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Abstract
Background: Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge 
of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe 
combined immunodeficient (NOD/SCID) mouse is one of the most successful models to study paediatric acute 
lymphoblastic leukaemia (ALL). However, for this model to be effective for studying engraftment and therapy 
responses at the whole genome level, careful molecular characterisation is essential.

Results: Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous 
ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles 
from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in 
xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, 
demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts 
contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to 
identify probes and transcript clusters susceptible to cross-species hybridisation.

Conclusions: We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high 
levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking 
approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model 
provides a powerful platform for identifying genes and pathways associated with ALL disease progression and 
response to therapy in vivo.

Background
Understanding the complex molecular pathways leading
to disease is critical for the development of effective
treatment regimes and novel drug targets. Due to
research and resource limitations associated with the use
of primary patient material, pre-clinical models are
essential to expand our knowledge of cancer biology and
for the evaluation of new drugs. For pre-clinical testing,
cell lines cultured in vitro have been extensively used but
their ability to recapitulate primary disease is limited.
Therefore, more relevant disease models are of critical
importance.

An ideal model would mimic the proliferation and dis-
semination of cancer cells that occur in vivo and behave
in a similar manner in response to chemotherapeutic
drug treatment. The non-obese diabetic/severe com-
bined immunodeficient (NOD/SCID) xenograft mouse
model is currently one of the most successful models with
which to study haematological malignancies such as
acute lymphoblastic leukaemia (ALL) [1], whereby
patient bone marrow leukaemia cells are directly trans-
planted into recipient NOD/SCID mice [2]. The kinetics
of engraftment reflects the human disease, leading to
bone marrow (BM) infiltration, followed by migration to
the spleen, peripheral blood and other haematopoietic
organs [2-4].* Correspondence: ursula@ichr.uwa.edu.au
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For ALL, although cure rates are exceeding 75%, the
development of drug resistance is poorly understood and
remains a major cause of morbidity and mortality in chil-
dren [5]. Importantly, much of our knowledge of the
mechanisms underlying drug resistance has been gener-
ated in vitro using immortalised cancer cell lines. The
extent to which cell lines retain features of the original
disease in vivo is a matter of debate [6]. Thus relevant in
vivo, pre-clinical models that recapitulate human disease
are critical to delineate resistance mechanisms and
improve survival.

Primary leukaemia cells engrafted into NOD/SCID
mice appear to retain many of the phenotypic and geno-
typic features of the original specimen [2,7-10]. More-
over, their drug resistance profile to conventional
chemotherapeutics mirrors that of the patient clinical
response [2,10]. Importantly, comparisons have shown
that such xenografts more closely resemble their tumour
type of origin than in vitro cell lines and have been accu-
rate in predicting efficacious drug combinations and clin-
ically active therapeutics [11-14].

Continuous xenografts can be established by trans-
planting cells harvested from the spleen of engrafted ani-
mals into secondary and tertiary recipient mice [10].
Utilising continuous ALL NOD/SCID xenografts the
effects of chemotherapy drugs can be assessed at the
molecular level. Thus, the aim of the current study was to
characterise gene expression profiling in the continuous
ALL xenograft so that it can be used as a model for the
development of therapy resistance in vivo. We have previ-
ously demonstrated the clinical relevance of gene-expres-
sion profiling through the successful identification of
markers predictive of ALL disease outcome, drug-resis-
tance and relapse in a number of primary ALL patient
cohorts [15-21]. However, to validate the xenograft model
system for transcriptional analysis three critical issues
needed to be addressed. Firstly, we needed to determine
the most appropriate engrafted xenograft tissue for analy-
sis. BM is more commonly isolated from patients, how-
ever, the spleen in xenograft mice contains at least seven-
fold more leukaemia cells, which makes isolation of these
cells more practical for analysis. Thus, we were interested
in establishing whether the same gene expression profiles
can be obtained from engrafted spleen and BM. Secondly,
we wanted to address the reproducibility of the engraft-
ment in both the BM and spleen of independent mice.
Phenotypic evidence suggests engraftment in the contin-
uous mouse model is reproducible [10], however, this has
not been examined at the transcriptional level. Finally,
when testing the expression of human xenografts we
wanted to measure the effect of the host murine tissue.
Studies from other xenograft models have demonstrated
cross-species hybridisation of mouse RNA to human spe-
cific microarrays. Although not extensively characterised,

such studies suggest the potential skewing of human gene
expression profiles [22-26]. The previous studies were
performed using Affymetrix expression arrays designed
to target the 3' end of the gene. This region shows the
most divergence between mouse and human. To date, the
extent of cross hybridisation using the Affymetrix whole
transcript Human Gene 1.0 ST array has not been
assessed. The goal of the present study was therefore to
validate the use of gene expression profiling in the ALL
NOD/SCID xenograft model so that it can be used as a
pre-clinical model of relapse.

Results
Comparison of BM/spleen transcriptional profiles of ALL 
xenografts
Our previous studies have demonstrated that there are no
morphological differences in ALL cells engrafted to the
BM or spleen of NOD/SCID mouse xenografts [2]. We
therefore conducted a microarray investigation to deter-
mine if the transcriptional profiles for engrafted spleen
and BM are also analogous. The previously described
continuous ALL-16 xenograft established in NOD/SCID
mice was used to obtain engrafted BM and spleen tissue
[2]. At harvest, high levels of human CD45+ cell engraft-
ment were reached with > 99% human cells infiltrating
the mouse spleen and BM. Using Affymetrix GeneChip
Human Gene 1.0 ST® arrays the transcriptional profile of
engrafted BM tissue was compared to spleen tissue fol-
lowing normalisation. We compared BM and spleen from
four engrafted mice. Pearson correlation coefficients
were calculated and MvA plots, which display the log dif-
ference between BM and spleen expression levels on the
y-axis to the average signal intensity on the x-axis, were
generated. The MvA plot demonstrates little variation in
expression levels between the BM and spleen arrays, only
one transcript cluster showed a two fold difference in
expression (Figure 1A). The Pearson correlation coeffi-
cients calculated between BM and spleen further show
high concordance, ranging between 0.99234-0.99683 for
the four xenografts (Table 1). Consistent with these
results unsupervised hierarchical clustering revealed that
the xenografts do not cluster according to BM or spleen
tissue origin (Figure 1B). To determine differential
expression between engrafted BM and spleen a moder-
ated t-test was performed. To account for the small sam-
ple size a linear model with empirical Bayes estimation
(limma) and Benjamini-Hochberg correction was applied
[27,28]. With this approach only three of the 28,869 genes
profiled, ATP binding cassette A (ABCA1), ATP binding
cassette G (ABCG1) and insulin-like growth factor binding
protein 5 (IGFBP5) were identified as significantly differ-
entially expressed (p < 0.05). Together these results dem-
onstrate a high level of transcriptional concordance
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between engrafted BM and spleen suggesting both could
be used interchangeably for gene expression analysis.

Reproducibility of engraftment
To establish the reproducibility of engraftment in the
continuous ALL model, we compared the gene expres-
sion profiles of ALL-16 xenografts from the spleen and
BM of four independent mice. Pearson correlation coeffi-
cients were calculated to compare the reproducibility of
the mean signal intensity between biological replicates
(Additional file 1). All transcript clusters were compared
for pairwise combinations of microarrays (Table 1) and
correlations between tissues showed little variation.
These results demonstrate excellent reproducibility in the
transcriptional profiles of independent mice transplanted
with the ALL-16 xenograft. Importantly, this high level of
reproducibility was observed when comparing BM or
spleen xenografts among independent mice. This high
concordance suggests engraftment of leukaemia cells in
BM and spleen is highly reproducible in the continuous
ALL xenograft model.

Analysis of cross species hybridisation in the ALL xenograft 
model
Recovery of human tissue from the engrafted murine
host introduces the possibility of contamination from the
host mouse cells. The ALL xenograft mouse represents a
high engraftment model. At harvest, BM, spleen and
peripheral blood all reach high levels of human CD45+
cells, with BM and spleen typically containing > 97%
(with a range from 90-99%) [2]. Therefore, BM/spleen
xenograft preparations are estimated to contain 1-10%
mouse cells. We developed an experimental approach to
evaluate the effect of residual mouse cells in the presence
of 90-100% human ALL cells using the whole transcript
Affymetrix microarray platform.

Graded cell mixtures were prepared with 100%
engrafted human leukaemia cells (ALL.100) and spleen
cells prepared from non-engrafted mice (NES) to derive
95% human (ALL.95) and 90% human (ALL.90) cell mix-

tures. All three mixtures were analysed by microarray in
triplicate to detect transcriptional changes due to mouse
RNA. When comparing ALL.100, with ALL.95 or ALL.90
highly concordant gene expression profiles were obtained
with little variation shown by MvA plots of the mean sig-
nal intensity (Figure 2A). Moreover, Pearson correlation
coefficients comparing ALL.100 with ALL.95 or ALL.90
showed no difference between the cell mixtures (Table 2).
Principal components analysis (PCA) demonstrated that
there is no clustering between any of the samples includ-
ing the three biological replicates for each cell mixture,
further showing the high degree of similarity between all
samples examined (Figure 2B). To compare differential
gene expression a moderated t-test (limma) with Benja-
mini-Hochberg correction was performed. This approach
did not identify any significant (p < 0.05) differential gene
expression between ALL.100 and ALL.95 or ALL.90.
These results indicate that the presence of <10% mouse
cells does not significantly skew human gene expression
signatures. Importantly, other xenograft models show dif-
ferent levels of mouse cells in engrafted tissue and there-
fore may require a masking approach to control cross-
species hybridisation. We tested this using two comple-
mentary masking approaches.

Masking cross species hybridisation
We first tested the hybridisation of pure mouse non-
engrafted spleen (NES) to human arrays (Figure 3). We
found that the overall raw signal intensity and signal to
noise ratio (SNR) of mouse transcripts was significantly
reduced compared to the hybridisation of the human
samples (signal intensity 115.36-329.47 and SNR 0.7-1.67
respectively). The signal distribution of the hybridising
targets showed a reduced frequency for high intensity
values for mouse NES compared to ALL.100 (Figure 3). A
small percentage of transcript clusters, however, resulted
in very high signals for the mouse NES samples, these
were selected as candidates for the masking approach
(Figure 4). Taking the top 1% of normalised mean signal
expression we identified 312 transcript clusters with a

Table 1: Pearson correlation summary statistics showing the engraftment reproducibility between bone marrow and 
spleen xenografts from four independent mice.

ALL.BM - ALL.BM ALL.SP -ALL.SP ALL.BM - ALL.SP

Range 0.99394 0.99445 0.99234

0.99657 0.99576 0.99683

n (comparisons) 6 6 16

SD 0.00102 0.00052 0.00120

Mean 0.99556 0.99529 0.99496

SE 0.00041 0.00021 0.00030

ALL = Acute lymphoblastic leukaemia, BM = bone marrow, SP = spleen, SE = standard error.
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Figure 1 Comparison of differential expression levels between engrafted ALL-16 bone marrow (n = 4) and spleen (n = 4) xenografts. A MvA 
plot comparing expression differences with expression averages for all transcript clusters. Plots were generated using RMA normalised log2 signal in-
tensities, lines represent 2-fold difference (log2 = 1). B Unsupervised hierarchical clustering of engrafted ALL-16 bone marrow (*) and spleen (+) xeno-
grafts from four NOD/SCID mice.
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signal intensity higher than 7.56 (log base 2 scale) (Figure
4B) (Additional file 2).

We then identified transcript clusters theoretically sus-
ceptible to cross-species hybridisation due to their asso-
ciated probes having high identity to mouse transcripts.
We identified 75,300 probes, which matched the mouse
genome with 100% identity and/or with a single base mis-
match. Of the 28,869 human transcript clusters targeted
by the Human Gene ST 1.0 array our filtering method
revealed 1,085 (~3.75%) transcript clusters as candidates
susceptible to cross-species hybridisation (Additional file
2).

Of the 312 experimentally derived transcript clusters,
117 (37.5%) were also identified using the in silico
approach, highlighting a degree of overlap between the
two approaches. Both the experimental and in silico
masking approaches were combined resulting in 1280
(4.4%) transcript clusters to be masked from the total
gene expression signals (Additional file 2). The combined
masking approach was applied to ALL.90 and compared
to the ranked signal intensity of ALL.100 (Figure 5). Fol-
lowing application of the combined mask, calculation of
the mean squared distance (MSD) between ALL.100 and
ALL.90 revealed a decrease in variability (MSD =
2.259019e-06-8.978447e-07 respectively). Using MvA plots
we applied each of the in silico, experimental and com-
bined masking approaches to the ALL.100 versus ALL.90
comparison (Figure 6). Application of the combined
approach removed several of the outliers and thus vari-
ability enabling us to reduce cross-species hybridisation
and improve concordance between the ALL.100 and
ALL.90 transcriptional profiles.

Discussion
The current study sought to address the sensitivity of
gene expression profiling for human xenografts growing
in mice without prior cell separation. Mouse cells, pres-
ent in xenografts can be separated using lengthy deple-
tion protocols and fluorescent activated cell sorting
(FACS) which can have deleterious affects on transcrip-

tional profiles. Several studies, using a variety of xeno-
graft mouse models, have previously examined cross-
species hybridisation without prior cell separation [22-
26]. These studies were performed using Affymetrix
expression arrays designed to target the 3' end of genes.
The 3' expression arrays are thought to be relatively
insensitive to cross-species hybridisation as there is
greater than 10% DNA divergence between mouse and
human within the 3' untranslated region (UTR). In con-
trast, the Human gene 1.0 ST array queries the whole
transcript, giving a more accurate reflection of gene
expression. Using the whole transcript platform, our
results show that mouse cells do not significantly skew
cancer expression profiles when xenografts contain 90%
or more human cells. Although mouse RNA was found to
cross-hybridise to the whole transcript arrays in the
absence of human target, when tested in the presence of
human RNA (> 90%), the effect on the transcriptional
profiles was minimal. Our microarray analysis and theo-
retical modelling indicated that the design of the whole
transcript Affymetrix chips is effective enough to limit
aberrant cross-hybridising mouse RNA. Therefore, with-
out prior cell separation, profiling xenografts on whole
transcript arrays is possible for high engraftment haema-
tological models.

We developed experimental and in silico derived gene
sets to mask probes and transcript clusters potentially
susceptible to cross-species hybridisation. Application of
the transcript cluster masks to the gene expression pro-
files of the human/mouse graded mixtures, improved
results by removing outliers and reducing variability.
While the derived masking approaches outlined in this
study were used for a high engraftment model, this mask-
ing approach could be applied and adapted to other xeno-
graft model systems where human tissue infiltration is
below 90%.

The kinetics of engraftment in the NOD/SCID ALL
xenograft model reflect the human disease with BM infil-
tration, followed by migration to the spleen, peripheral
blood and other haematopoietic organs [2-4]. Impor-

Table 2: Pearson correlation summary statistics showing the reproducibility of mixing experiments between ALL.90 (90% 
human ALL) (n = 3) versus ALL.100 (100% human ALL) (n = 8) and ALL.95 (95% human ALL) (n = 3) versus ALL.100 from 
independent mice.

ALL.90 - ALL.100 ALL.95 - ALL.100

Range 0.99316 0.99247

0.99731 0.99712

n (comparisons) 24 24

Mean 0.99537 0.99527

SE 0.00021 0.00028

ALL = Acute lymphoblastic leukaemia, SE = standard error.
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Figure 2 Assessment of differential expression after mixing ALL-16 xenografts with mouse cells (NES). A MvA plots comparing i ALL.100 
(100% human ALL) (n = 8) with ALL.95 (95% human ALL) (n = 3) and ii ALL.100 with ALL.90 (90% human) (n = 6), MvA plot comparing expression 
differences with expression averages for all transcript clusters. Plots were generated using RMA normalised log2 signal intensities, lines represent 2-
fold difference (log2 = 1). B Principle component analysis of global gene-expression profiles from ALL engrafted bone marrow, spleen tissues and cell 
mixtures of ALL.95 (95% human) and ALL.90 (90% human). Principle components were extracted using all transcript clusters. Four principle compo-
nents were calculated, of which the first three are shown.

B

A i

ii
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tantly, our findings suggest that spleen is a practical alter-
native to BM for profiling xenograft tissue. Microarray
analysis revealed no significant difference in the tran-
scriptional signatures of engrafted BM and spleen. More-
over, we determined that the process of leukaemia
engraftment is highly concordant and reproducible
between independent mice.

Conclusions
Characterisation of reliable pre-clinical models to iden-
tify the most promising new agents to enter clinical trials

and molecular events underlying drug resistance is of
critical importance. For childhood cancers, xenograft
models have been particularly accurate in identifying
clinically active agents and effective drug combinations.
The continuous NOD/SCID xenograft model for ALL
provides a powerful platform with which to study and
monitor drug resistance phenotypes in vivo. In this report
we have evaluated the accuracy of molecular signatures
derived from xenografts. We demonstrate that species-
specific transcriptional profiles can be obtained from
xenografts when high levels of engraftment are achieved

Figure 3 Histogram comparing mean signal intensity of engrafted ALL-16 xenografts and mouse non engrafted spleen (NES). Frequency 
and RMA normalised log2 mean signal intensity for all transcript clusters. The histogram compares ALL.100 (100% human ALL) (n = 8) represented by 
bars and mouse NES (n = 3) represented by a dashed line.
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Figure 4 Comparison of ALL.100 ranked transcript cluster signal intensity to mouse non engrafted spleen (NES). Comparison of ranked 
ALL.100 (100% human ALL) (n = 8), shown in black, and corresponding mouse NES (n = 3), shown in grey, mean signal intensity. Transcript clusters 
are ranked according to descending mean signal intensity of ALL.100. A Without application of filter B Filtered, via the removal of mouse NES transcript 
clusters from the top 1% of normalised expression with a mean signal intensity > 7.56 (log base 2 scale).

A

B
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Figure 5 Comparison of ALL.100 ranked transcript cluster signal intensity to ALL.90. Comparison of ranked ALL.100 (100% human ALL) (n = 8) 
shown in black and corresponding ALL.90 (90% human) (n = 3), shown in grey, mean signal intensity. Transcript clusters are ranked according to de-
scending mean signal intensity of ALL.100. A Without experimental mask B With application of experimental mask. Mean square distance (MSD) was 
measured between each ALL.100 transcript cluster and the corresponding ALL.90 transcript cluster.

A

B MSD=8.9785e-07

MSD=2.2590e-06
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Figure 6 Application of in silico and experimental masks. MvA plots comparing expression differences with expression averages for all transcript 
clusters. Expression signals from ALL-16 xenografts ALL.100 (100% human) (n = 8) versus ALL.90 (90% human) (n = 3) were compared following the 
application of the A experimental B in silico or C combined masking approaches. Transcript clusters identified as susceptible to cross-species hybridi-
sation are shown in black (.) all others are grey (.). Plots were generated using RMA normalised log2 signal intensities, lines represent 2-fold difference 
(log2 = 1).

MvA plot ALL.90  versus ALL.100 - Experimental mask approachA

MvA plot ALL.90 versus ALL.100 - In silico mask approach
B

MvA plot ALL.90  versus ALL.100- Combined experimental and in silico mask approach
C
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or with the application of transcript cluster masks. Ulti-
mately, using the continuous xenograft model, this exper-
imental approach will allow the molecular analysis of the
effects of individual drugs and drug combinations as well
as the identification of biological mechanisms associated
with drug resistance phenotypes in vivo.

Methods
T-ALL Xenograft mouse model
The University of New South Wales Animal Care and
Ethics Committee approved all experimental procedures
involving NOD/SCID mice. The ALL-16 xenograft line
was established from a patient T-ALL diagnosis sample in
the Non-Obese Diabetic/Severe Combined Immunodefi-
cient (NOD/SCID) mouse line as previously reported [2].
Briefly, cells harvested from the spleens of engrafted ani-
mals were transplanted into secondary, tertiary and qua-
ternary recipient mice to establish a continuous xenograft
model. Quaternary xenografts were used in this study.
Engraftment and disease progression was monitored by
flow cytometric enumeration of the proportion of human
versus mouse CD45+ (%huCD45+) cells in peripheral
blood using established procedures [2,10]. When the
%huCD45+ reached 50%, animals were culled and tissue
was harvested.

Sample Preparation
Tissue harvested was femoral bone marrow and spleen
from xenografted animals, and spleen from non-
engrafted mice. Mononuclear cells from spleen samples
were purified by syringe homogenisation, followed by fil-
tration and density gradient centrifugation by Ficoll-
Paque (n = 4) (LymphoPrep, Nycomed). Bone marrow
cells were collected by flushing both femurs with RPMI
1640 medium (Life Technologies) into a collection tube
without density gradient centrifugation (n = 4). All cells
were cryopreserved for future use in FCS containing 10%
DMSO.

Recovery of human tissue from the engrafted mouse
introduces the possibility of contamination from mouse
cells. To investigate this further, 95% and 90% cell mix-
tures were prepared using T-ALL from engrafted femoral
bone marrow with the non-engrafted mouse spleen from
the NOD/SCID mouse strain (n = 3).

RNA Isolation
Total RNA was extracted using TRIZOL reagent (Invitro-
gen) followed by purification with the RNeasy Mini kit
(Qiagen). Samples were ethanol precipitated and quanti-
tated by Nanodrop ND-1000 Spectrophotometry
(Thermo Scientific). RNA integrity was assessed using
the Agilent 2100 Bioanalyzer and the RNA Nano 6000 kit
(Agilent Technologies).

Labelling and Hybridisation
Samples were labelled according to manufacturers
instructions for the GeneChip WT Sense Target Label-
ling Protocol (Affymetrix). Briefly, 300 ng of total RNA
was reverse transcribed into double stranded cDNA
using T7-(N)6 random primers. An in vitro transcription
step was carried out overnight to generate cRNA. Using
the cRNA as a template we generated cDNA, which was
then fragmented, labelled and hybridised onto Affyme-
trix Genechip Human Gene 1.0 ST Arrays. The arrays
interrogate 28 869 well-annotated genes with 764 885
probes. The design of the Human Gene 1.0 ST Array was
based on the UCSC hg18 and NCBI Build 36 genome
sequence assembly. Arrays were washed and stained
using the GeneChip Fluidics Station 450 and scanned
with the GeneChip Scanner 3000 7G (Affymetrix). All
arrays passed quality control criteria as assessed by
Expression Console software (Affymetrix).

Data Analysis
Raw data CEL files were normalised using the Robust
Multi-Array (RMA-16) algorithm in GeneSpring version
GX 10.0.2 (Agilent Technologies). A mean adjustment of
the normalised signal intensity was carried out to account
for minor batch effects seen in the data. Analysis was per-
formed using R version 2.6.2 [29,30]. Microarray data
from this study can accessed from ArrayExpress, acces-
sion number E-MEXP-2648 http://www.ebi.ac.uk/
arrayexpress

To enable statistically significant data to be interpolated
from small sample sizes we used the limma package from
Bioconductor [27]. The data was fitted to a linear model
and the probability of differential expression was esti-
mated using an empirical Bayes moderated t-test. The p-
values were adjusted for multiple testing using a Benja-
mini-Hochberg correction [28]. Unsupervised hierarchi-
cal clustering and Pearson Correlations were generated
using the log2 signal intensities following normalisation.
MvA plots were generated in R using the average over the
replicates in each group. Mean squared distance (MSD)
were calculated in R, ranked transcript cluster signal
intensity plots and mean signal histograms were also gen-
erated in R. Principal Components Analysis (PCA) based
on samples and four components was generated in Gene-
Spring.

Development of a cross-species making approach
To filter cross-species hybridisation we identified all oli-
gonucleotide probes on the Human GeneChip 1.0 ST
array susceptible to spurious signal from mouse RNA
using a coupled bioinformatics, in silico and experimental
masking approach which is detailed below.

http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress
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Cross-species hybridisation derived in silico
A murine genomic sequence database was compiled from
release 54 of the Ensembl Database [31]. All HuGene
array annotation files were obtained directly from the
Affymetrix website [32]. The probes, probesets and tran-
script clusters from these files annotated as targeting core
human transcripts (i.e. non Affymetrix control probes)
were combined, based on their annotated genomic coor-
dinates, to create a mapping table with a three tier hierar-
chy where probes belong to probesets that in turn belong
to transcript clusters (mapping table available on
request). The nucleotide sequences for each probe on the
HuGene array were obtained from the Affymetrix probe
annotation file. The alignment tool BLAT was used to
map human probe sequences to the murine genome
sequence database. Probes were considered a hit if they
matched a database sequence with 100% identity or with
a single base mismatch. The BLAT parameters were opti-
mised to detect the 25 mer probes [33] with tileSize and
stepSize set to 12 and 7 respectively. An in house
designed Perl script was then used in conjunction with
our mapping table to parse the BLAT output files in order
to filter out those transcript clusters containing probesets
with large numbers of hit probes. Transcript clusters with
high numbers of associated hit probes would be deemed
candidates for masking. In this filtering process, probes
were systematically removed from any probesets with
which they were associated. Following this, those probe-
sets with < 50% of their associated probes remaining were
systematically removed from any transcript clusters with
which they were associated. Once ≥ 50% of probesets in a
transcript cluster had been removed the transcript clus-
ter was then selected as a candidate for masking.

Cross-species hybridisation derived experimentally
An experimental approach was employed to examine
cross-hybridisation of mouse mRNA to the Human gene
array in the absence of human RNA. Three independent
non-engrafted mouse spleen (NES) samples were hybri-
dised to the Human Gene 1.0 ST array, CEL files were
imported into GeneSpring version GX 10.0.2 and norma-
lised using the Robust Multi-Array (RMA-16) algorithm.
The mean signal intensity of the three biological repli-
cates was used to identify cross-hybridising transcript
clusters.
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