with
each other, 91 (= 14 x 13/2) group comparisons were nec-
essary. Each group comparison consisted of 9 (= 3 x 3)
pairwise comparisons between two groups and the three
comparisons within each group, which are applied in
both directions. Thus 42 arrays were analyzed with GCOS
to generate the signals, detection calls, detection p-values
and 861 different pairwise comparisons. All data were
imported into SiPaGene and then grouped to calculate the
values of the query parameters for the 91 comparisons.

Case study: Queries and identification of transcripts with
SiPaGene

An optimized filter strategy was developed to exclude false
positives based on high statistical variation and to include
the true positives based on stable differential expression.
This query results from independent investigations with
own array experiments (e.g. [27]) and consists of a cut-off
for low signals, a threshold for statistical significance of
detection, a threshold for homogeneity of change and a
Bonferroni corrected measure of statistical significance
(e.g. for the Latin Square dataset a t-test p value below
1.49E-7 was used). It is implemented in the database with
three different default queries that were merged to the
union of all three as the optimized selection.

This query correctly identified most of the 65 true positive
probe sets as shown in figures 4 and 5. The transcript
AFFX-r2-TagE_at was identified most frequently (90 of 91
comparisons; not found only in Exp7 vs. Exp6, i.e. 0.5 vs.
0.25 pmol; cf. table 1). The least frequently identified
probe set was 205397_x_at (38 times), which has only 5
of 11 oligonucleotides complementary to the spike for the
target probe set 205398_s_at. All other true positives were
identified in at least 69 of the 91 comparisons. The four
false positives with the highest frequency of identification
in the 91 comparisons were the transcripts 203173_s_at
(49 calls), 204890_s_at (46 calls), 204891 _s_at (45 calls),
and 213060_s_at (25 calls). All other false positives were
found in 18 comparisons or less and the majority (73
transcripts) only once. Even the minimum concentration
of 0.125 pmol compared to no spike was identified, but
only for two transcripts (AFFX-r2-TagH_at and AFFX-r2-
TagE_at) which were in independent spike groups.
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An overview of the most frequently used graphical user interfaces: The find GUI enables to retrieve and to
select comparisons of interest for further analysis and provides access to experiment information. The group
comparison GUI allows entering the areas to perform or to query group comparisons. Query parameters may be selected
individually or by default. Output of candidate genes is summarized in a list of identified probe sets, may be downloaded or
viewed in detail for individual probe sets. Sharing of group comparisons is managed via the GUI for rights and sharing informa-

tion for each named user individually.

Case study: Comparing SiPaGene with SAM and dChip
We compared our filter strategy with the DNA-chip ana-
lyzer dChip (version June, 27th 2005) [5] and the signifi-
cance analysis of microarrays (SAM, version 1.15) [6].
dChip provides its own normalization of GeneChip array
data and was used with correction for mismatch oligonu-
cleotide hybridization. SAM was applied on RMA-Express
data [4,30,31]. The delta value of the SAM tool was set to
the thresholds were the number of false positive genes is
calculated as = 1 and the median false discovery rate is
minimal.

Experiment 8 was selected for comparison, because the
spike for 205398_s_at was maximum (512 pmol, Table 1)
and, therefore, had the best chance to interfere with probe
set 205397_x_at to identify all 65 true positives. Experi-
ment 8 was compared with all other 13 experiments and
the total number of identified probe sets as well as true
and false positives was counted. Figure 5 presents the
mean and standard deviation of the results for all three
tools and 13 group comparisons, each. SAM had a high
recall ratio for true positives but failed in a few compari-
sons to eliminate false positives as reflected by the high
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Table I: Latin Square experiment

Group  Gene ID of spiked
ID sequence

EXP |

EXP 2

EXP 3

EXP 4

EXP 5

EXP 6

EXP 7

EXP 8

EXP 9

EXP 10

EXP 11

EXP 12

EXP 13

EXP 14

| 203508_at
204563_at
204513_s_at
2 204205_at
204959 _at
207655_s_at
3 204836_at
205291 _at
209795_at
4 207777 s_at
204912_at
205569_at
5 207160_at
205692_s_at
212827 _at
6 209606_at
205267_at
204417_at
7 205398_s_at
209734 _at
209354 _at
8 206060_s_at
205790_at
200665_s_at
9 207641 _at
207540_s_at
204430_s_at
10 203471 _s_at
204951 _at
207968_s_at
I AFFX-r2-TagA_at
AFFX-r2-TagB_at
AFFX-r2-TagC_at
12 AFFX-r2-TagD_at
AFFX-r2-TagE_at
AFFX-r2-TagF_at
13 AFFX-r2-TagG_at
AFFX-r2-TagH_at
AFFX-DapX-3_at
14 AFFX-LysX-3_at
AFFX-PheX-3_at
AFFX-ThrX-3_at
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Concentrations (pmol) of spiked sequences for all 14 experiments. Details and sequences are presented on the Affymetrix web site [28]. Seven of the 42 spikes affect 23 additional probe sets of the HG-
U33Atag array, thus increasing the number of affected probe sets on the HG-U133Atag array to 65. The spike for probe set 205398_s_at in group 7 consists of sequence elements identical to 5 of the ||
oligonucleotides of probe set 205397_x_at. Thus, comparing experiment 8 with all other experiments has the best chance to detect interference with probe set 205397_x_at (Figure 5). The sequences spiked
in group 14 interfere with the here shown 3 and |5 additional probe sets. This spike group has the lowest concentrations in experiments two to six (0 to 1.0 pmol), resulting in the lowest recall rates in these

comparisons (cf. figure 4, chart number 2 — 6). In these comparisons not only 3 but 18 true positives have very low concentrations and are difficult to detect.
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standard deviation (worst in the comparison of Exp 8 ver-
sus Exp 4 with more than 300 hits). dChip revealed
slightly less true positives and presented a small but con-
stant selection of false positives. Compared to SAM and
dChip, the optimized query with SiPaGene produced the
best selection with most of the true positives and the least
of the false positives. In detail, at least 60 true positives
were identified with dChip only in four, with SAM in five
and with SiPaGene in 8 of the 13 comparisons. In all other
analyses (1 - 7 and 9 - 14) not directly compared with
SAM or dChip, the optimized query implemented in the
SiPaGene database identified this high recall rate of 60 or
more true positives in at least 7 of the 13 comparisons per-
formed in each experiment group (figure 4). In summary,
although differences are not extreme between SAM, dChip
and SiPaGene, the study demonstrates that a complex
query can improve the rate of correctly identified genes
and that this query can be standardized independently of
another experiment.

Discussion

SiPaGene provides rapid GeneChip analysis based on
MAS5.0/GCOS statistics with a standardized workflow to
generate various statistical parameters for optimized but
also flexible selection conditions. An important feature is
the management of access with administrative tools to
define for each comparison absolute privacy, different lev-
els of user specific sharing or full public access. Thus, the
SiPaGene database combines the functions of a repository
for gene expression data with tools for flexible and opti-
mized primary as well as meta-analysis with single and
multiple group comparisons. Increasing numbers of pub-
lic and private data sets along with the sharing options
enable validation, improve interpretation and encourage
controlled exchange of array data.

Other algorithms like RMA have replaced MAS5.0/GCOS
pairwise comparison statistics. Previous reports demon-
strated that signal normalization by these newer algo-
rithms improve results of comparative analysis [29,32].
However, these tools have been compared with MAS5.0/
GCOS on the basis of probe set signal calculation. Here
we could show exemplarily with the data of the Latin
Square spiking experiment that a consequent application
of the MAS5.0/GCOS pairwise comparison statistics pro-
vides more robust results than analyses with dChip or
with RMA and SAM.

Many GeneChip array experiments in GEO or ArrayEx-
press were performed with a limited number of hybridiza-
tions (usually less than 5 arrays per group). Two principle
factors influence statistical power in these experiments:
biological and technical variability. While testing of bio-
logical variability cannot be improved except by increas-
ing the number of array hybridizations, technical

http://www.biomedcentral.com/1471-2164/10/98

variability can be assessed using the GeneChip informa-
tion from individual oligonucleotides of each probe set
not only for signal calculation but also for statistical test-
ing of differential expression between two arrays. This
extended information is provided by the change call sta-
tistics in MAS5.0/GCOS for pairwise comparisons and is
summarized in the derivative parameters calculated in
SiPaGene for each group comparison. The exponentially
increasing number of pairwise comparisons with increas-
ing numbers of arrays per group is certainly a disadvan-
tage and a limit of this approach. For example, comparing
two groups of 10 arrays each will require calculation of
190 pairwise comparisons, two groups of 50 arrays each
already 4950 pairwise comparisons. However, this is a
rare problem and calculating and importing up to 5000
pairwise comparisons for such a particular experiment is
not out of reach. Furthermore, these larger groups are
often clustered in subgroups, which can be conveniently
further investigated by calculating new group compari-
sons of these subgroups because all relevant pairwise
comparisons are already imported in SiPaGene for the full
group comparison.

Concerning performance of queries, the first selection
step from the table storing all probe set information from
a group comparison is based on the index pointing to the
name of the group comparison. All other conditions are
without index and subsequently retrieved out of the
number of all probe sets per comparison. Thus, perform-
ance of the database will be challenged when the number
of group comparisons is substantially higher than the
number of probe sets per array.

The main object of SiPaGene is immediate access to the
results of MAS5.0 and GCOS statistics. Raw data and
experimental metadata are maintained in other excellent
platforms and are therefore linked for all public data
mainly from GEO. This concept was favored to harmonize
information and to avoid work for already existing and
constantly curated information.

Considering that for the majority of experiments only a
small subset of transcripts is changing, the global normal-
ization method implemented in the MAS5.0/GCOS soft-
ware was applied to scale all arrays to a constant overall
intensity. This enables to constantly expand the number
of arrays without renormalization. Currently favored
algorithms like RMA require renormalization of the whole
set of arrays with each additional array to allow compari-
son between all arrays. Therefore, it has been suggested to
normalize each array to a set of reference arrays [33]. This
seems to overcome the initial limitation when we were
starting to setup SiPaGene and thus may offer to integrate
other algorithms like RMA in the future.
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Figure 4 (see legend on next page)
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Figure 4 (see previous page)

The spider charts | to 14 (referring to experiments 1-14) present the number of true positive probe sets that
were identified by the SiPaGene optimized filter strategy. The number of the chart indicates the Latin Square experi-
ment that was compared to all other |3 experiments. The comparisons are displayed in the sequence of the Latin Square spik-
ing groups | to 14 in clockwise order. For example, in spider chart I, the Latin Square experiment | was compared to all
others. The label "1-2" indicates the comparison of experiments | with experiment 2. Here close to 50 of the 65 true positive
probe sets were identified. The charts "SAM 8" and "dChip 8" present the recall of true positives comparing the Latin Square
experiment 8 with all other experiments and applying the software tools SAM and dChip, respectively. The black dot in each
chart is located between the comparisons of the Latin Square group as indicated by the chart number with the experiments
next to it in the Latin Square table. These are the comparisons with only one titer step of difference in the concentration of the
spiked sequences. Therefore, the dot indicates those comparisons that are expected to present with the lowest recall rates.
On the other hand, opposite to the dot, the highest recall rates can be expected and were indeed identified with 60 or more

true positives.

SiPaGene was set up as a database that combines both,
high quality of retrieval options not only for specialists in
bioinformatics and storage of the growing number of
microarray experiments for meta-analyses. It was devel-
oped for the Affymetrix GeneChip platform technology
and allows rapid and automated calculation for experi-
ments with many different group or subgroup compari-
sons. The quality of optimized queries was tested using
the Latin Square experiment provided by Affymetrix. This

data set has frequently been used to optimize bioinfor-
matic tools for microarray data analysis [32]. We could
demonstrate that the MAS5.0/GCOS primary signal and
pairwise comparison analysis provide a solid basis to
identify the relevant candidate genes. Sensitivity was only
decreasing when spike concentrations were very low (cf.
charts 2 - 6 in figure 4) but this was also observed with
dChip or with RMA and SAM. Especially, all comparisons
of the experiments two to six, which affected the highest

200 -
A) B) C)
150
°
b
§ -
5 dChip
5 100 SAM
4 T ~ISiPaGene
2
E 65 T
T T
50 — T
T 8.4
0 71.0 | 1032 | 68.2 51.0 | 58.8 | 59.8 20.0 | 445 I |
mean mean mean
significant true positives false positives

Figure 5

Comparisons of recall rates between dChip, SAM, and SiPaGene. Experiment 8 was compared to all other experi-
ments with all three tools. A) The mean and standard deviation (SD) of all probe sets identified by the different tools is dis-
played. Part B) presents the mean and SD of correctly recalled probe sets and part C) the mean and SD of false positive probe
sets. The optimized filter strategy implemented in SiPaGene identified the number of probe sets with the highest recall and the
lowest error rate. The relatively poor outcome of SAM results from a singular high false positive recall between experiment 8
and 4 (n = 326) indicating that this algorithm may fail in few exceptions.
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number of interfering probe sets (n = 15 out of 23, spike
group 14) with the lowest spike concentrations for group
14 (0 - 1.0 pmol), revealed the lowest recall rates for true
positives. Nevertheless, the optimized filter strategy of
SiPaGene could outperform standard tools like SAM [6]
and dChip [34]. It revealed an excellent recall rate for true
positives and the lowest rate for false positives even for the
small replicate number of three arrays per group. This
demonstrates that MAS5.0/GCOS algorithms with nor-
malization of each array separately and statistics based on
many different oligonucleotide probes per probe set are
highly effective to identify the relevant differences.

Another important option in the SiPaGene database is the
possibility to restrict access and to enable user- and com-
parison-specific sharing of data. Many expression studies
have been published without submission of the related
raw data to any of the public repositories. This indicates
that scientists are very conservative in terms of sharing
their data freely. One important reason for this seems to
be the limitation to interpret the biological processes
despite holding a genome-wide transcription profile in
hands. There is hope that appropriate tools to elucidate
the function behind these data will improve constantly
and give much better insight within the next few years.
Based on own experience, functional interpretation
improves with the number of comparisons performed
with different if possible defined reference signatures and
therefore is a cornerstone for future array analysis [35].
Such signatures depend on high quality experiments and
will be the least ones to be shared publicly. Therefore,
tools are needed that encourage collaborative exchange
and thereby enable the development of new and better
tools for interpretation of expression data.

Based on the tools for detailed group analysis of individ-
ual GeneChip experiments, options to analyze multiple
group comparisons were integrated. These are indispensa-
ble to perform meta-analyses. With a growing set of refer-
ence signatures, it will be possible to define the degree of
specificity of individual genes for a defined biological
function and to develop signature based functional anno-
tation tools. These are important and complementary to
existing annotation and interpretation software based on
literature information about individual genes, gene inter-
actions and biological functions [12,36,37]. Generating
annotations based on such meta analyses, this informa-
tion can be immediately sourced to experimental data
while literature based annotations depend on the quality
of assignment and are often longsome and difficult in
tracing back.

Next improvements, which are currently in preparation,
will include an expanded functionality, such as tools for
visualization (clustering), upload and administration of

http://www.biomedcentral.com/1471-2164/10/98

gene lists for comparative retrieval with predefined candi-
date genes, selection and storage of marker genes for
quantification of cell-type and stimulus-specific signa-
tures and to enable users to define expression-based anno-
tations.

Conclusion

Currently, about 100 registered users have access to about
1,000 arrays (=500 for public access), 10,000 pairwise
comparisons and more than 500 group comparisons. In
three large research networks with national and interna-
tional collaborations, sharing and ownership restrictions
proved their value to communicate data between defined
partners and to perform individual and user-specific que-
ries immediately after hybridization. The current version
does not aim for full implementation of any public Gene-
Chip data set like large warehousing databases do. The
intension is to provide an easily accessible high quality
framework for analysis and sharing and to enable step-
wise integration of relevant reference data according to the
needs of the users. The current set of open access data is
derived from public repositories, focuses predominantly
on immunology, inflammation, infectious diseases, tissue
regeneration and cancer, and includes studies performed
with tissues, blood or isolated cells. The various biological
conditions represented by these experiments can be step-
wise integrated in meta-analyses, can be exploited for the
generation of functional annotation networks and may
provide a basis towards a systems biology approach for
the interpretation of gene expression profiles.
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