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Abstract

Background: The characterisation, or binning, of metagenome fragments is an important first
step to further downstream analysis of microbial consortia. Here, we propose a one-dimensional
signature, OFDEG, derived from the oligonucleotide frequency profile of a DNA sequence, and
show that it is possible to obtain a meaningful phylogenetic signal for relatively short DNA
sequences. The one-dimensional signal is essentially a compact representation of higher
dimensional feature spaces of greater complexity and is intended to improve on the tetranucleotide
frequency feature space preferred by current compositional binning methods.

Results: We compare the fidelity of OFDEG against tetranucleotide frequency in both an
unsupervised and semi-supervised setting on simulated metagenome benchmark data. Four tests
were conducted using assembler output of Arachne and phrap, and for each, performance was
evaluated on contigs which are greater than or equal to 8 kbp in length and contigs which are
composed of at least 10 reads. Using both G-C content in conjunction with OFDEG gave an
average accuracy of 96.75% (semi-supervised) and 95.19% (unsupervised), versus 94.25% (semi-
supervised) and 82.35% (unsupervised) for tetranucleotide frequency.

Conclusion: We have presented an observation of an alternative characteristic of DNA
sequences. The proposed feature representation has proven to be more beneficial than the existing
tetranucleotide frequency space to the metagenome binning problem. We do note, however, that
our observation of OFDEG deserves further anlaysis and investigation. Unsupervised clustering
revealed OFDEG related features performed better than standard tetranucleotide frequency in
representing a relevant organism specific signal. Further improvement in binning accuracy is given
by semi-supervised classification using OFDEG. The emphasis on a feature-driven, bottom-up
approach to the problem of binning reveals promising avenues for future development of
techniques to characterise short environmental sequences without bias toward cultivable
organisms.
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Background
Metagenomics is a relatively recent field of research,
dealing primarily with the investigation of microbial
consortia of uncultivable organisms. It has enabled the
study of microbiota sampled directly from environmen-
tal niches, such as the ocean [1,2], soil [3], hot springs
[4], hydrothermal vents [5], polar ice caps [6] and
hypersaline environments [7]. In depth investigation of
these consortia have given insight into microbial ecology
[8], diversity [9], as well as archeal lineages [10]. Not
only is such knowledge valuable to the understanding of
our biosphere, it has also facillatated advancement of
biotechnology [11,12], human physiology [13] and
sequencing of contaminated samples of now extinct
species [14,15], to name a few. Prior to the metage-
nomics approach, we see that attempts at characterising
microbial communities using pure clonal samples of
constiuent organisms resulted in a low discovery rate of
novel microbes [9].

Metagenomics is able to tackle this problem by means of
direct sequencing of an environmental sample without
the need for a pre-cloning step. This enables approxi-
mately 99% of Earth’s undiscovered microbiota, which
resist standard laboratory culturing techniques, to be
sequenced and analysed. However, when an environ-
mental sample is sequenced en masse, a fundamental
computational challenge is introduced: the characterisa-
tion of sequenced reads with respect to their phyloge-
netic origin [16]. Such in silico profiling of sequenced
DNA is referred to as binning.

Binning is an important first step to further downstream
analysis of a metagenome. Of particular interest in this
preliminary stage of analysis is the taxonomic composi-
tion of the sample, and further, the association between
sequenced DNA fragments and their parent organism.
Many reported attempts at this analysis are founded on
one of three key concepts: marker gene based assign-
ment, sequence similarity assignments or sequence
composition based assignments.

Taxonomic profiling using conserved marker genes
Through various stages of an organism’s evolution
changes take place in the composition its genome,
permitting adaptation to changes in the environment,
for example. Different locations in the genome experi-
ence distinct rates of change. Hyper-variant regions are
particularly found in non-coding, inter-genic regions
[17]. This is because pronounced changes in genes that
code for particular functions will degrade characteristic
functionality of an organism. The exceptions to this are
slowly evolving marker genes in the guise of non-coding
ribsomal RNAs. These conserved marker genes have been

fundamental to the study of microbial phylogeny [18].
Prior to the discovery of such marker genes, phylogenetic
analysis of microbes revealed the existence of only two
primeval lineages. However, a founding study [19]
highlighted the insuffciency of existing approaches to
capture all extant lineages. It was this which lead to the
establishment of three primary kingdoms or domains of
Archea, Bacteria and Eucarya.

More recently, studies that adopt this approach have
greatly contributed to our knowledge of the actual
diversity of microorganisms [20-22]. Automatation of
the phylotyping procedure for metagenomic DNA using
16S rRNA markers are also becoming more prevalent
[23-27]. In [28] two fundamental questions are posed
regarding the number of bacterial phylotypes that can
co-exist and the way in which they are organised, and an
attempt at addressing both has been through 16S rRNA
sampling of a bacterioplankton assemblage. As [28]
argues, these two pieces of information are critical to the
understanding of function, population biology and
biogeography. Further, [29] uses 16S rRNA libraries to
compare the phylogenetic distance between various
microbial communities.

On the one hand where such marker genes are providing
valuable insight into the composition of microbial
assemblages, they carry with them the inability to
characterise the majority of sequenced reads. It has
been reported that these marker genes appear infre-
quently in a typical set of sequenced reads, despite the
high density of open reading frames found in microbial
genomes [30]. Consequently, only a fraction of reads can
be assigned.

Read length is also a factor to consider when attempting
classification using marker genes. 16S rRNA gene are
generally 1,500 base pairs in length and as such will be
distributed over multiple reads of current state-of-the-art
sequencing technologies. Complications then arise in
taxonomic profiling when marker genes are assumed to
be partially located on sequenced reads. However, this is
not so much a critical issue for future sequencing
platforms, as whole-molecule sequencing is designed to
deliver sequenced reads that are in the order of length of
the marker genes [31]. Marker genes will continue to be
used for taxonomic characterisation of a metagenome, as
it is arguably the most accurate [30].

Characterisation based on similarity to known sequences
A viable alternative to the use of conserved regions of
genomic DNA is the use of previously sequenced
homologs as a basis for phylogenetic characterisation.
Databases of complete genomes and information on
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genes, protein families and so forth have experienced
exponential growth, especially over the last few decades,
attributed in part to advances made by marker gene
based profiling of microbial organisms. Tapping into
this resource pool has been the focus of a variety of
methods. For instance, early similarity methods used a
simple BLAST (Basic Local Alignment Search Tool)
search against databases of previously sequenced com-
plete genomes to assign short fragments to a particular
taxonomic rank, using homologs [32] or orthologs
[33,34]. Currently, the length of reads is an important
challenge [35] and methods that are able to assign short
stretches of DNA are required, particularly where next
generation sequencing platforms are used to sequence
metagenomes. In fact, claims have even been made to a
solution for phlyotyping a metagenome irrespective of
the sequencing technique used [36].

The strength of these methods relies on the length of
sequences able to be assigned. We see that recent
attempts achieve accurate classification of reads down
to 80 base pairs in length [37]. Despite this, for real
metagenomic samples, fewer than 10% of the reads
could be identified using the Pfam domain and protein
families [38], which is suggestive of poor database
coverage over extant microorganisms. Of this 10%,
only a fraction could be assigned to a particular lineage.

In general, a bottleneck exists in conducting the initial
search against various databases, often necessitating the
use of a large number of CPU hours on high
performance computing solutions. As these databases
continue to grow at their current rate, this bottle-neck
will increasingly impose significant delays in any
metagenomic project, perhaps with minimal pay-off for
the classification of novel organisms. However, by
adopting these strategies we are fundamentally relying
on the assumption that novel microbes sampled from
the environment will be represented in existing data-
bases. With an abundance of microbial diversity yet to be
discovered, it is counter-intuitive to found decisions on
previously discovered genomes and protein sequences
[39], particularly when the majority of these are derived
from culture-dependant techniques, while an estimated
99% of novel microbes are yet to be discovered can not
be cultured using current in vivo techniques [36].

Characterisation based on sequence composition
The composition of a DNA sequence is defined by the
non-random ordering of its base-pairs, in terms of the
four atomic nucleotides. Taking into account that there
are specific causes and evolutionary factors for the
variation in base composition of genomic DNA, meth-
ods have been developed to extract common patterns

between organisms at varying levels of taxonomic
resolution, such that sequences of similar species are
able to be grouped. The general trend with composi-
tional approaches has been the modification of machine
learning methods to work around existing compositional
feature spaces. Deterministic pattern spaces such as
oligonucleotide frequency counts are among the more
dominant of choices among compositional binning
methods. These operate on the assumption that the
relative abundance of certain words - also referred to as
oligos, i.e. ACGTA is a 5-mer oligo - primarily dictate the
association of one sequence to another. This is particu-
larly useful for observing codon usage biases, for
example. In fact, compositional biases, particularly in
the case of tetranucleotide (4-mer) frequencies, is
hypothesised to have strong biological significance in
terms of phylogeny [40-42]. It is further argued that the
larger number of permutations possible in tetranucleo-
tide frequencies allows greater authority to discriminate
between genomic fragments from different genomes.
This argument holds if the conditions of low intrage-
nomic variation and large sequence length (in this case a
40 kb [42] fosmid sized vector is used) hold. Due to the
large number of combinations of oligos possible,
tetranucleotide frequency has been reported to have
greater discriminatory power than the G-C content of a
sequence, for instance [42]. Clustering tetranucleotide
frequencies using fixed-size Self-Organising Maps
(SOMs) has been shown to be possible [43]. However,
the imposition of a fixed size SOM has been attributed to
feature maps that do not faithfully represent the input
data, and as such the Growing Self-Organising Map has
been used to alleviate this flaw [44-46].

In the context of current next generation sequencing
technologies, we find that reads are as short as 80-100
base pairs. In light of this, methods that operate on
nucleotide frequency alone are at a disadvantage, as a
signal strong enough to make inferences on phylogenetic
origin of a sequence requires long stretches of DNA. It
has been shown that 40,000 bp is an acceptable
sequence length to make accurate predictions [42], yet
it has also been shown that sequences as short as 1,000
bp can be classified [16]. As yet, the 1,000 bp barrier - as
it has been colloquially termed in the literature - is still
an open challenge. To counteract this limitation,
methods that adopt nucleotide frequencies as a means
of sequence representation typically operate on
assembled contigs. However, for complex communities
the required amount of coverage for modest assembly
translates to a substantial sequencing requirement. The
feasibility, therefore, for current composition based
methods looks to be limited to microbial consortia
with minimal to moderate diversity. Further, these
methods compensate for weak phylogenetic signals by
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consolidating information from other sources, such as
external databases. Methods have also used training data
from potential homologs from public databases to
construct a representative signal for a particular clade
[30]. In the same study it is also shown that it is possible
to generate training data directly from the metagenome
itself, but it is argued that at least 100 kbp of data is
required to construct an accurate model for a particular
organism at a particular taxonomic rank.

The literature suggests that significant advances in
compositional approaches to the binning problem
have primarily looked at the issue of representing the
composition of a sequence, rather than refining machine
learning methods that operate in a sub-par feature space.
Such is the case with the succession of G-C content by
tetranucleotide frequencies [42,47], for example. There is
much that can be unveiled when patterns are extracted
from DNA sequences, and since compositional methods
are generally database-independent they are not suscep-
tible to cloning biases observed in similarity-based
methods. It is, however, a matter of knowing what
patterns to extract and how best to extract them. Here we
propose the use of the oligonucleotide frequency derived
error gradient (OFDEG) as a feature space for the
characterisation of DNA sequences from isloate organ-
isms. The proposed feature space relies on the concept of
oligonucleotide frequency profiles and their demon-
strated ability to characterise genomic DNA.

Results and discussion
Evaluation on simulated metagenomic data sets
Data set description
Recently published metagenomic benchmark data sets
[39] have been selected to evaluate the binning perfor-
mance using our proposed DNA sequence representation.
The benchmarks were formed using real DNA sequences
of 113 isolate microbial genomes, sequenced at DOE
Joint Genome Institute. The dominant strain in the simLC
set is given a coverage of approximately 5.19× and just
over 27 Mbp in total sequence length. The dominant
strain is anked by 115 lower abundance strains, with
coverage less than 1.2×. SimMC introduces three domi-
nant strains which are represented with coverages ranging
from 3.48× to 2.77×. Characteristic of agricultural soil,
the simHC data set contains no dominant strains, and has
poor coverage. The highest organism coverage in this data
set is at an estimated 0.53×.

Evaluation procedure
As previously described, the simulated metagenome data
contains three data sets designed to represent three
microbial communities of varying degrees of complexity.
Here we present the analysis of binning performance on

the medium complexity simMC data set, as this serves as
a basis for comparison against current compositional
binning techniques. Similar to [39], we conduct two tests
to evaluate the quality of binning using OFDEG. The first
takes only contigs which are greater than 8,000 bp in
length - as these were deemed to have a minimal degree
of chimerism. The second takes major contigs, which are
those that are assembled using at least 10 reads. We use
both the assembler output of Arachne [48] and phrap for
evaluation, where phrap produces shorter contigs but is
deemed more reliable [39]. Contigs generated by Jazz
were excluded from the analysis [46]. Similarly, for the
purposes of comparison we restrict ourselves to the
taxonomic rank of order, using NCBI’s taxonomy defini-
tion. For all tests conducted, OFDEG values were
computed on the basis of a 4-mer OF profile for
comparison against tetranucleotide frequency (TF)
recommended by [46]. The sampling depth was set to
20 and a step size of 10% of the sequence length was
used. Each OFDEG value for a sequence is an average
over 5 - determined empirically - subsequences which
were truncated to the length of the shortest contig for
each test, given the criteria of selecting contigs as defined
above. All the OFDEG values computed used 80% of the
sequence length. In an attempt to increase the discrimi-
natory power of OFDEG for sequence separation, we
also consider the effect of OFDEG in conjunction with
G-C content as it has been used previously to success-
fully characterise organisms and maintains the low
dimensionality of the proposed feature space.

Measuring the accuracy
Accuracy is measured by how well a particular organism
is characterised. With respect to each organism, the bin
that is identified as containing the maximum number of
fragments for that particular organism is considered as
its reference bin. Fragments assigned to the reference bin
that are of the reference organism are deemed the True
Positives. Similarly, fragments contained in the reference
bin that are not of the reference organism are False
Positives. Fragments of the reference organism that are
located outside the reference bin are considered False
Negatives and lastly, fragments that are not of the
reference organism and located outside the reference
bin are considered True Negatives. Using these interpreta-
tions we use the standard definition of sensitivity and
specificity to evaluate the quality of binning.

For the semi-supervised case we look at the label
assigned to each fragment and compare this assignment
to its true origin. For each class of organism, at a specific
taxanomic rank, we look at how many of those
fragments have been assigned correctly using the
same definitions as for the unsupervised case. Fragments
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that are not assigned a label are not included in the
calculation.

Unsupervised setting
We first evaluate the fidelity of OFDEG by clustering
computed OFDEG values in an unsupervised manner.
For compositional methods, the relative abundance of
oligonucleotide frequencies and inherent biases therein
have been linked to a sequence’s phylogenetic origin.
Raw OFDEG values are clustered using Partitioning
Around Mediods [49], and the average silhouette width
is used to compute the most representative number of
classes based on the clustering structure.

In general, it is clearly evident that clustered OFDEG
values in conjunction with G-C content improves on the
performance of tetranucleotide frequency alone (Figures
1 & 2). The lower sensitivity value for tetranucleotide
frequency can be explained by the less defined clusters

that result, where fragments that are associated with one
genome type are distributed across multiple bins.

As the reference sequence length for OFDEG calculation
must be the same for all sequences in order to produce
meaningful comparisons, the minimum contig lengths
in the 10 reads tests highlighted the benefits of using
OFDEG. For the phrap assembled data, the minimum
contig length is only 230 bp, yet we see that the binning
fidelity is competitive with features that require the
entire sequence length. With an increase in minimum
contig length for the Arachne assembled data to 1334 bp,
again for the 10 reads test, the binning performance
increases. This is even more prevalent when considering
the 8 kbp tests, which have a minimum contig length of
8 kbp, where a near perfect separation of the two out of
three dominant species is observed.

Semi-supervised setting
In this setting we require the use of a minimal amount of
annotated data which we will refer to as labels, a basis

Figure 1
simMC (≥ 8 kbp): unsupervised setting. OFDEG,
OFDEG+GC and tetranucleotide frequency (TF)
comparison using unsupervised methods, for the Phrap (A)
and Arachne (B) assemblers. We see that particularly in the
sensitivity measure of binning performance, OFDEG features
greatly improve on the TF feature space. There is evidence of
only a minimal improvement in performance with the
addition of G-C content, which demonstrates that OFDEG
alone has greater capacity for binning.

Figure 2
simMC (≥ 10 reads): unsupervised setting. OFDEG,
OFDEG+GC and tetranucleotide frequency (TF)
comparison using unsupervised methods, for the Phrap (A)
and Arachne (B) assemblers. Here we see a similar scenario
to the 8 kbp tests. In this case, however, augmenting OFDEG
with G-C content is much more beneficial, where OFDEG
alone appears to offer lower accuracy.
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for supervised learning. Using labels, we are able to
investigate the possibility of a performance increase
using existing knowledge of sequenced microbial DNA,
an observation described in [46]. Here we also use the S-
GSOM algorithm [46]. Fixed-sized SOMs were not used,
as the imposition of a fixed sized map may result in
incorrect representation of the input space, and subse-
quently poor clustering. Note, this was used only as a
comparison of features, and not a contribution as a
novel clustering technique. Similar to [46] we select as
labels 10 kbp flanking regions of the conserved 16S
rRNA gene, subject to rules also defined therein. OFDEG
values are computed for each flanking sequence of 16S
rRNA genes found in the genomes used in the simulated
data sets. These values were augmented with the
processed data sets as seeds. Additionally, Topology
Type, Similarity Measure, Weight Initialisation Type,
Neighbourhood Kernel, Initial Learning Rates, and
Training Epochs for S-GSOM were selected to be the
same. For comparison, we also evaluate classification
performance at cluster percentages (CP) of 55% and 75%,
as these parameter settings are recommended in [46].

Particularly for the 8 kbp tests, we see an improvement
in performance over a purely unsupervised attempt at
characterising fragments, achieving a sensitivity and
specificity of 1 for both assemblers (Figure 3). As is
appreciated in purely clustered data, there will be
ambiguity in assignment at the edges of clusters, i.e.
does fragment x, which lies directly in between the
centres of clusters A and B, belong to cluster A or B? In
selecting only those sequences that will give confident
predictions, avoiding the previously mentioned situa-
tion, the accuracy of binning is increased. In this case,
the number of fragments assigned are reduced as a
result. Tests using OFDEG for semi-supervised classi-
fication at higher CP values (Figure 4) showed a
decrease in accuracy, as spurious assignments were
made. The increase in performance experienced by
S-GSOM using tetranucelotide frequency, on the other
hand, can be explained by seed location within a fully
trained map.

To be able to use semi-supervised learning, we require an
indication of the diversity of the metagenome, perhaps
through targeted sequencing of the 16S ribosomal RNA.
Given this, the flanking sequences are used as reference
classes for binning. However, reference genomes would
unlikely be available, given the current knowledge of
microbial diversity. The accuracy is then determined by
the correct identification of the taxa that is actually
present in the data set. This, however, is not a
requirement for binning, but merely a means to get a
sense of species composition. Binning is still able to
proceed without such a priori knowledge.

Overall perfomance and discussion
In order to capture the overall relative performance of
both OFDEG and TF feature spaces, we compute the
discriminant ability of each using averaged sensitivity
and specificity values over all tests conducted. With
reference to (Table 1) we see that both the unsupervised
and semi-supervised methods which use OFDEG+GC as
a feature space perform best overall with respect to the
four different simMC tests. Though the semi-supervised
method outperforms the unsupervised method, the
average number of assignments made by the unsuper-
vised variant is far greater. If labels are available, we are

Figure 3
simMC (≥ 8 kbp): semi-supervised setting. OFDEG
+GC and tetranucleotide frequency (TF) comparison using
semi-supervised methods, for the Phrap (A) and Arachne (B)
assemblers. As anticipated, the addition of known seeds
improves the accuracy of binning using OFDEG in a purely
unsupervised manner. However, we note that at higher
values of CP the classificaiton performance will degrade due
to an increasing number of incorrect assignments made on
ambiguous fragments.
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able to classify fragments with approximately 96%
accuracy. However, in the case where labels are not
present, unsupervised methods can be applied using
sequence OFDEG values with 95% accuracy, but at the
same time with higher coverage: 97.33% of sequences in
the data set as opposed to 63.65% for the semi-
supervised case.

An important consideration is data dimensionality. For
instance, projecting a sequence into TF space results in
the generation of input vectors of dimension 256 for
each sequence in the data set. With a large number of
sequences, the computational cost of clustering such

data will be taxing, even more so with higher order
oligos. Alternatively, OFDEG is a consistent, one-
dimensional feature space - two at most, when used in
conjunction with G-C content - irrespective of the
underlying word size, which will be beneficial in the
initial analysis of metagenome data. We appreciate that
seeding posseses the capacity for a more accurate
classification of environmental DNA fragments. How-
ever, care should be taken when using this approach. As
noted earlier, this setting relies on the premis that the
16S rRNA flanking sequences are representative of the
biota in the sample and are available for each species in
the metagenome. Using seeds which are incorrect will
degrade the classification performance, even if the
clustered data is structured correctly.

Practical applications of using OFDEG should take into
consideration the following. Current next-generation
sequencing technologies are producing output at higher
rates and shorter read lengths. The method proposed
operates under the assumption that some assembly has
been carried out on the raw sequencer output. Akin to
compositional methods, sufficient sequence length is
required to make inferences based only on the ordering
of base-pairs. However, this compositional feature
appears to make a stronger association between phylo-
geny and sequence composition given shorter strecthes
of DNA. Of additional importance are repeated regions
in genomic DNA. These will be captured and reflected in
the computed OFDEG values, which will be lower in
comparison to other seqeuneces. For the detection and
removal of, say, redundant repeats, a preprocessing tool
could be used to remove these prior to OFDEG
computation. This, however, is beyond the scope of
this work. We emphasise that this work serves to describe
the observation of a characteristic linear gradient and its
potential application. Although we are unable to fully
explain its theoretical underpinnings or provide an in-
depth biological interpretation, we are empirically able
to show that it does have links to microbial phylogeny.

Conclusion
Here we have presented a novel representation of short
DNA sequences, derived from oligonulceotide frequency
profiles, which allows for the phylogenetic characterisa-
tion of relatively short sequences on the basis of
sequence compostion alone. Although we have found
that microbial phylogeny is potentially captured in
OFDEG, we aim to develop a theoretical framework as
well as ellicit its biological meaning. Unsupervised
clustering revealed OFDEG related features performed
better than standard tetranucleotide frequency in repre-
senting a relevant organism specific signal. The extension
to a semi-supervised paradigm again demonstrated an

Figure 4
simMC (≥ 10 reads): semi-supervised setting. OFDEG+
GC and tetranucleotide frequency (TF) comparison using
semi-supervised methods, for the Phrap (A) and Arachne (B)
assemblers. We observe these results to be of a similar trend
to the 8 kbp tests, yet we experience a much more profound
reduction in specificity on the Phrap data set. We attribute
this to the shorter fragments contained in the Phrap data set,
which further contributes to the amibiguity in association
between genomic fragment and parent organism.
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improvement in binning performance when using
OFDEG values. In light of the issues faced with semi-
supervised classification of OFDEG values, an interesting
prospect for future work is the analysis of seed selection
and its influence on the accuracy of fragment classifica-
tion, especially for data sets which contain short contigs.

Expressing each sequence in an appropriate feature space
is more beneficial than developing intricate machine
learning methods that wrap around feature representa-
tions that do not capture phylogenetic signals in short
sequences. There is a pressing need to break away from
reliance on assemblers that were designed to handle
single genomes, built without consideration for proces-
sing significantly different, heterogeneous metagenome
sequence data. Addressing the fundamental issue of a
suitable representation for short DNA sequences has
shown potential as a first step toward unbiased,
database-independent characterisation of metagenome
data and novel microbiota.

Methods
Defining OFDEG
In this section we describe what we mean by OFDEG,
and subsequently how it can be used as a genomic
signature with particular emphasis on its application to
the analysis of a metagenome. In order to describe
OFDEG we firstly outline the procedure for computing
the oligonucleotide frequency (OF) profile of a DNA
sequence from which OFDEG is observed. The OF profile
of a DNA sequence captures the relative abundance of all
possible enumerations of oligos, or words, of a
predefined length. For example, capturing words of
length m would constitute 4m possible combinations of
the bases A, C, G and T. As a DNA sequence is traversed,
using a sliding window and a user-specified step size,
each word that is encountered adds to the total count of
that word in the sequence’s OF profile. What results is a
histogram depicting the relative abundance of all words

present in a sequence. Normalisation of the OF profile
by sequence length allows sequences of different lengths
to be compared. Comparisons can be made using a
Euclidean distance metric, for instance. Now, sequences
that have similiar OF distributions are inferred to be
phylogenetically similar up to some taxanomic rank. The
phylogenetic signal that is captured using length-normal-
ised OF profiles is weakly present in sequences of 1,000
base pairs and greater. It is this common signal between
genomes and its sub-sequences that allows the associa-
tion between a DNA fragment and its source organism.

Observation of a linear relationship between error and
sub-sequence length
The error between length-normalised OF profiles of
entire genomes and that of short sequences is consider-
able, so much so that their association is blurred in the
presence of other genomic sequences from isolate
organisms. If we take a closer look at this representation
we encounter a fundamental feature of OF profiles that
gives rise to a secondary signal, which potentially breaks
through the 1,000 base pair “barrier” [16]. As previously
mentioned, the relative abundance of oligos is what
differentiates between various species. Length normal-
isation ensures that the abundance of oligos in long
sequences is comparable to that of a short sequence,
assuming of course that the effects of sequence poly-
morphism is minimal. If this step is omitted, and the
comparison is made between such sequences using a
Euclidean distance metric, the error would be signifi-
cantly more substantial. Counter-intuitively, this is
where our proposed signal is found. It is by this means
that we attempt to capture a conserved global signature,
if one actually exists. The idea behind OFDEG is a simple
one and is obtained as follows. If we take an entire
genome, for example, we are able to easily compute its
OF profile. If we then take a short sub-sequence from
anywhere along the genome, we are able to compute its
OF profile also. According to the above, the Euclidean

Table 1: OFDEG values for genomes sourced from NCBI

Organism 100 bp 200 bp 40,000 bp

Acinetobacter sp. ADP1 -0.09469 ± 0.0057 -0.07171 ± 0.0053 -0.03765 ± 0.0010
Bacillus anthracis Ames 0581 -0.09552 ± 0.0058 -0.07474 ± 0.0067 -0.04156 ± 0.0014
Prochlorococcus marinus MIT 9211 -0.09507 ± 0.0049 -0.07274 ± 0.0042 -0.04361 ± 0.0045
Streptococcus pneumoniae R6 -0.09439 ± 0.0048 -0.07250 ± 0.0045 -0.03773 ± 0.0010
Shigella flexneri 2a str. 2457T -0.09326 ± 0.0044 -0.07058 ± 0.0030 -0.03486 ± 0.0005
Escherichia coli str. K12 substr. W3110 -0.09310 ± 0.0039 -0.07054 ± 0.0046 -0.03498 ± 0.0006
Thermoplasma volcanium GSS1 -0.09296 ± 0.0047 -0.07194 ± 0.0050 -0.03639 ± 0.0010
Pseudomonas aeruginosa PA7 -0.09655 ± 0.0067 -0.07664 ± 0.0064 -0.04511 ± 0.0045
Xylella fastidiosa M23 -0.09410 ± 0.0049 -0.07097 ± 0.0036 -0.03572 ± 0.0014
Maricaulis maris MCS10 -0.09540 ± 0.0057 -0.07297 ± 0.0043 -0.04096 ± 0.0019

Computed OFDEG values using 5-mer oligos for 10 microbial genomes selected arbitrarily from NCBI. The values listed here represent the sample
mean plus or minus the sample standard deviation, averaged over 100 sampling sites over the entire length of the genome. The differences reflect the
strength of the signal in relation to sequence length.

BMC Genomics 2009, 10(Suppl 3):S10 http://www.biomedcentral.com/1471-2164/10/S3/S10

Page 8 of 13
(page number not for citation purposes)



distance (error) between the two would be large.
Nevertheless we take note of this error. We then take
another sub-sequence but of increased length, again
from anywhere along the genome. Trivially, the error
between this new sequence’s OF profile and the
genome’s OF profile would be reduced. We continue
this process until our sub-sequences are of the same
length as the genome itself, while keeping track of the
error at each sub-sampling event. If we plot the error as a
function of sub-sequence length, we arrive at a linear
reduction in error up to a certain sub-sequence length.
The rate of error reduction, within the bounds of the
linear region, is the sequence’s OFDEG value. We believe
that the linearity is not a biological phenomena
associated with peculiarities in genome composition,
but rather a function of OF profiles in general. However,
biological rationale for the variation of gradient values is
not yet understood. Figure 5 shows the result of sub-
sampling an artificially generated DNA sequence (the
generation and use of artificial sequences will be
described later).

Validitiy of the linear model
In actuality, it is empirically observed that this linearity is
limited to approximately 80% of the sequence length.
Normal Q-Q plots for applying a linear model to 100%
of the sequence versus only 80% of the sequence length
are shown in Figure 6. It is clear that linear regression
applied to 80% of the sequence more accurately captures
the reduction in error, as opposed to applying the model
to the entire sequence.

Step size and sampling depth
Given the above description of how we arrive at an
OFDEG value for a sequence, we are now left with
parameters which require definition. The two parameters
that are of significance here are the sampling depth and
step size. The sampling depth refers to the number of
equal length sub-sequences randomly selected from the
entire sequence. The average of these values are used to
determine the error value for a particular sub-sequence
length. The step size is the change in sub-sequence length
from one sampling instance to the next. Empirically, we
found that a sampling depth of 20 provides a good fit
of the error reduction rate, independent of step size
(Figure 7). Note that this is not universal across all
sequence lengths. As the entire sequence length is
increased the number of required samples per sampling
instance increases. For the sequences considered here,
they are in the order of 250-1800 bp, so a sampling
depth of 20 or more provides a good approximation to a
sequence’s OFDEG value. It is observed that the
sampling depth has greater influence on the error
gradient than the step size. Nevertheless, a step size
less than approximately 10% of the sequence length will
offer lower variance in the OFDEG estimate.

Computation of OFDEG
The method by which an OFDEG value is compuated for
a sequence is described as follows. Note, the following
procedure assumes a user-selected word-size m, step-size
t, sampling depth d, minimum sequence cutoff c (which
corresponds to the length of the shortest sequence in the
data set) and cutoff re-sampling depth rc.

1. Start with a sequence SL of length L. If L > c,
truncate SL to Sc from a random location any-
where along the sequence.

2. Take a sub-sequence si of length i = m (initially)
from a random location in Sc. Compute the OF
profile of si and of Sc and compute the Euclidean
distance between them, and let this disparity be
referred to as the error and denoted ei. For the same
sub-sequence length, repeat the procedure d-times.
Taking the average of all the error values, ei , gives
one sample point.
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Figure 5
OFDEG. The linearity observed in the reduction of error
for an artificially generated 200 bp DNA sequence, sampled
at fixed intervals along its length. Each sampled error
represents the Euclidean distance between the un-
normalised OF profile of the entire sequence and that of a
shorter sub-sequence. The reduction in error is linear for
sub-samples that are less than approximately 80% of the
sequence length, was similarly observed for sequences
greater than 200 bp (data not shown). The gradient of this
linear region is what we refer to as OFDEG.
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3. Increase the sub-sequence length by t, i.e. i + t.
Repeating the above procedure gives ei t+ , and so
on, until we have obtained ec - note that ec = 0 as
there is no disparity between sc and Sc.

4. Performing linear regression on all ei ’s for i Œ [m, ac]
gives an estimation of a sequence’s OFDEG value.

5. If L > c, go back to step 1 and repeat steps 1 to 4,
rc times, to obtain a more robust OFDEG estimate.

As previously described, the predefined paramters were
empircally determined, most notably the range of a
being approximately (0, 0.8].

Capturing a characterestic of a sequence
According to our observation, if the OF profile is sparse,
then most of the time we have captured predominantly
the same oligo; in such a case, the error gradient will be
strongly linear and closer to 1. If on the other hand, the
OF profile is wildly distributed, the linearity would be
relatively weaker, and the gradient lower. The distribu-
tion of an OF profile is in turn thought to be governed by
the complexity of the sequence. Sequences that exhibit
high degrees of polymorphism will have more dispersed

Figure 6
Linear model validation for 100% and 80% sequence
length. Linear model validation at 100% sequence length
(A), and with the linearity threshold applied to 80% of the
sequence length (B). We see that omitting the remaining 20%
of a sequence results in a better fit of the linear model.
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Figure 7
The effect of sampling depth. Here we plot the residual
deviance of the linear model applied to the error gradient of
a 200 bp fragment for various step sizes. Each curve
corresponds to a particular step size for a fixed sequence
length. Notably, the effect of step size is independent of
sampling depth, and further a sampling depth of 20 gives a
good model for the reduction in error over sequence length
for sequences in the order of magnitude considered in the
benchmarks. Intuitively, larger sequence lengths will require
greater sampling depths.
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oligo counts for the same sequence length than a simple
sequence, and will therefore yeild lower error gradients.
We elaborate on this concept by simulating DNA
sequences of controlled complexity. We construct these
aritificial sequences by taking an arbitrary base, say A,
and allowing the next base to be one of G, C or T with
probability equal to p.

The generation of sequences with varying number of
bases allows further control of the distribution of oligo
counts, when the same word size is used. A greater
number of bases will distribute the OF profiles more
widely, for a given sequence length. For example, a 4-mer
OF profile generated using a sequence with only three
bases will result in zero counts for oligos containing the
missing base. This forcibly controls the width of the
OF profile distribution. Based on these observations
(Figure 8) there is an apparent correlation between the
composition of a DNA sequence and its inherent
complexity. We see that for sequences of higher
complexity, the rate of error reduction is quite low,
which agrees with our initial assumptions.

Phylogenetic relevance
To examine the extent to which OFDEG is applicable to
microorganism characterisation, we sub-sampled fixed
length sequences extracted from 10 microbial genomes
(NC_005966.1 , NC_007530.2, NC_009976.1,
AE007317.1, AE014073.1, AP009048.1, BA000011.4,
CP000744.1, CP001011.1 and NC_008347.1); the
results of which are shown in (Table 2). The computed
OFDEG values correspond to the average error reduction
rate over 100 randomly selected sites along the genome,
for sequences of length 100, 200 and 40,000 base pairs.
The ability to capture the genomic complexity is not
universal across all sequence lengths. We ultimately see
that 100 bp sequences are difficult to characterise, and
there appears to be no strong correlation betweenOFDEG
values and phylogeny. Increasing the sample length to
200 bp increases the resolution at which fragments can be

associated to a particular genome; the phylogenetic signal
becomes much stronger here. For example, considering
the strains Escherichia coli str. K12 substr. W3110, Shigella
Flexneri 2a str. 2457T and Xylella fastidiosa M23, it is clear
that their mean OFDEG values are closely matched. If we
examine their phylogeny, we see that the E-coli strain and
the Shigella strain are both of the family Enterobacter-
iaceae, which are reflected in their relative OFDEG values
in relation to the Xylella strain which is of the family
Xanthomonadaceae. Collectively, though, all three strains
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Figure 8
OFDEG as a function of sequence complexity. The
effect on the reduction in error rate when varying the
complexity of a sequence, represented here by the
probability of base change p. As expected, we see that for
sequences with more widely distributed OF profiles, a lower
error gradient results as is seen with sequences composed of
4 bases as opposed to say 1 to 3 bases. Further, an increase
in the complexity of the sequence, by allowing numerous
base changes over the sequence length we also arrive at a
lower error gradient.

Table 2: Overall ranking in terms of discriminant ability

Type avg. assigns. avg. Sp avg. Sn Discriminant ability

OFDEG+GC (CP = 55%) semi-supervised 63.65% 0.9400 0.9950 0.9675
OFDEG+GC unsupervised 97.33% 0.9513 0.9525 0.9519
TF (CP = 75%) semi-supervised 83.44% 0.9925 0.8925 0.9425
OFDEG+GC (CP = 75%) semi-supervised 77.75% 0.8000 0.9625 0.8813
TF (CP = 55%) semi-supervised 69.28% 1.0000 0.7450 0.8725
OFDEG unsupervised 97.34% 0.9100 0.8300 0.8700
TF unsupervised 97.34% 0.9905 0.6565 0.8235

Discriminant ability is given by the average of the sensitivity (Sn) and specificity (Sp) values. In this case, we take the average of the average specificity
and sensitivity over all tests conducted. We see that both the unsupervised and semi-supervised methods which use OFDEG+GC as a feature space
perform best overall with respect to the simMC tests. Though the semi-supervised method outperforms the unsupervised method, the average
number of assignments made by the unsupervised variant is far greater.
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fall under the class of Gammaproteobacteria, which is again
reflected in their mean OFDEG values in relation to other
genomic fragments of 200 bp.

Notably, there will be unavoidable inter-genomic over-
lap in the computed OFDEG values, depending on the
location of the sequence along the genome. In particular,
species with a high degree of polymorphism will be
difficult to characterise in the presence of other species.
This is observed at a more significant level for smaller
oligos (less than a word size of 4). Where we see outliers
that are of higher gradient, we have sampled a genomic
sequence of lower complexity and conversely outliers of
lower gradient are regions in the genome that have
higher complexity. We can attribute this to varying
degrees of sequence polymorphism, and possibly even
due to horizontal gene transfer events. The variability of
the genome is captured more concisely in longer DNA
fragments, as is expected. Shorter fragments exhibit
greater variations, and are more susceptible to noise.
However, evidence remains that there is still a phyloge-
netic signal present for relatively short sequences. The
ability to capture overall complexity of short microbial
DNA sequences could be associated with the high
density of open-reading frames, which leaves little
room for highly variable inter-genic regions that are
more susceptible to the pressures of environmental
stresses and evolutionary changes.
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