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Abstract
Background: Gene expression time series array data has become a useful resource for
investigating gene functions and the interactions between genes. However, the gene expression
arrays are always mixed with noise, and many nonlinear regulatory relationships have been omitted
in many linear models. Because of those practical limitations, inference of gene regulatory model
from expression data is still far from satisfactory.

Results: In this study, we present a model-based computational approach, Slice Pattern Model
(SPM), to identify gene regulatory network from time series gene expression array data. In order
to estimate performances of stability and reliability of our model, an artificial gene network is tested
by the traditional linear model and SPM. SPM can handle the multiple transcriptional time lags and
more accurately reconstruct the gene network. Using SPM, a 17 time-series gene expression data
in yeast cell cycle is retrieved to reconstruct the regulatory network. Under the reliability
threshold, θ = 55%, 18 relationships between genes are identified and transcriptional regulatory
network is reconstructed. Results from previous studies demonstrate that most of gene
relationships identified by SPM are correct.

Conclusion: With the help of pattern recognition and similarity analysis, the effect of noise has
been limited in SPM method. At the same time, genetic algorithm is introduced to optimize
parameters of gene network model, which is performed based on a statistic method in our
experiments. The results of experiments demonstrate that the gene regulatory model
reconstructed using SPM is more stable and reliable than those models coming from traditional
linear model.
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Introduction
Gene expression arrays, which measure mRNA expression
levels of thousands of genes simultaneously, make it pos-
sible to understand the complexities of biological system.
By using the gene expression array in a time series para-
digm, we can study the effects of certain treatments, dis-
eases, developmental stages and drug responses on gene
expression. Moreover, the underlying gene regulatory net-
works can be reconstructed by collecting and analyzing
expression array data. Therefore, identifying gene regula-
tory networks from gene-expression data is now an
extremely active research field.

In previous studies, the time-series data of gene expression
arrays are very useful for investigating regulatory interac-
tions between genes. Cho [1] published a 17-point time
series data set measuring the expression levels of 6601
genes for yeast saccharomyces cerevisiae, obtained by
Affymetrix hybridization array. Using RT-PCR, Wen [2]
generated 9-point time series data for the expression levels
of every U2 gene involved in the rat nervous system devel-
opment. But an important and challenging problem is
how to discover the associated functions of genes based
on this huge amount of data. Many approaches are pro-
posed for gene regulatory networks modeling from gene
expression data, such as Boolean network [3-6], linear
model [7-9], Bayesian networks [10-14], neural networks
[15,16], differential equations [17-19], models including
stochastic components on the molecular level [20], and so
on. Those models can be classified into fine-grained and
coarse grained approaches. The fine-grained approach is
based on detailed biochemical knowledge and complex
networks of biochemical reactions, whose purpose is to
make those models to fit the expression data completely.
Linear model is one of the major fine-grained models.
However, gene expression array usually contains noises,
which lead to breach of feasibility and reliability of fine-
grained method. Because small fluctuations in the data
may lead to modeling errors of fine-grained approach, it
is essential to construct coarse-grained descriptions of
gene regulatory networks for studying large scale gene net-
works. Instead of focusing on the exact biochemical reac-
tions, coarse-grained approaches analyze large gene
networks at some intermediate levels by using macro-
scopic variables in a global pattern. Boolean network
model is one of the typical coarse-grained models. How-
ever, gene expression levels tend to be continuous rather
than discrete, and discretization can lend to a large loss of
information.

In this paper, a novel Slice Pattern Model (SPM) is pro-
posed to identify gene regulatory networks from gene
expression arrays mixed with noise data. It is a hybrid
approach that combines linear model and pattern recog-
nition. In general, models have more variables than avail-

able data points. Therefore, a genetic algorithm (GA) is
introduced to optimize the parameters of regulation in
gene networks [7,21]. We aim at providing a method that
can fulfill the experimental requirements against stochas-
tic noise of gene expression data, and identify more inter-
action information between genes for reconstruction of
gene regulatory network. Using SPM, We present a com-
prehensive identified gene regulatory network from the
time-series gene expression arrays of saccharomyces cere-
visiae in cell cycle stage. The results demonstrate that our
approach is able to identify the time of transcriptional lags
between potential regulators and their targets. At the same
time, it is robust and stable to reconstruct gene regulatory
networks from experimental data mixed with noise.

Methods
Rationale
Traditional linear model [9] defined in Equation (1) is
based on the fact that gene expression levels tend to be
continuous rather than discrete. It assumes that the inter-
action between genes is linear correlation. Therefore, it is
a continuous expression data modeling to find the subset
of genes whose weight sum most correlates with the
expression levels of a specific gene.

where N is the number of gene in gene network, xi denotes
the expression level of gene i at time point tk+1, weight wji
indicates the influence of gene j regulated by gene i, T is
the number of time point in gene expression data, and Δt
represents the average time of interaction response. Given
a set of time equidistantly expression data, the weights wji
can be solved by using linear algebra when the number of
data points is more than the number of variables.

The task of identifying gene regulatory networks is to opti-
mize parameters, and minimize the residual between the
linear model and the gene expression data, which is
showed in Equation (2).

where y(tk+1) is the expression level of gene i at time point
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expression level of gene i at time point tk+1 in linear

model.

However, linear model only considers that interaction
response takes place between genes with one average time
delay. In fact, some interactions between genes possibly
take multiple transcription time lags, and the transcrip-
tion time lags are variable for different regulatory relation-
ships in gene networks [22,23]. Moreover, linear model
aims at training gene network models to fit the expression
data exactly. In fact, the available expression data is usu-
ally mixed with noise, and small fluctuations (noise) on
data may induce the random variation of external param-
eters and chance events in biochemical reactions [24]. The
biological noise or measurement variability might change
gene expression levels and affects the linear model which
determines the value of the weights in gene model. There-
fore, the linear model might fail in reconstructing unreal
regulatory relationships for fitting the gene expression
data with noise, which retards the reliability of reconstruc-
tion for gene network.

Slice pattern model to reconstruct the gene regulatory 
networks
In order to solve the limitations of linear model, we pro-
pose a new method, slice pattern model (SPM), to recon-
struct the gene regulatory networks from gene expression
data mixed with noise. SPM is designed to identify a set of
genes whose expression levels change not only at the next
time point, but also at more time lags. Some regulatory
interactions take place with more time lags, for example,
the known relationship SWI4 → MBP1 shows significant
statistical correlation when transcriptional time lag is
identified as three time units (three time units = 30 min)
[22] (Figure 1).

For the time-series expression data, the local regulation
relationship is considered, and the gene expression data in
the multi consecutive times is divided into series slices
with k-size sliding window. Let a time-series set G(g1, g2,...,
gT) represents a set of gene expression data in multi data
points. When a sliding window with size k slides on G
from point g1 to gT-k+1, it will generate (T-k +1) slices for a
gene. This operation is performed on each gene expres-
sion profile, and a total of N × (T-k + 1) slices are formed
a gene expression dataset with N genes. A matrix of expres-
sion slice is constructed according to the matrix of gene
expression dataset.

For further analysis, the rank patterns of gene expression
levels in each slice are extracted, and those slice patterns
indicate the feature of a gene. Considering a slice S with k
data,

the ranking pattern can be defined as P(S) = (RS(s1),
RS(s2),..., RS(sk)), where RS(si) denotes the rank of Si in
P(S). Thus, each gene can be represented as a set of frame-
works combines with a series slice patterns (Figure 2).
With the help of pattern recognition on gene expression
levels, some small fluctuations (noises) on data have been
filtered.

In the current study, we extend the traditional linear
model to solve the problem that traditional linear model
does not work on multiple time lags. The model named
slice pattern model (SPM) use the following formulation:
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Strong statistical correlation between the initial expression changes of SWI4 and MBP1 using a 30 min time difference, 3 time (unit) lagsFigure 1
Strong statistical correlation between the initial expression changes of SWI4 and MBP1 using a 30 min time 
difference, 3 time (unit) lags.
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where τj is the time lag of regulatory interaction between
gene j and gene i. xi(tk) is the expression level of gene i at
time tk. η is the max time lag with biological meaning, and
L is the size of gene set which regulate gene i.

Since the real expression array data are usually mixed with
noises, the comparison between two genes is always dis-
turbed by noise. For ranking pattern in each slice of our
method, the spearman rank correlation (SRC) is intro-
duced to estimate the similarity between two patterns,
which has been used to assist in measuring the similarity
between two genes [25].

The SRC score between two slice pattern S and S' is given
by the following equation:

where RS(si) is the rank of si in the profile (s1,..., sk). The
SRC satisfies -1 ≤ SRC(S, S') ≤ 1 for all S, S'. The SRC score
"-1" represents the complete opposite for the two rank
patterns. So we can identify the similarity between two
patterns according to the SRC score. It is fit for handling
distinct fluctuation data mixed in one point, which takes
place by accident in a microarray experiment.

Thus, gene regulatory network identifying becomes to an
question to optimize a set of parameters wji, and to maxi-
mize the SRC between SPM and the gene expression data.

where Oi(j) is the j-th slice pattern of gene i in gene expres-
sion data, and Si(j) is the j-th slice pattern of gene i.

For optimizing parameters of gene network to satisfy
those genes slice, an improved genetic algorithm (GA) is
introduced to optimize the model that SPM retrieved
from gene expression data. The genetic algorithm (GA)
was formally introduced in the 1970s by John Holland,
which has been used in many research fields as an optimi-
zation method [7]. In our case, the parameters of gene reg-
ulatory network (including regulatory direction, weight
and time lag) are optimized by GA. The iterative proce-
dure is summarized in Additional file 1: The procedure of
Slice Pattern Model.

Since the number of gene N is always more than the
number of time point T in most publicly available gene
expression data set, repeated modeling is needed to get a
statistical result. The genetic algorithm is a stochastic algo-
rithm, so the result of each GA run is not same. In current
study, if a gene connection is presented more than the
threshold value θ in repeated modeling, the connection is
added into a final gene regulatory network with the value
of parameters equal to the average of those in the repeated
modeling.

Results
In this study, we test the performances of linear model
and slice pattern model in an artificial gene network.
Then, in order to evaluate the feasibility of SPM on real
gene expression array data, a yeast cell cycle gene network
with nine specific genes is reconstructed by SPM, and ver-
ified by comparing with established relationships in pre-
vious investigations.

The performance of SPM method
We take an artificial gene network with known structure
(Figure 3A) coming from Ando and Iba's experiments [7]
to test the performances of linear model and SPM. Each
method is taken to run 10 times independently for mod-
eling gene network, the threshold   θ is set as 60%.

Firstly, initial condition and status (Table 1) are set for the
gene network to produce a time series gene expression
data. Two gene regulatory networks with seven genes are
reconstructed by linear method and SPM independently
from the time series gene expression data (Figure 3B, C,
D). In the result shown in Figure 3, those regulatory rela-
tionships with one transcriptional time lag (such as B-C,
C-D etc.) can be identified exactly by linear model. The
traditional linear model does not work when interaction
responses between genes take variable multiple transcrip-
tion time lags for different regulatory relationship in gene
network. Moreover, the aim of linear model is to train
gene network models to fit the expression data exactly.
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The series slice pattern (PA1, PA2,..., PA11) in Gene A with 17 data points, and the size k of sliding window is 7Figure 2
The series slice pattern (PA1, PA2,..., PA11) in Gene 
A with 17 data points, and the size k of sliding win-
dow is 7.
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Therefore, the linear model might fail in reconstructing
unreal regulatory relationships for fitting the gene expres-
sion data, for example, unreal regulatory relationships A-
F, C-F and E-B, which retard the reliability of reconstruc-
tion for gene network. Comparing with traditional linear
model, slice pattern model (SPM) can handle the multiple
transcriptional time lags. SPM identifies the time lags
while it reconstructes the gene network.

Identification of gene regulatory network in yeast cell 
cycle
A gene expression dataset, yeast cell cycle time-series gene
expression arrays which is obtained from Cho [1], is taken
to evaluate the feasibility of SPM. The data set contains 17
time points with relatively small time intervals (10 min),
thus the data is ideal for testing the approach. In our case,

for studying the reliability of SPM, we focus on nine spe-
cific factors, MBP1, SWI4, SWI6, MCM1, FKH1, FKH2,
NDD1, SWI5, and ACE2, which control the transcription
of cell cycle genes. Many previous studies [26-28] using
different approaches have established some regulatory
relationships for these nine transcription factors (TFs).

In this study, the modeling process had been run 20 times
independently to reconstruct the gene network. The result
is shown in table 2, in which time lags of gene pair are the
sum of time lags in multi runs. The frequency of each gene
pair's regulatory relationship in 20 repeat modeling can
be estimated using "Time lags" divided by "Repeats",
which could be the reliability indicator of gene regulatory
relationship. The average time lag and regulatory effect of
each pair is summarized in Table 3. A simple gene net-
work of yeast cell cycle with 9 TFs is reconstructed (Figure
4), in which the regulatory relationships are identified by
filtering those connections whose reliability is below θ =
55%.

Previous studies [26-36] identified the transcriptional reg-
ulators for most cyclin genes. SBF (SWI4/SWI6) and MBF
(MBP1/SWI6), which are active during late G1, both reg-
ulate NDD1. NDD1 does not directly bind to DNA but
interacts with FKH1 or FKH2, both of which bind directly
to DNA, and NDD1 is a limiting component of the com-
plex that activates G2/M genes. MCM1 and FKH2 are
bound to promoters of G2/M genes throughout the cell
cycle, and activation of G2/M genes depends on recruit-
ment of NDD1. The MCM1/FKH2/NDD1 complex regu-
lates SWI5 and ACE2. SWI5, ACE2, and MCM1 activate
M/G1 genes. MCM1 binds to the SWI4 promoter and con-
tributes to its activation in M/G1, leading to accumulation
of the SWI4 in G1. SWI4 transcription is further regulated
in late G1 by both SBF and MBF. Thus, the serial regula-
tion of cell cycle regulators occurs throughout the cycle,
forming a fully connected regulatory network.

Our results confirm these observations and further iden-
tify the details of regulation relationships, such as the
active/inhibitive interaction with transcriptional lags.

Table 1: Benchmark result of the cascade oscillators model

Gene pair Regulatory weight Time (unit) lag(s) Initial expression level of regulator

A-A 0.5 3 0.0
A-C 0.5 1 0.0
B-C -0.8 1 4.0
C-D 0.7 1 0.0
C-E 0.5 2 0.0
D-B -0.5 2 4.0
E-G 0.9 1 0.0
F-A -0.8 1 4.0
G-F 0.4 3 0.0

Simulations of an artificial gene network in different modelsFigure 3
Simulations of an artificial gene network in different 
models. (A) Original artificial gene regulatory network, 
arrow line denotes the stimulation, dot line denotes the inhi-
bition; (B) Time series expression profiles of each gene in 
artificial gene network; (C) Reconstructed gene regulatory 
network using Linear Model; (D) Reconstructed gene regula-
tory network using Slice Pattern Model.

A B

C D
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Some novel interactions reconstructed by SPM are needed
to be studied further. ACE2 and SWI5 are transcription
factors that function at the M/G1 boundary [28,37]. How-
ever, we find there is a tight correlation between SWI4 and
ACE2, and a similar situation exists for FKH2 (Figure 4).

Summary of previous evidence for regulation of cell cycle
transcription shows that transcriptional control in S and
S/G2 stage is less well characterized, but some studies sug-
gest the involvement of SBF and FKH1/FKH2 [26,28,38].

Table 2: Result of modeling a simple yeast cell cycle gene network with SPM

SWI4 NDD1 ACE2 SWI5 MCM1 SWI6 FKH2 MBP1 FKH1

SWI4 Time lags 19 57 24 18 20 14 23 39 24
Repeats 12 19 11 10 9 8 13 13 12

NDD1 Time lags 19 21 47 33 20 15 18 21 11
Repeats 9 7 16 13 8 6 12 12 4

ACE2 Time lags 6 22 23 25 11 28 26 15 9
Repeats 4 10 7 7 5 8 11 5 3

SWI5 Time lags 16 4 24 23 21 9 13 36 7
Repeats 4 4 8 7 10 3 5 14 3

MCM1 Time lags 13 17 11 13 21 24 14 20 10
Repeats 10 9 4 6 14 10 5 10 5

SWI6 Time lags 41 10 22 12 25 6 40 14 11
Repeats 11 4 10 6 12 2 14 7 7

FKH2 Time lags 11 11 21 29 17 10 8 9 50
Repeats 7 5 8 9 6 4 3 7 18

MBP1 Time lags 9 14 2 8 6 13 15 15 5
Repeats 3 4 1 5 2 5 5 7 2

FKH1 Time lags 15 8 6 13 13 8 3 6 3
Repeats 11 3 3 7 6 4 2 2 2

Table 3: The regulatory relationships between genes in yeast cell cycle network

Regulator Target Activation/Inhibition Average time-lag Reliability

SWI4 NDD1 A 3 95%
FKH2 FKH1 I 2.8 90%
NDD1 ACE2 A 2.9 80%
SWI5 MBP1 I 2.6 70%
MCM1 MCM1 A 1.5 70%
SWI6 FKH2 A 2.9 70%
SWI4 FKH2 I 1.8 65%
SWI4 MBP1 A 3 65%
NDD1 SWI5 A 2.5 65%
SWI4 SWI4 A 1.6 60%
SWI4 FKH1 A 2 60%
NDD1 FKH2 A 1.5 60%
NDD1 MBP1 A 1.75 60%
SWI6 MCM1 I 2.1 60%
SWI4 ACE2 I 2.2 55%
ACE2 FKH2 A 2.4 55%
SWI6 SWI4 A 3.7 55%
FKH1 SWI4 I 1.4 55%
SWI4 SWI5 I 1.8 50%
ACE2 NDD1 I 2.2 50%
SWI5 MCM1 I 2.1 50%
MCM1 SWI4 A 1.3 50%
MCM1 SWI6 A 2.4 50%
MCM1 MBP1 A 2 50%
SWI6 ACE2 I 2.2 50%

. . . . .

. . . . .

. . . . .
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Our finding indicates that the latter might be more rea-
sonable.

Discussion
Linear model gives a description of the continuous expres-
sion data modeling, which reflect the property of gene
expression levels tending to be continuous. Reconstruc-
tion of gene regulatory network is a reverse engineering to
infer all of the unknown parameters in linear model from
gene expression data. However, due to the limitations of
experiment, such as the multiple transcriptional time lags
and lack of data points, the traditional linear models lead
to misleading modeling. We showed the unreliability of
linear model when inferring gene network with variable
multiple transcriptional time lags. In fact, many studies
have demonstrated that some interactions between genes
take more than one unit of time lag, and the transcrip-
tional lag is diversity.

In our approach, we suggest that the time lag is deter-
mined, and those time lags far from biologically meaning
will be removed during modeling (e.g. those time lags
that not exceeding 5 are regarded as being biologically

meaning). And feature retrieved from expression data may
reduce noise interference to a certain extent.

For identifying gene regulatory networks, the parameters
of gene networks are optimized via genetic algorithm
(GA). The novel development of genetic operations is
implemented different from other methods. Our
approach reconstructs a model that has the optimal pat-
tern matching to the expected slice patterns.

Along with the analysis of experiments discussed above,
we suggest that the pattern matching to modeling of gene
network may enhance the performance. According to the
result of experiment on yeast cell cycle time-series gene
expression data, three features of the resulting network
model are notable. First, the stability of the gene regula-
tory model reconstructed using SPM is better than those
models coming from traditional linear model. Second,
SPM can determine not only the influence of regulator on
target gene, but also the time lags of regulation. Finally,
and most importantly,  the reconstruction of the gene reg-
ulatory networks is automatic and required no prior
knowledge of the direction of regulation. SPM represents
a general method for constructing the regulatory networks
from the time series expression data.

Conclusion
We present a model-based computational approach, Slice
Pattern Model (SPM), to identify gene regulatory net-
works from time series gene expression arrays. By testing
the performance in an artificial gene network, SPM can
handle the multiple transcriptional time lags and more
accurately reconstruct the gene networks than traditional
linear model. A 17 time-series gene expression data in
yeast cell cycle is used to reconstruct the regulatory net-
work. The results demonstrate that the gene regulatory
model reconstructed by SPM is more stable and reliable
than those models coming from traditional linear model.
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