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Abstract

Background: The common liver fluke Fasciola hepatica is the agent of a zoonosis with significant economic
consequences in livestock production worldwide, and increasing relevance to human health in developing countries.
Although flukicidal drugs are available, re-infection and emerging resistance are demanding new efficient and
inexpensive control strategies. Understanding the molecular mechanisms underlying the host-parasite interaction
provide relevant clues in this search, while enlightening the physiological adaptations to parasitism. Genomics and
transcriptomics are still in their infancy in £. hepatica, with very scarce information available from the invasive newly
excysted juveniles (NEJ). Here we provide an initial glimpse to the transcriptomics of the NEJ, the first stage to interact
with the mammalian host.

Results: We catalogued more than 500 clusters generated from the analysis of £. hepatica juvenile expressed sequence
tags (EST), several of them not detected in the adult stage. A set of putative . hepatica specific transcripts, and a group
of sequences conserved exclusively in flatworms were identified. These novel sequences along with a set of parasite

transcripts absent in the host genomes are putative new targets for future anti-parasitic drugs or vaccine development.

Comparisons of the F. hepatica sequences with other metazoans genomes or EST databases were consistent with the
basal positioning of flatworms in the bilaterian phylogeny. Notably, GC content, codon usage and amino acid
frequencies are remarkably different in Schistosomes to F. hepatica and other trematodes.

Functional annotation of predicted proteins showed a general representation of diverse biological functions. Besides
proteases and antioxidant enzymes expected to participate in the early interaction with the host, various proteins
involved in gene expression, protein synthesis, cell signaling and mitochondrial enzymes were identified. Differential
expression of secreted protease gene family members between juvenile and adult stages may respond to different
needs during host colonization.

Conclusion: The knowledge of the genes expressed by the invasive stage of Fasciola hepatica is a starting point to

unravel key aspects of this parasite's biology. The integration of the emerging transcriptomics, and proteomics data
and the advent of functional genomics tools in this organism are positioning F. hepatica as an interesting model for
trematode biology.

Background losses estimated globally at 3.2 bn USD mainly due to

Fasciola hepatica, the common liver fluke, is recognized
as one of the most important parasitic helminths affect-
ing livestock worldwide. Along with the related species F
gigantica, F. hepatica is responsible for massive economic
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reduction in meat, wool and milk output in infected ani-
mals, with additional costs derived from liver condemna-
tion and flukicide drugs [1]. During the last decade, its
relevance as a zoonotic agent in parts of Latin America
and Africa has also emerged, with millions at risk of
infection [2,3]. Although effective drugs such as tric-
labendazole are available, they only provide interim con-
trol of the disease, since cattle and sheep are easily
reinfected. Moreover, drug resistance against tric-
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labendazole has emerged in Australia and European
countries (Ireland, The Netherlands, UK. and Spain)
jeopardizing the long term sustainability of this control
strategy [4].

The life cycle of E hepatica is complex and includes a
snail and a mammal as intermediate and definitive hosts
respectively. Mammals get infected by ingestion of the
quiescent larvae (metacercariae) encysted in the vegeta-
tion. An interplay of extrinsic signals from the host
(digestive enzymes, bile salts, redox potential, pH, tem-
perature among others) and intrinsic factors from the
parasite (enzymes and secretions) determine the emer-
gence of a motile larvae [5]. The newly excysted juveniles
(NEJ) actively penetrate and transverse the gut wall into
the peritoneal cavity within two or three hours. By four or
five days post-infection the parasites reach and penetrate
the liver, and continue burrowing through the paren-
chyma for several weeks. Within the major bile ducts the
parasites mature and start to release eggs, that can be
found in the bile and feces from 8 weeks post-infection
[6].

Unlike mature flukes living in the immunologically safe
environment of the bile ducts, NE] are susceptible targets
of the immune response. Only 5-10% of the inoculum in
cattle, and 20-25% in sheep reach maturity in experimen-
tal infections, indicating that a great part of the emerged
juveniles either fail entering the gut or are killed during
the migrating phase [7,8]. Vaccination studies also show
that effective protection is correlated with reduced liver
damage, a signature of previous destruction of the early
NE]Js. Despite the crucial role of this stage in determining
the further success of the infective process, information
regarding NE]Js, is very limited, mainly due to the scarce
availability of material to explore diverse aspects of the
parasite biology. Principal roles for stage specific pro-
teases and antioxidant enzymes in the early infection
have been demonstrated by us and others [9-12]. Recent
proteomic studies were able to reveal important differ-
ences among F hepatica stages [13-15]. However, the
identification of the juvenile specific proteins was limited
by the paucity of mRNA sequences to match to peptide
mass fingerprinting data. While more than 200 protein
sequences and 10,000 EST are available from the adult
stage, only 22 mRNA sequences from NE]J (mainly corre-
sponding to cathepsin B and L-like cysteine proteinases)
were deposited at the Genbank by July 2009. Conse-
quently we decided to conduct a transcriptomic analysis
in order to identify the gene repertoire expressed by the
invasive stage of F hepatica. Transcriptomic approaches
in Schistosoma mansoni and S. japonicum have provided
a thorough coverage of the genes expressed by diverse
stages [16,17]. Furthermore, they have been invaluable
tools for the assembly and annotation of the recently
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released genomes of these important human parasites
[18,19], opening new avenues for discovery [20,21]. EST
have also been applied successfully to a limited set of
other trematodes, namely Echinostoma paraensei [22],
Clonorchis sinensis [23-25], Paragonimus westermani [26]
and Opisthorchis viverrini [27].

Here we report the analysis of a limited set of NE]
expressed sequence tags, identifying putative stage, spe-
cies and flatworm specific sequences. This first glimpse
of the physiology of the invasive larvae opens new pros-
pects for the understanding of the host-parasite interac-
tion eventually leading to the development of new
mechanisms to control fasciolosis, and warrants further
analysis using new generation sequencing technologies.

Results and Discussion

Construction of a newly excysted juvenile F. hepatica cDNA
library

In order to identify the genes expressed during the inva-
sion process of the platyhelminth E hepatica, we con-
structed a full length enriched ¢cDNA library using a
modified protocol based on selective amplification of
capped polyadenylated RNA species. Since the starting
parasite material was limiting, a modified size fractioning
step of the products was introduced in order to improve
the yield [28] (Additional File 1). More than four thou-
sand reads were produced and analyzed using the Parti-
gene pipeline [29]. Quality and vector trimming
drastically reduced the starting 4319 ESTs to 1684 high
quality sequences, mainly due to the presence of multim-
ers of the adapters used in the generation of the libraries
(see methods). This setback could be expected consider-
ing the minimal amount of starting material, and might
be corrected using 5' blocked adapters in lower concen-
trations.

The resulting high quality sequences were clustered
into 517 different contigs (249 clusters and 268 single-
tons), 74.6% of them showing significant similarity (E
value < 1e95) with protein coding genes deposited in pub-
lic sequence databases, indicating a good representation
of cDNAs in this library (Table 1). The most highly abun-
dant EST in juvenile E hepatica (13.5% of total reads) cor-
responds to the large subunit of the mitochondrial
ribosomal RNA (LSU rRNA), and was discarded from
further analysis. Polyadenylated LSU rRNA has already
been described in other platyhelminths [28], and in fact,
E hepatica LSU rRNA has been reported to represent
about 10% of the adult transcripts [30]. Considering that
only 22 sequences from NE] were available in Genbank by
July 2009 (15 of them encoding cathepsins), the present
report represents a pertinent contribution to the knowl-
edge of the genes expressed by the invasive stage of the
common liver fluke.
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Table 1: Overview of F. hepatica NEJ ESTs assembly

NEJ LIBRARY Partigene
EST generated 4319
Submissable EST 1684
Contigs 516
Clusters 248
Singletons 268
Mitochondrial LSU RNA 228
Contigs with Blast hits 386
Contigs with GO assignments 174
Contigs with Pfam hits 179
Average insert size 347

Comparison and validation of the FANEJ ESTs with other
databases

In order to establish if the obtained contig sequences cor-
respond to validated transcripts, we compared them to
different available databases, including ESTs from the
adult E hepatica stage, predicted coding sequences from
selected organisms with complete genomes, and tran-
scriptomes of other eukaryotes representing the main lin-
eages in the metazoan diversity (Additional File 2). To
compare the data obtained from the juvenile stage to the
adult sequences, we retrieved and analyzed using the Par-
tigene pipeline more than 10,000 EST reads from FE
hepatica adult worms available at the Wellcome Trust
Sanger Institute, obtaining 4089 contigs (1879 clusters
and 2210 singletons), 58% of them showing significant
blast hits (E value < 1e05) with publicly available data-
bases (Additional File 3). These results are very similar to
a recently reported analysis of the same dataset per-
formed using a different pipeline [13].

More than half of the juvenile contigs (55.3%) were also
found in adult ESTs (Figure 1). A set of 91 juvenile contigs
(17.6%), also present in adults, showed no homology to
sequences in other databases, suggesting that they might
represent Fasciola specific transcripts expressed in
diverse stages of the parasite life cycle. On the other hand,
there are several juvenile contigs that are absent from the
adult database, although represented in other organisms
suggesting that they might represent stage specific tran-
scripts (Figure 1). A set of 114 juvenile contigs (22,1%)
were common to all other organisms searched indicating
core eukaryotic functions such as ribosomal proteins and
common enzymes. The absence of some of them from
the adult dataset might suggest that the representation of
the adult libraries is still partial. Interestingly, 64 contigs
(12.4%) are shared only within flatworms, corresponding
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Figure 1 Distribution of hits of F. hepatica NEJ contigs against di-
verse databases. The NEJ contigs generated by the Partigene pipe-
line were compared by Blast with the set of databases corresponding
to diverse taxons (listed in Additional file 2), and the results aggregated
by their conservation in diverse taxonomic groups. Groups correspond
to sequences finding hits in all taxa tested (common), all metazoans, all
bilaterians or exclusively in flatworms or in F. hepatica adult stage ESTs.
Sequences producing positive hits with some taxa but not with others
(i.e. absent in deuterostomes) are also indicated, and sequences pro-
ducing no hits are depicted in grey. Sequences producing hits with the
adult stage ESTs dataset within each category are indicated in orange
in the inner circle.

to conserved uncharacterized transcripts that might be
relevant to parasitism. Also 56 contigs (10.9%) are shared
only within metazoans and absent in the non metazoan
choanoflagellate Monosiga brevicollis, suggesting that
they represent metazoan innovations.

To further characterize conservation patterns between
different metazoan lineages, we analyzed the distribution
of tblastx hits by three-way comparisons using the Simitri
program [31]. As expected, the E hepatica predicted
genes are more similar to homologues from other trema-
todes rather than cestodes and turbellaria, and to all flat-
worms rather than other protostomes, supporting the
monophylectic origin of flatworms (Figure 2A, C). Con-
sistent with the reports from the schistosomes genomes,
we detected slightly more shared genes (being them also
more similar) with the complete genomes of vertebrates
than with insects and nematodes [18,19]. These results
further support the idea that ancient genomes were gene
rich, and that lineage specific gene gain and loss events
were frequent during metazoan evolution, particularly
within the ecdysozoans [32]. While the relevance of genes
shared between trematodes and their hosts has been
highlighted, since they may be crucial for parasite adapta-
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Figure 2 Three way comparisons of F. hepatica juvenile contigs. The complete set of contigs generated by the Partigene pipeline was compared
by tblastx with a set of ESTs or cDNA databases indicated in Additional file 2. The resulting tblastx scores were transformed in coordinates and repre-
sented in a triangular graph with Simitri. Each sequence is represented by a dot colour coded by its aggregated blast score and placed in the middle
area if found in the three databases, on the corresponding cathetus if found in two databases. Sequences that match in only one of the databases or
have no hits are not depicted, but their numbers are indicated. For clarity angle bisector lines were added. Comparisons are shown among (A) trem-
atodes, cestodes, and turbellaria (B) cnidarians, mollusks, and annelids (C) flatworms (excluding F. hepatica), mollusks, and annelids (D) lophotro-

chozoans (excluding platyhelminths) ecdysozoans, and deuterostomes.

tion to the host [33], the inverse situation (genes present
in the parasite but absent in their hosts), might provide
relevant candidates for anti-parasitic intervention.
Additionally, since we included in the study partial
genomes from other lophotrochozoans (annelids and
mollusks) we were able to compare the Fasciola dataset to
these organisms and other phyla. This is relevant since
flatworm position in modern phylogeny is still debated,
being placed either within or as sister group of the lopho-
trochozoa [34-36]. The conserved set of liver fluke genes
is almost equally distant from cnidarians, mollusks, and
annelids, but slightly closer to the two lophotrochozoans
than the model ecdysozoans or vertebrates (Figure 2B, D,
and Additional File 4). The trend in this (and all other

comparisons performed) were maintained when includ-
ing the 4089 E hepatica adult contigs suggesting that the
effects observed might not be due to sampling bias (data
not shown). The comparisons here presented are consis-
tent with the placement of flatworms basal to the lopho-
trochozoans.

Compositional characteristics of F. hepatica predicted
proteins

The average G+C content of the F hepatica ESTs (both
juvenile or adult) was 45%, a value substantially higher
than in S. mansoni and S. japonicum (34%) [37]. Since
variation in GC content can result in skewed codon usage
[38], we analyzed the frequency of codons and amino
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acids of the predicted protein coding sequences in all £
hepatica available assemble ESTs (NEJ and adult stage),
and compared it to those observed in other trematodes.
As indicated in Figure 3A, there is a detectable difference
in codon frequency, between the schistosomes and the
other trematodes (including F hepatica). Schistosomes
prefer the most AU rich codon of each synonymous fam-
ily, and are also strongly biased against C or G in the third
codon position confirming early predictions obtained
with limited gene sets [39]. More striking is the fact that
significant differences were also found at the amino acid
level, where schistosomes uses less Arg, Ala and Gly, and
are enriched in Asn, Ile and Ser (Figure 3B). In a recent
paper the tRNA complement of S. mansoni and S. japoni-
cum is analyzed, but no significant correlation between
tRNA copy number with the overall codon usage were
found in any of the species [40]. The biological and evolu-
tionary significance of the differences here observed is
not clear, and deserves further consideration. In any case,
these results raise the question that schistosomes might
represent a more divergent than expected model for
other trematodes.
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Gene Ontology classification and functional annotation

Gene Ontology (GO) provides a useful way of classifying
and annotating sequence information. Our analysis of the
E hepatica juvenile dataset showed up to 179 NE]J contigs
with GO assignment. The molecular function classifica-
tion showed a predominance of the binding category
overlapping with almost all other categorizations, fol-
lowed by enzymes (catalytic activity) and structural com-
ponents. The discrimination within the binding class
showed three main divisions of similar relevance, two
overlapping with enzymes and ribosomal proteins and a
set identified as protein and DNA binding associated
with regulatory functions (Figure 4A). The more repre-
sented biological process categories were linked with
metabolism, regulation and development (Figure 4B),
showing a consistent assignment of GO cellular compo-
nents (data not shown). Functional annotation of pre-
dicted proteins showed a general representation of the
diverse biological functions. Proteases and antioxidant
enzymes should be highlighted since they have long been
under scrutiny for their putative involvement in invasion
and immune evasion processes [9,10,41-49]. Novel pro-
teins included ribosomal proteins (Additional File 5) sev-
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Figure 3 Codon and amino acid usage in different trematodes. Coding sequences of more than 500 amino acids from diverse trematodes were
collected and analyzed for their codon and amino acid usage. The graphs indicate (A) the total frequency of use of each codon in diverse trematodes,
(B) the total frequency of use of each amino acid in the diverse trematodes species analyzed: Fasciola hepatica (red) Echinostoma paraensei (yellow)
Opisthorchis viverrini (green) Clonorchis sinensis (purple), Schistosoma japonicum (sky-blue) and Schistosoma mansoni (blue).
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Figure 4 Assignation of the juvenile F. hepatica contigs to the major categories of Gene Ontology. The NEJ contigs generated by the Partigene
pipeline were compared with Gene Ontology, and the ontologies recovered mapped to the upper category using an in-house modified version of
go-slim. Note that each contig might map to more than one category within each ontology (A) Molecular function assignation: the more abundant
categories (binding, catalytic and structural component were further subdivided) (B) Cellular component assignation, as in (A) the metabolic process

category was subdivided in its child categories.

eral factors associated with protein and gene expression,
cell signaling and apoptosis, as well as orthologues of can-
didate antigens that induce protection against other hel-
minthiasis. They include tetraspanin-like protein [50], a
membrane spanning protein located at the tegument of S.
mansoni, Sm22.6 tegument antigen [51], and venom
allergen-like (VAL) proteins, a candidate vaccine antigen
against Necator americanus and Ancylostoma caninum
[52-55].

Relevant molecules for parasitism
Despite the small size of our juvenile library the more
represented sequences included proteinases and antioxi-

dant enzymes previously reported as being predomi-
nantly expressed in NEJ [12,56-60], together with
predicted proteins of unknown function conserved only
in E hepatica or in other trematodes but not in other taxa
(Table 2).

Secreted cathepsins were among the more represented
transcripts in juvenile ESTs, and also in the adult dataset
(Table 2, Additional File 6). A more detailed analysis of
these transcripts showed that different isoforms are are
being expressed by the invading and adult stage. While
cathepsins L3, L4 and L6 are detected in the juvenile
ESTs, they are absent from the much larger adult dataset
(with the exception of cathepsins L4). Proteomic analysis
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Table 2: Contigs including more reads in the F. hepatica NEJ ESTs assembly

Contig Length Reads Signal_P* TMHMM** Description*** Distribution
FHE TRE CES TUR CND LTZ ECZ DTS

FHC00023 824 57 SPep 0 Similar to FHA01510_1 X

FHC00067 483 30 SPep 1 No hit

FHC00049 1130 27 - 0 cathepsin B3 X X X X X X X X
FHC00068 615 21 - 0 Similar to AT006824 C. sinensis clone X X

FHC00138 876 18 - 0 Thioredoxin peroxidise X X X X X X X X
FHC00005 792 16 SAnc 3 Similar to AT009818 C. sinensis clone X X

FHC00024 1064 14 SPep 0 cathepsin L3 X X X X X X X X
FHC00014 612 12 SAnc 2 Similar to AT009818 C. sinensis clone X X

FHC00006 501 12 SPep 1 Similar to AT009816 C. sinensis clone X X

FHC00095 699 1 - 0 Similar to FRAE00302 X

FHC00061 819 10 SAnc 3 Similar to AT008757 C. sinensis clone X X

FHCO00091 443 10 - 0 cysteine-rich intestinal protein X X X X X X X X
FHC00340 362 9 - 0 Similar to FHA01532_1 X

FHC00174 413 9 - 0 Similar to OvAE2228 O. viverrini X X X X

FHC00054 610 8 - 0 pro-cathepsin B1 X X X X X X X
FHC00376 473 8 SAnc 1 FN5 protein X X X X X X
FHCO00101 564 7 - 0 Peptidyl-prolyl cis-trans isomerase X X X X X X X X
FHC00017 1131 7 SPep 0 pro-cathepsin B2 X X X X X X X X
FHC00175 930 7 - 0 Ribosomal protein S2 X X X X X X X X
FHC00013 252 7 - 0 Ribosomal protein S29 X X X X X X X X
FHC00187 282 7 - 0 Calcium-binding protein X X X X X X

FHC00030 680 6 SPep 0 Cellular nucleic acid-binding protein X X X X X X X X
FHC00018 289 6 - 0 Similar to FRAE00481 X X

FHC00038 416 6 SAnc 1 no hit

FHC00172 476 6 SPep 0 Similar to FRAE00307 X X

* Signal P results indicating prediction of a signal peptide or a signal anchor

** Number of predicted transmembrane domains as predicted by THMMM is indicated

*** Presence of a putatively relevant blast hit in different taxons is indicated. Hits below e represented by a lowercase x, under e5° by uppercase X, and e1%in bold X.

Columns headings are FHE (F. hepatica adult stage), TRE (other trematoda), CES (cestoda), TUR (turbellaria), CND (cnidaria), LTZ (lophotrochozoa), ECZ (ecdysozoa), DTS (deuterostomia)
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have shown that cathepsins L1 and L2 are clearly pre-
dominant in adults, in agreement with the relative abun-
dance of their transcripts in the adult EST database [13]
(Additional File 6), and it has been proposed that the rep-
ertoire of cathepsin Ls gradually change from those
expressed in juveniles to a different set characteristic of
the adults worms [13-15]. Interestingly, it has recently
been reported that the juvenile predominant cathepsin
L3 has a strong collagenase activity, that might result
essential for the invasion process [61], while the "adult”
cathepsin L1 is involved in hemoglobin degradation [14].

We found evidence that within the less characterized
cathepsin B gene family a similar phenomenon might be
taking place. The cathepsin B forms that appear as fre-
quent in juveniles are quite distinct to the cathepsin B
transcripts found in the adult stage dataset (Additional
Files 7 and 8), suggesting that they might also be func-
tionally distinct; cathepsin Bl functions as a digestive
enzyme in the juvenile gut [62].

Further evidence that changing repertoires of enzymes
within gene families might be a common theme in the
parasite adaptation to the diverse environments found in
their hosts is provided by the legumains. These enzymes
have been proposed to have a relevant role activating
other enzymes in helminth proteolytic cascades
[12,13,63-67]. A novel legumain detected in the juvenile
ESTs, legumain 3 has an inverted expression pattern with
the previously reported legumain isolated from adult
worms (Additional File 9, panels A, B). Besides the
already described cathepsins and legumains, the degra-
dome of the juvenile liver fluke was enriched by other
proteases, including a novel serine proteinase, calcium-
dependent cysteine proteinases (calpains), and compo-
nents of the proteasome and ubiquitin pathway (Table 3).
Proteinase inhibitors like cystatins were also produced by
the juvenile larvae. These might modulate parasite pro-
teases on the host immune response as was described for
nematode cystatins [68-71].

Sequences encoding detoxifying enzymes like thireo-
doxin peroxidase (TPx), superoxide dismutase (SOD),
thioredoxin 2, glutation S-transferases and a novel gluta-
thione peroxidase not previously reported in E hepatica
were also found in juveniles, stressing their relevance for
immune evasion [72]. In flatworms thioredoxin and glu-
tathione peroxidases are the main enzymes involved in
detoxifying reactive oxygen species produced by host
immune effector cells [73,74].

Secreted and surface proteins that may modulate host
interactions are considered as relevant targets for vaccine
or anti-parasitic drug design [75]. SignalP analysis identi-
fied putative signal peptides in 60 NE] predicted proteins,
while 52 had an N-terminal signal anchor peptide. Sev-
eral putative secreted proteins were novel (with no signif-
icant hits) or conserved only in trematodes but not
detected in other taxa. Some of these transcripts were
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among the more represented ESTs in juveniles (Table 2).
The repeated detection of these transcripts in partial
datasets from diverse trematodes support the notion that
they are truly highly expressed genes in trematodes, and
may be important mediators for parasitism. We selected
Contig FHC00023, a predicted secreted protein of
unknown function that is the most frequent in the juve-
nile ESTs with no homologies outside E hepatica for fur-
ther analysis. By real time PCR we found that this
transcript is predominantly expressed in the invasive
stage confirming the in silico observation (Additional File
9 panel C). The putative ORF is characterized by repeated
Ser and Thr residues predicted to be glycosilated, and in
further analysis showed faint homology with mucins.
Parasite-specific proteins (with no counterparts in verte-
brates) like these are ideal targets for development of
therapeutic agents since they would have no cross-reac-
tivity with host molecules. The elucidation of the func-
tion of these proteins is an important task. The growing
availability of functional genomics tools like RNA inter-
ference in E hepatica and model trematodes [76-78]
offers some hope this can be accomplished.

Conclusions

The data presented here provides an initial picture of the
transcriptional status of the invasive stage of the zoonotic
trematode E hepatica, one of the most common parasites
of livestock worldwide, and a relevant agent of human
disease in impoverished areas of South America and Asia.
Besides confirming previously identified genes involved
in the invasion process, we also identified plausible candi-
dates for anti-helminthic intervention. A set of putative F
hepatica specific transcripts, together with other flat-
worm specific sequences identified, and a group of tran-
scripts absent in their mammalian hosts, provide an
initial framework to pinpoint novel targets for future
anti-parasitic drugs or vaccine development. The avail-
ability of recently developed functional genomic tools in
liver fluke offers a platform to start unraveling the func-
tion of these novel conserved genes. Furthermore, we
detected interesting differences between the models
Schistosoma species with other lineages of trematodes,
suggesting that genomic and transcriptomic efforts in
other flukes might be justified. Comparative studies
between diverse trematodes would provide more clues on
evolutionary adaptations to parasitism. The richness of
information obtained from a limited set of data warrants
an in dept analysis of the transcriptome using new multi-
parallel sequencing technologies.

Methods

Parasites

Fasciola hepatica metacercariae were obtained in our
laboratory from experimentally infected Lymnaea viatrix
snails and maintained encysted on 0.4% carboxymethyl
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Table 3: Putative host interacting proteins of NEJ of Fasciola hepatica
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Contig evalue BestHitAccesion Species Description Pfam ID

Proteases

FHC00852 4,00E-68 Smp173840[29601 S. mansoni 26S protease PF00004.21
regulatory subunit

FHC00017 1,00E-172 CAD32937 F. hepatica Pro-cathepsin B2 PF00112.15

FHC00024 0 ACM67632 F. hepatica Cathepsin 2L PF00112.15

FHC00049 0 ABU62925 F. hepatica Cathepsin B3 PF00112.15

FHC00054 1,00E-103 CAD32937 F. hepatica Pro-cathepsin B2 PFO0112.15

FHC00092 2,00E-57 ABU62925 F. hepatica Cathepsin B PF00112.15

FHC00154 3,00E-40 ABZ80402 F. hepatica Cathepsin L6 PF00112.15

FHC00522 1,00E-34 ABW75768 F. hepatica Procathepsin L PF00112.15

FHC00855 2,00E-69 ABU62925 F. hepatica Cathepsin B PF00112.15

FHC00201 1,00E-112 CAC85636 F. hepatica Legumain like PF01650.10
precursor

FHC00383 2,00E-44 CAC85636 F. hepatica Legumain like PF01650.10
precursor

FHC00251 1,00E-27 CAC85636 F. hepatica Legumain like -
precursor

FHC00413 2,00E-32 CAC85636 F. hepatica Legumain like -
precursor

FHCO00456 5,00E-22 Smp002150|29044 S. mansoni Serine protease PF00089.18

FHC00410 7,00E-09 CPRT0000007748 S. japonicum Probable Ufm1- -
specific protease 2

FHC00435 8,00E-46 B7P5Y9_IXOSC I. scapularis Calcium-dependent -
cysteine protease

Proteinase Inhibitors

FHC00812 2,00E-16 QO6K58_PHLDU P. duboscqi Endopeptidase PF10208.1
inhibitor

FHC00195 1,00E-57 AAV68752 F. hepatica cystatin -

FHC00724 7,00E-13 AAV68752 F. hepatica cystatin -

Antioxidant proteins

FHC00138 1,00E-131 ACI04165 F. hepatica Thioredoxin PF00578.13
peroxidase

FHC00167 5,00E-37 DQ821492 Haliotis discus Cu/Zn-superoxide PF00080.12
dismutase

FHC00152 9,00E-10 CPRT0000000157 S. japonicum Thioredoxin-like PF06110.3
protein

FHC00111 3,00E-39 Al446859 E. paraensei Glutathione S- PF02798.12
Transferase

FHC00287 5,00E-90 Al446859 E. paraensei u-Glutathione S- PF02798.12
Transferase

FHC00081 2,00E-57 AT007109 P. westermani Glutathione PF00255.11
peroxidase

FHC00066 7,00E-49 AT006971 C. sinensis Thioredoxin-2 PF00085.12

mitochondrial
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Table 3: Putative host interacting proteins of NEJ of Fasciola hepatica (Continued)
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Transmembrane proteins

FHC00555 5,00E-26
FHC00086 6,00E-32
FHC00009 9,00E-54
FHC00592 2,00E-13
FHC00037 7,00E-34
FHC00241 9,00E-53
FHC00273 3,00E-24
FHC00300 1,00E-11
FHC00606 1,00E-06
Cell signalling

FHC00043 3,00E-31
FHC00494 1,00E-100
FHC00519 2,00E-10
FHC00285 2,00E-43
FHC00631 1,00E-65
FHC00565 3,00E-44
FHC00052 7,00E-29
Structural and motor proteins

FHC00033 4,00E-74
FHC00117 1,00E-149
FHC00487 1,00E-26
FHC00379 2,00E-34
FHC00056 7,00E-53
FHC00197 1,00E-25
FHC00363 3,00E-11
FHC00802 4,00E-37
FHC00440 1,00E-99
FHC00278 7,00E-21

CPRT0000008170
001372_SCHJA
CPRT0000003434
Fof

AAA31753

CPRT0000009505

Smp140000[29115
CPRT0000000388

Smp156020|29231

A4V9Q6_FASHE
CPRT0000000218

CED3_CAEEL
CPRT0000001178

A4IF06_CLOSI
Smp_073560

MADD_DROME

EL620294
EL620294
C610909

EL620325
EL620358
EL619926
EL618949
CPRT0000002575
CAP72051
CAP72050

S. japonicum

S. japonicum

S. japonicum

H. sapiens

F. hepatica

S. japonicum

S. mansoni

S. japonicum

S. mansoni

F. hepatica

S. japonicum

C. elegans

S. japonicum

C. sinensis

S. mansoni

D. melanogaster

O. viverrini
O. viverrini

L. rubellus

Q. viverrini
O. viverrini
O. viverrini
O. viverrini
S. japonicum
F. hepatica
F. hepatica

Clathrin coat-
associated protein

22.6 kDa membrane-
associated antigen

Transmembrane
emp24 protein

FGF receptor
activating protein

NADH
dehydrogenase
subunit 3

Succinate
dehydrogenase
complex, subunit C

Tetraspanin-CD63
receptor

Ssr4; signal sequence
receptor

Glucose transporter

Calmodulin-like
protein 2

Phosphatase 2A
inhibitor
Caspase-2

Cell cycle and
apoptosis regulatory
protein 1

Bax inhibitor factor 1

WD domain G beta-
like protein

MAP kinase-
activating death
domain protein

Actin 2
Actin 2

Actin related protein
2/3

Cofilin

Dynein light chain
Dynein Light Chain
Dynein LC6
Paramyosin
Tubulin beta-3
Tubulin beta-2

PF01217.12

PF00036.24

PF01105.16

PF10277.1

PF00507.11

PF01127.14

PF00335.12

PF00036.24

PF00956.10

PF00656.14
PF02037.19

PF01027.12
PF00400.24

PF00022.11
PF00022.11
PF04699.6

PF00241.12
PF01221.10
PF01221.10
PF01576.11
PF03953.9
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cellulose until use. Excystment of metacercariae was per-
formed as described previously [15]. Briefly, metacercar-
iae were placed in a 100-pm filter and incubated 5 min
with 1% sodium hypochlorite, washed exhaustively with
PBS and incubated at 39°C for up to 3 hours in a solution
prepared by mixing equal volumes of A (0.4% sodium
taurocholate, 120 mM NaHCO,, 140 mM NaCl, pH 8.0
and B (50 mM HCI, 33 mM L-cysteine). The emerging
NEJs were collected in a 20 pm-filter with RPMI-1640
medium and used for RNA extraction.

RNA extraction, ligation of RNA adaptors and cDNA
synthesis

Total RNA from 1200 NEJs was prepared using the Micro
to Midi RNA Extraction Kit (Invitrogen), according to the
manufacturer's protocol. Two hundred nanograms of
total RNA were used for cDNA synthesis using the proto-
col described [28]. Briefly, the non capped RNAs were
dephosphorylated, and the complete mRNAs were
decapped by a pyrophosphatase treatment, and later
ligated to the GeneRacer RNA oligo to introduce a 5'
priming site in complete mRNAs. After this treatment,
first strand synthesis was performed with the reverse
transcriptase Superscript III (Invitrogen) using GeneR-
acer oligo-dT primer (55GCTGTCAACGATACGCTAC
GTAACGGCATGACAGTG(T)43").

Preparation of NEJ cDNA libraries

Amplification of full-length cDNAs was performed by
PCR using universal forward (GeneRacer 5'Nested:
5'GGACACTGACATGGACTGAAGGAGTA3) and
reverse primers (GenerRacer 3'Nested:
5'CGCTACGTAACGGCATGACAGTG3') provided by
the GeneRacer kit. PCR was carried out for 30 cycles
(94°C, 45 sec; 68°C 45 sec; 72°C 5 min) using Hot Start
Taq DNA polymerase (Fermentas). PCR products were
size fractionated in three subpopulations (300-800 bp,
800-2000 bp and >2000 bp) by excision from 1% TBE aga-
rose gels, purified with QIAquick Gel Extraction kit
(QIAGEN), ligated to pCR4-TA cloning vectors (Invitro-
gen), electroporated into One Shot TOP 10 Electrocom-
petent E. coli (Invitrogen), and plated on LB Amp/X-Gal.
Recombinant clones from the libraries were randomly
picked, grown in Circle Growth medium and stocked at -
80°C in 96-well plates in 30% glycerol.

DNA sequencing and Bioinformatics analysis

Clones were cultured in 96 well plates with Circle Growth
media and plasmid DNA was purified by alkaline lysis in
96 well plates. DNA was sequenced with M13 reverse
primers using the Dyenamic ET Dye Terminator cycle
sequencing kit for MegaBace DNA Analysis Systems (GE
Healthcare Life Sciences) according to the manufacturer's
instructions.
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The sequence reads obtained were processed and ana-
lyzed wusing the Partigene pipeline [29]. Briefly,
Trace2dbest [79] processed the chromatograms removing
low quality (Phred <15, <150 bp) and vector sequences,
and the resulting preprocessed ESTs were assembled in a
two-step process carried out by CLOBB [80] and Phrap
programs; the resulting contigs and singletons were com-
pared to a set of databases maintained locally (listed in
Supplementary Table 1) using tBLASTX and BLASTX.
Functional categories were analyzed using annot8r [81].
Signal sequence prediction was performed using
SignalP3.0 program [82]. Prediction of trans-membrane
domains were conducted using TMHMM software [83].
Blast results comparisons were performed with Simitri
[31]. All the available ESTs reads from adult stage of E
hepatica available at the Wellcome Trust Sanger Institute
http://www.sanger.ac.uk/Projects/Helminths were down-
loaded and processed with the same pipeline. The juve-
nile sequences here obtained were deposited at the
dbEST with the accessions GT740211 to GT741887.

Codon usage and amino acid frequencies

For E hepatica adult and juvenile stages, Echinostoma
paraensei, Opistorchis viverrini and Clonorchis sinensis,
open reading frames were predicted from the assembled
EST data using EMBOSS bioinformatics suite [84]. The
longest ORF from each EST was retrieved and the pre-
dicted protein sequence was blasted against the NCBI nr
databank. ORFs with significant hits were kept for further
analysis. For S. japonicum and S. mansoni predicted cod-
ing regions obtained through the respective genome proj-
ects were analyzed. Codon and amino acid usage was
calculated using GCUA: General Codon Usage Analysis
tool [85]

Real time PCR

Real time PCR experiments were carried out in an
Applied Biosystems 7500 Real time PCR System. Ten
microliters of different dilutions of ¢cDNA of NEJ and
adult parasites were amplified using 0.2 pM each specific
primers, 1.5 mM MgCl,, 25 uM dNTPs, 0.25 U Platinun
Tagq DNA polymerase (Invitrogen), 1x SYBR Green, 1x
PCR buffer in a 20 ulL volume reaction. Primers
sequences are B-actin (Forward 5-GTGTTGGATTCTG-
GTGATGGTGTC-3' and Reverse 5-CAATTTCTCCTT-
GAT GTCTCG-3'), FHCO00023 (Forward 5-ATGG
TGCGAACGCTAAG-3' and Reverse 5-GAAGAACG-
CAACGCCGAAGA-3'), Legumain 1 (Forward 5'-
CAAGGATGTTTATGAAGGG-3'and Reverse 5-TGC
TTTGTTCATGCTGGC-3') Legumain 3 (Forward 5'-AG
CAGACAAAACCCTTATCGT-3'and Reverse 5-GGA
ATAATAGTAGGCGACGTG-3'). Reactions were per-
formed in triplicate using the following PCR amplifica-
tion conditions, 1 cycle (94°C, 5 min), 40 cycles (94°C, 15
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seg; 60°C, 10 seg; 72°C, 15 seg). All results were analyzed
using the 2-2ACt method and P-actin as internal control
group [86].

Note added in proof

Recently a separate study describing the generation of
more than 500,000 sequences from an adult ¢cDNA
library using 454 sequencing was published [87]. How-
ever, at the time of writing these sequences have not been
made publically accessible and hence a comparative anal-
ysis of this dataset was not possible.

Additional material

Additional file 1 Figure S1. cDNA library generation procedure. (A)
Diagrammatic representation of the major steps in the cDNA library con-
struction. (B) Details on the full length selection and adapter ligation. (C)
Representative PCR products from colonies obtained after size fraction-
ation; left: small size insert library, right: large size insert library.

Additional file 2 Table S1- Databases used in this study. Details and
links to the databases used in this study.

Additional file 3 Table S2- Overview of F. hepatica adult ESTs assem-
bly. Details of the assembly of the available adult stage ESTs with the Parti-
gene pipeline.

Additional file 4 Figure S2. Three way comparisons of F. hepatica juve-
nile contigs against early metazoans and model organisms. (A) The
complete set of contigs generated by the Partigene compared to ESTs from
the early metazoans (non bilaterians) Trichoplax adherens, Porifera
(sponges) and Cnidaria (jellyfish and corals). (B) Comparison among the
nematode C. elegans, the insect D. melanogaster and the arachnid (thick) /.
scapularis. (C) Comparison to the vertebrates D. renio (zebra fish), G. gallus
(chicken) and H. sapiens (human).

Additional file 5 Table S3- Ribosomal proteins detected in NEJ EST
assembly. List of ribosomal proteins detected in the juvenile assembly.
Additional file 6 Table S4- Most abundant contigs in the F. hepatica
adult EST assembly Details of the contigs containing more reads in the
adult stage assembly.

Additional file 7 Figure S3. Phylogenetic tree of Fasciolidae cathep-
sins B. Bootstrapped neighbor joining tree of available cathepsin B coding
sequences, showing the clustering of juvenile and adult forms. Sequences
are color coded by their stage origin: adult stage represented in red
rhombs, juveniles in blue triangles and metacercariae in green circles. Con-
tig sequences from ESTs projects (Sanger Center and this study) are unfilled.
Sequences from F. gigantica are underlined. Sequences from GeneBank are
named following the same criterion of Robinson et al [14], namely the first
two characters indicate species (Fh or Fg for £. hepatica or F. gigantica
respectively) followed by the cathepsin type, country of origin, accession,
stage and P or C for describing partial or complete coding sequences
respectively. The "adult" and "juvenile" clusters observed are not due to
sample bias since they are maintained when analyzing partial regions cor-
responding to 5' or 3'ends of the ESTs (data not shown). The nucleotide
sequence alignment of the cathepsins B used to generate the tree is avail-
able as Additional File 8.

Additional file 8 Supplementary Data S1 - Alignment of cathepsin B
sequences. Nucleotide sequence alignment of cathepsin B sequences.
Additional file 9 Figure S4. Differentially expressed genes in F. hepat-
ica. Transcriptional levels of legumain 1 (A) legumain 3 (B) and Contig
FHC00023 (C) were determined by Real time RT-PCR in newly excysted
juveniles and adults. Levels were measured by the 2-delta delta CT method
using actin as a control for normalization.
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