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Abstract

genomes to look for evidence of this selection.

skew of the coding sequence.

OSC frequency.

Background: Out-of-frame stop codons (OSCs) occur naturally in coding sequences of all organisms, providing a
mechanism of early termination of translation in incorrect reading frame so that the metabolic cost associated with
frameshift events can be reduced. Given such a functional significance, we expect statistically overrepresented
OSCs in coding sequences as a result of a widespread selection. Accordingly, we examined available prokaryotic

Results: The complete genome sequences of 990 prokaryotes were obtained from NCBI GenBank. We found that
low G+C content coding sequences contain significantly more OSCs and G+C content at specific codon positions
were the principal determinants of OSC usage bias in the different reading frames. To investigate if there is
overrepresentation of OSCs, we modeled the trinucleotide and hexanucleotide biases of the coding sequences
using Markov models, and calculated the expected OSC frequencies for each organism using a Monte Carlo
approach. More than 93% of 342 phylogenetically representative prokaryotic genomes contain excess OSCs.
Interestingly the degree of OSC overrepresentation correlates positively with G+C content, which may represent a
compensatory mechanism for the negative correlation of OSC frequency with G+C content. We extended the
analysis using additional compositional bias models and showed that lower-order bias like codon usage and
dipeptide bias could not explain the OSC overrepresentation. The degree of OSC overrepresentation was found to
correlate negatively with the optimal growth temperature of the organism after correcting for the G+C% and AT

Conclusions: The present study uses approaches with statistical rigor to show that OSC overrepresentation is a
widespread phenomenon among prokaryotes. Our results support the hypothesis that OSCs carry functional
significance and have been selected in the course of genome evolution to act against unintended frameshift
occurrences. Some results also hint that OSC overrepresentation being a compensatory mechanism to make up for
the decrease in OSCs in high G+C organisms, thus revealing the interplay between two different determinants of

Background

The biased codon usage in many genomes is generally
believed to result from selection for maximizing transla-
tional speed and/or accuracy [1-3], although there is
reservation as to what extent the notion can be general-
ized to all organisms including humans [4,5]. In theory,
optimal synonymous codons result in the maximum
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translational speed. However, the preservation of subop-
timal synonymous codons suggests that maximizing
translational speed is not the only determinant of codon
bias. Synonymous codons may also play a role in gene
regulation and generation of the correct protein confor-
mation [6-8]. In some sense translational accuracy may
be more important than the speed of translation, and
reading frame maintenance is a key functional require-
ment of translational accuracy as a result of the triplet
nature of the genetic code. Given the complexity of the
protein synthesis process, it is expected that a certain
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proportion of all transcriptional and translational pro-
cesses may go awry even under normal conditions.
Additional mechanisms like frameshift suppression and
nonsense-mediated mRNA decay help to reduce the
incidence and impact of such errors at different steps of
the protein synthesis pathway [9,10]. Despite these
mechanisms, erroneous proteins cannot be entirely
eliminated. Whether and how the cell can deal specifi-
cally with these incorrect and often truncated proteins is
currently uncertain.

The presence of stop codons in the alternate reading
frames stop the translation in an incorrect frame (Figure
1) and truncate the portion of frameshift peptides.
Although this property of the coding sequence has been
known for a long time [11], it has been taken for
granted by most researchers. In a study on 72 bacterial
genomes, the occurrences of OSCs were examined spe-
cifically in detail with the results suggesting that OSC
frequency and bias might have influenced the evolution
of the bacterial genome [12]. The functional significance
of an increased OSC frequency can be explained by the
ambush hypothesis: OSCs could reduce the metabolic
costs of accidental frameshifts, and a positive correlation
between the usage of codons and the number of ways
codons can be part of hidden stops (i.e., OSCs) is
expected [13].

Natural selection can act on the coding sequences to
increase OSC frequencies and minimize the influence of
translational frameshift errors in different ways. It has
been proposed that the genetic code has been optimized
to maximize the number of OSCs that could be
embedded within the coding sequence [13-15]. On a
shorter time-scale, evolution of the coding sequences
might contribute by favoring dicodons (codon pairs)
that encode OSCs. Presumably it would also be
mediated by mechanisms such as synonymous codon
usage bias and specific oligonucleotide biases. We noted
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only one study on single-stranded RNA viral genomes
that has directly studied the expected and observed fre-
quencies of these out-of-frame stop codons (OSCs) [16].
Other studies on dicodon bias [17] and overlapping
genes [18] have touched upon the topic of OSCs indir-
ectly (that is, the results are not directly relevant to the
investigation of relative abundance of OSC, as shown
later in the discussion section). A clear limitation is that
the calculation of odds ratio adopted by these studies
examines only up to two simple types of compositional
biases at a time. Furthermore, the reading frame context
of coding sequences is frequently ignored, or the indivi-
dual frames are not taken into account. In general, these
limitations led to an unsatisfactory and incomplete
description of k-mer frequencies that biased the
expected number of OSCs, and only the basic associa-
tion between genomic G+C content and OSCs could be
identified [18].

To address the shortcomings of the previous studies,
we adopted an approach using Markov models to ana-
lyze the coding sequences of prokaryotic genomes. The
Markov model is based on the concept of portraying the
coding sequence as a Markov chain with defined state
path and transition/emission states. This approach is
superior in preserving the reading frame context and
allowing nested models to account for multiple codon
or oligonucleotide biases simultaneously. Additionally it
provides the distribution of expected OSC frequencies
for each genome and hence allows hypothesis testing in
a formal statistical framework. With the availability of
nearly a thousand complete prokaryotic genomes at the
time of study, we were able to utilize this vast amount
of data to look for any significant deviation of OSC fre-
quencies on a per genome basis. We provide evidence
in support of the ambush hypothesis and suggest the
near-universal presence of selection against translation
of frameshift products in prokaryotic genomes.

Frame
+1

ATG ... GTG AAT AAC ... TAG

+2

+3

Vv
ATG ... GTG AAT AAC ... TAG

ATG ... GTG AAT AAC ... TAG

Figure 1 lllustration showing occurrences of off-frame stop codons (OSCs) in a hypothetical coding sequence.
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Methods

Genome sequences

Complete prokaryotic genomic sequences were obtained
from NCBI GenBank http://www.ncbi.nlm.nih.gov/gen-
omes/lproks.cgi. Protein coding sequences were identi-
fied using gene annotations available in the associated
GenBank files. Non-protein coding genes (e.g. pseudo-
genes and rRNA genes), incomplete genes, coding
sequences with less than 100 codons, extra-chromoso-
mal sequences and sequences containing ambiguous
bases were excluded from analysis. Genomes of bacteria
that utilize a non-standard genetic code, such as Myco-
plasma spp., and mitochondrial genomes were analyzed
separately. Additionally, ‘artificial metagenomes’ were
constructed from randomly selected prokaryotic gen-
omes for conducting mixed genome analysis [19].

Distribution and usage bias of OSCs in alternate reading
frames

Absolute OSC counts and OSC densities in the +2 and
+3 reading frames (corresponding to the reading frame
resultant from +1 and -1 frameshifts respectively) were
calculated on a per gene and per genome basis respec-
tively. The absolute OSC counts for the 2 alternate
reading frames of all genes in each genome were com-
pared using paired 2-sample t-test. Correction for multi-
ple comparison was done by controlling the false
discovery rate at the 5% level using the Benjamini-Hoch-
berg procedure. Relationship of the ratios with G+C
content, GC skew and AT skew of protein coding
sequences was assessed using multiple regression
analysis.

OSC usage bias was defined as the relative codon fre-
quencies of the three stop codons in the two alternate
reading frames and assessed by principal component
analysis (PCA) as done previously [20]. To investigate
the contribution of the G+C content of the 3 codon
positions to the OSC usage bias, multiple linear regres-
sion analysis was performed with the first principal
component as the dependent variable and G+C content
of each codon position as regressors. The relative
importance of the regressors is estimated using the pro-
portional marginal variance decomposition (PMVD)
metric by bootstrapping with 1000 replicates as imple-
mented in the R package ‘relaimpo’ [21].

Analysis of OSC relative abundance in the coding
sequence

Although the abundance of any trinucleotide can be
expressed as a odds ratio given frequencies of its com-
ponent mononucleotides and dinucleotides (Jiy, = fiyz fx
Sy fo lfxy fyz finz) [22], the metric should not be directly
applied to the analysis of OSC relative abundance in

Page 3 of 13

protein coding sequences because of internal stop codon
avoidance in the coding frame. For example, the dico-
dons TAATTA and TTAATA are equivalent in length,
nucleotide and dinucleotide composition, but the former
is not allowed in the coding frame while the latter con-
tains an additional OSC. As stop codons in the coding
frame could not contribute to formation of OSCs, the
number of expected OSC occurrences would also
increase. Thus, the avoidance of in-frame stop codons
will lead to asymmetry of trinucleotide occurrences in
the alternate reading frames.

A Monte Carlo approach is used to estimate the
expected OSC frequencies for each genome. To reduce
the impact of sampling bias from heavily sampled gen-
era and species such as Staphylococcus aureus, we
trimmed the original set of available prokaryotic gen-
omes so that on average one genome per genus is
included for analysis. Random coding sequences match-
ing the distribution of gene lengths in the target genome
were generated using second-order and fifth-order
three-periodic Markov models trained on the set of cod-
ing sequences, as implemented in the MARKOV pack-
age of GenRGenS [23]. The expected frequencies of
OSC occurrences in the simulated sequences were then
compared to the frequencies observed in the actual
sequences using the one-sample t-test, with correction
for multiple comparison performed by controlling the
false discovery rate at the 5% level using the Benjamini-
Hochberg procedure. 200 Monte Carlo trials were per-
formed for each genome.

Origin of OSC bias in selected genomes

To investigate the origin of an excess of OSC abundance
in a genome, we selected several reference genome
sequences for further analysis. These included diverse
genomes with different degrees of OSC relative abun-
dance. Random coding sequences matching the distribu-
tion of gene lengths in the genomes were generated
using different codon-based Markov models trained on
the sets of coding sequences. These different models
accounted for one or more of the following properties
of protein coding sequence: codon usage bias, dicodon
usage bias and dipeptide bias. As the models were not
implemented in the GenRGenS package, the functional-
ity of random sequence generation under these models
was implemented in an in-house Perl program. The
Mersenne Twister pseudorandom number generation
algorithm as implemented in the CPAN module Math::
Random:MT::Auto http://search.cpan.org/dist/Math-
Random-MT-Auto/ was used, as the numbers generated
were known to have suitable statistical properties for
Monte Carlo analysis [24]. The OSC frequencies in the
alternate frames of the simulated sequences were then
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compared to that in the actual sequences using the one-
sample t-test.

Relationship between OSC overrepresentation and
optimal growth temperature

We explored the possible relationship between genomic
OSC overrepresentation and phenotype of the organism.
As a test case, we examined the correlation between the
degree of OSC overrepresentation and the organism’s
optimal growth temperature using multiple linear
regression analysis, as the growth temperature has been
shown to be associated with genomic sequence compo-
sition. Regression model comparison was performed
using ANOVA and stepwise variable selection using
Akaike information criterion. Data on optimal growth
temperature of the organisms were obtained from pre-
vious studies [25,26].

Statistical analysis

Statistical analysis was performed using R version 2.10.1.
All p-values reported are for a two-tailed test, and p <
0.05 is considered statistically significant.

Results

Distribution of OSCs in alternate reading frames

Among the 990 analyzed genomes (Additional File 1,
Supplementary Table S1), the mean OSC densities range
from 1.82 to 27.6 per 100 codons. When the OSCs are
analyzed by reading frames, the mean OSC densities for
frame +2 range from 1.52 to 13.2 per 100 codons and
the mean OSC densities for frame +3 range from 0.11
to 15.3 per 100 codons (Figure 2). OSC densities for
both reading frames decrease with increasing G+C con-
tent of the coding region, and the rate of decrease was
greater for frame +3. The mean OSC density was found
to be very strongly and negatively correlated with the G
+C content in the coding regions by linear regression (p
< 0.0001; r = -0.9721, R* = 0.9451). The negative corre-
lation is consistent with our expectations as all three
stop codons are AT-rich. Multiple linear regression ana-
lysis showed that accounting for GC skew of coding
regions and genome length slightly improved the model
fit (p < 0.0001; adjusted R* = 0.9608) when compared to
the original model by ANOVA (p < 0.0001).

When comparing absolute OSC counts on a per gene
basis, 421 out of 990 genomes (42.5%) have a signifi-
cantly higher OSC count in the +2 reading frame, while
520 (52.5%) have a higher OSC count in the +3 reading
frame. The ratio of absolute OSC counts in the 2 alter-
nate reading frames on a per gene basis was found to be
correlated with the GC ratio (ratio of [GC]:[AT] con-
tent) of coding sequences (Figure 3). The x-intercept of
the regression line is noted to be 0.9378. Hence, OSC
occurrences for frames +2 and +3 are predicted to be
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approximately equal at a G+C content of 48.40%, as
exemplified by the case of Dehalococcoides sp. VS with a
G+C content of 48.15%. Multiple regression analysis
showed that accounting for coding genome size, GC
skew and codon positional effects improved the model
fit (adjusted R* = 0.7530) when compared to the original
model by ANOVA (p < 0.0001), although the G+C con-
tent at codon position 1 was found not to contribute
significantly to the regression model.

OSC usage bias in alternate reading frames

The first three axes from PCA of OSC usage bias
accounted for 92.7%, 3.9% and 2.5% of the total variance
respectively (Additional File 1, Supplementary Figure S1).
Linear regression of the first PCA axis with G+C content
showed a strong correlation (R* = 0.9151; p < 0.0001)
(Figure 4). Among the OSCs, the TAG frequency in
frame +3 was the only one not to be associated with the
first PCA axis at all (Additional File 1, Supplementary
Figure S2), and hence not considered to be associated
with the G+C content of the coding sequence.

The OSC usage bias in each alternate reading frame is
considered below individually. For the +2 frame, OSC
occurs in the dicodon sequence NT[GA|AA|AGINN in
the protein coding frame. As the third codon position is
the most variable codon position due to degeneracy of
the genetic code, variation of G+C content at the third
codon position (GC3) should have the greatest effect on
OSC usage bias for frame +2. As expected, relative fre-
quencies of TAA and TAG for frame +2 decreased with
increasing GC3 while that of TGA increased (Figure 5),
despite the equivalent nucleotide composition of TAG
and TGA. However, as G+C content in all codon posi-
tions are highly correlated, the OSC usage bias would
also be highly correlated with G+C content at other
codon positions. To resolve the situation, the relative
contribution of the G+C content at different codon
positions to OSC usage bias was estimated by the
PMVD metric, which emphasizes the conditional impor-
tance of one regressor in the presence of other regres-
sors [27] and hence can account for the significant
multicollinearity among the G+C content at different
codon positions. Results showed that GC3 is the domi-
nant independent regressor of OSC usage bias in the +2
frame (Figure 6A), suggesting that correlation of GC1 or
GC2 with OSC usage bias is mostly a result of their
multicollinearity with GC3.

The coding sequence prerequisite for OSC occurrence
in the +3 frame is the dicodon NNT[GA|AA|AG]N. In
this case, OSC usage bias is not directly affected by GC3
(which should only affect overall OSC frequency) but by
the first and second codon positions of the second half
of the dicodon. Regression analysis confirmed that GC1
is the dominant independent regressor (Figure 6B).
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0.8 -

0.6 -

0.4 -

Log10 of ratio of OSC counts in frame +2 to frame +3

*®e

2+ 0.3%728x - 0.34
*
R?®-0.7115

frame +2 to frame +3.

\

[GC]:[AT] ratio

Figure 3 Plot of GC ratio ([GC]:[AT] ratio) of coding sequences against OSC frame bias expressed in log;, of the ratio of OSC counts in




Tse et al. BMC Genomics 2010, 11:491 Page 6 of 13
http://www.biomedcentral.com/1471-2164/11/491

0.8

0.6

0.4 -

0.2 1

PC1
o

80

-0.2

-0.4

-0.6

-0.8 - hd
G+C%

Figure 4 Plot of the first PCA axis against G+C content of coding sequences, showing a strong linear correlation and suggesting that
G+C% is the principal determinant of overall OSC usage bias.

-

o
(o)
|

*TGA
o TAA
ATAG

Relative codon usage in frame +2
o o o
w B (6]
I I I

o
N
|

e
.
|

0 10 20 30 40 50 60 70 80 90 100
GC3%

Figure 5 Plot of relative OSC usage in frame +2, showing TGA usage increases with G+C content of coding sequence while TAA and
TAG usage decrease.

.




Tse et al. BMC Genomics 2010, 11:491
http://www.biomedcentral.com/1471-2164/11/491

Page 7 of 13

(A) PC1 of OSC bias in +2 frame
o
o —
o I
. |
r g
©
R o
=5
o |
" |
o -
GC3 GCH GC2
R2 = 91.81%, metrics are normalized to sum 100%.
(B) PC1 of OSC bias in +3 frame
o
oS-
T |
o_|
0
r 3-
©
.
<
Q]
3Y
o I | !
GC1 GC3 GC2
R2 = 78.85%, metrics are normalized to sum 100%.
Figure 6 Plot of relative importance of G+C content in different codon positions in its correlation with OSC usage bias in the +2
frame (A) and the +3 frame (B). Note that the proportion of total variance explained, R? is much smaller for the +3 frame (78.75%) than the
+2 frame (91.81%), which is consistent with the PCA results shown in Additional File 1, Supplementary Figure 2.

Analysis of OSC relative abundance in the coding
sequence

Almost all the examined genomes (334/342; 97.7%)
showed overrepresentation of OSCs in the +2 frame when
compared to frequencies predicted by the second-order
three-periodic Markov model. This model accounted for
the codon position-specific trinucleotide bias including
codon usage bias. Only 3 genomes (0.9%) showed a statis-
tically significant underrepresentation of OSCs in the +2
frame under the same model. When compared to the
OSC frequencies predicted by the fifth-order three-peri-
odic Markov model, 185 genomes (54.1%) still showed sta-
tistically significant overrepresentation of OSCs in the +2

frame, while 26 genomes (7.6%) showed underrepresenta-
tion of OSCs in the same frame. For the +3 frame, 57 and
53 genomes (16.7% and 15.5%) showed overrepresentation
and underrepresentation of OSCs respectively when com-
pared to frequencies predicted by the second-order three-
periodic Markov model. When examined under the fifth-
order three-periodic Markov model, the number of gen-
omes with OSC overrepresentation in the +3 frame greatly
increased to 306 (89.5%), while only 4 (1.2%) showed
underrepresentation.

When both alternate reading frames were considered
together, 339 genomes (99.1%) showed OSC overrepre-
sentation under the second-order three-periodic Markov
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model, while 319 genomes (93.3%) showed OSC overre-
presentation under the fifth-order three-periodic Mar-
kov model. The percentage deviations of the observed
from mean expected OSCs were found to range from
-0.0343% to +5.69% and -0.111% to +0.616% under the
second- and fifth-order three-periodic Markov models
respectively. There are significant positive correlations
between G+C content and the degrees of OSC overre-
presentation under both models (Spearman’s rank corre-
lation coefficient = 0.838 and 0.630 for the second- and
fifth-order three-periodic Markov models respectively)
(Figures 7A and 7B).

Mixed genome analysis was conducted with 8 artificial
metagenomes with sizes ranging from 5.2 to 12.2 MB.
OSC overrepresentation was found in all cases, ranging
from 0.084 to 0.841%, under both the second- and fifth-
order three-periodic Markov models. These results
indirectly suggested that the phenomenon of OSC over-
representation is stable to distant horizontal gene trans-
fer, and should apply to presently uncharacterized
genomes that may have arisen from extensive horizontal
gene transfer with significant sequence compositional
diversity and phylogenetic incongruence [28,29].

Origin of OSC bias in selected genomes

The expected frequencies of OSC occurrences in the
selected genomes under the different models were
shown in Table 1. The results showed that expected
OSC frequencies calculated using codon-based models
showed significantly greater deviation from observed
values when compared to the three-periodic nucleotide-
based models.

All the simpler Markov models chosen were nested
within the more complex models (Additional File 1,
Supplementary Figure S3), with the codon usage bias
model being the simplest and the fifth-order three-peri-
odic Markov model being the most complex. Hence,
comparisons could be made between any two nested
models to infer how different oligonucleotide or codon
biases contributed to the predicted OSC frequency as
shown in Table 1.

OSC selection in genomes utilizing alternate genetic
codes

Some prokaryotes, such as the Entomoplasmatales and
Mycoplasmatales, utilize an alternate genetic code in
which UGA is not a stop codon [30]. Other genetic
codes with non-standard stop codons are also utilized in
mitochondrial genomes. We extended the analysis under
the second-order three-periodic Markov model to these
genomes with alternate genetic codes (Table 2) which
showed varying results. There was clear evidence for
OSC overrepresentation in the genomes of Mesoplasma
florum and Mpycoplasma agalactiae, while OSC
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underrepresentation is present in the genome of Urea-
plasma urealyticum. For the mitochondrial genomes,
the results are similar with a mix of OSC underrepre-
sentation and overrepresentation among the various spe-
cies. However, their small sizes and the small number of
genes limited the statistical significance of the results,
which illustrated that the present method is less useful
in the analysis of organeller and viral genomes.

Relationship between OSC overrepresentation and
optimal growth temperature

Prokaryotes included in our analysis were classified into
one of the following 4 categories: psychrophiles, meso-
philes, thermophiles and hyperthermophiles. The degree
of OSC overrepresentation was found to correlate nega-
tively with the optimal growth temperature of the
organism after correcting for the G+C% and AT skew of
the coding sequence (p = 3.97 x 10°°). The relationship
between OSC overrepresentation and optimal growth
temperature was also supported by stepwise variable
selection on the multiple linear regression model using
Akaike information criterion.

Discussion

Ever since the recognition of the reading frame in ribo-
somal translation of protein coding sequence, it has
been realized that off-frame stop codons play a role in
avoiding production of erroneous protein products. At
the very least, erroneous peptides resulted from frame-
shift have reduced function or be entirely non-func-
tional, and consume precious cellular resources; and in
the worst case, they may be toxic and interfere with
normal cellular metabolism. Hence, it is natural to pos-
tulate that OSCs would be selected for in the course of
genome evolution. An increase in the occurrences of
OSCs results in more truncations of the erroneous pep-
tides due to frameshifts, and leads to less metabolic
wastage and potentially less toxic products. In agree-
ment with this line of reasoning, there is empirical evi-
dence that protein production increases with the
number of OSCs in the coding gene [31].

Our study is divided into two main parts. Firstly, we
showed that GC bias in the coding sequences is the pri-
mary determinant of OSC frequencies, consistent with
the results of a smaller study [12]. Furthermore, with a
lone exception, individual OSC biases are also primarily
determined by the G+C content of the coding
sequences. Hence, these results establish the need to
account for the effect of nucleotide compositional bias
on OSC frequencies. In the second part of the study, we
investigated the effects of higher order compositional
biases, like dinucleotide, hexanucleotide and dicodon
biases, that have been recognized in genomes previously
[32-35]. Markov modeling provides a straightforward
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Figure 7 Plots of percentage deviation of observed OSC counts from expected counts under (A) second-order and (B) fifth-order
three-periodic Markov models against G+C content of coding regions. A positive percentage deviation signifies overrepresentation of OSCs.

and natural way of describing these biases and hence
allow for the estimation of the effects of the different
biases on OSC frequencies. Perhaps the biggest advan-
tage of Markov modeling in the context of this study is
the ease with which nested models could be developed
and compared. These models would have been more
complicated to implement using previous approaches
like k-mer shuffling [36] or odds ratio of word counts
[22]. The generation of random genomes under different
models greatly facilitates the study of a wide range of
genomic features in relation to the underlying

compositional biases, and the flexibility of the approach
is only limited by the computational expense of the
associated Monte Carlo method.

The selection of Markov models examined represents a
balance of biological relevance and statistical considera-
tions. Markov models with orders of six or above were not
examined in the present analysis due to the limited size of
prokaryotic genomes resulting in insufficient sample sizes
for parameter estimation. Furthermore, except for special
cases like palindromic sequences, it is uncertain whether
any biological mechanism exists to produce such a high-
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Table 1 Expected versus observed OSC frequencies of selected genomes under models of different compositional

biases.
Organism Phylogenetic G+C% of Expected OSC frequency under different compositional models Observed
division coding 0sc
region frequency
Codon  Dipeptide Dicodon Trinucleotide bias Hexanucleotide bias
usage bias bias (2" order Markov (5™ order Markov
bias model) model)
Laribacter Beta- 63.5% 6.068 + 6.190 + 5024 + 4947 + 0.021 5.020 + 0.021 5.030
hongkongensis  proteobacteria 0.025 0.024 0.022
Staphylococcus — Firmicutes 33.6% 19.789 £ 20.158 + 20501 £ 20483 £ 0.044 20482 + 0.042 20512
aureus 0.038 0.037 0.042
Yersinia Gamma- 48.4% 12530+ 12825 + 12902 + 12848 + 0.028 12.890 + 0.030 12912
enterocolitica proteobacteria 0.026 0.028 0.026
Thermotoga Thermotogae  46.4% 12626 £ 12177 + 10532 £ 10501 £ 0.038 10519 + 0.037 10.534
maritima 0.042 0.039 0.042
Deinococcus Deinococcus-  67.7% 4619 £ 5118 + 4371 £ 4295 + 0.022 4369 + 0.021 4375
radiodurans Thermus 0.021 0.023 0.021
Pyrococcus Euryarchaeota 41.1% 17385 £ 16927 + 16.567 £ 17520 + 0.048 17.557 + 0.046 17.574
furiosus 0.046 0.044 0.050

Values are expressed as (mean + SD) number of OSC per 100 codons.

order oligonucleotide bias. The same argument applies to
the codon-based Markov models. At the other end of the
spectrum, Markov models simpler than second-order
nucleotide-based models reflect only simple nucleotide
composition or dinucleotide bias and could not account
for the absence of in-frame stop codons. The choice of
second- and fifth-order nucleotide-based three-periodic
Markov models as used in the present study is not arbi-
trary. Previous work in applying Markov models to gene
prediction have shown them to be the most useful models
for describing protein coding sequences [37,38], and are
important in the majority of current gene prediction
programs.

The results of the present study supported the general
presence of selection for OSC in prokaryotic genomes,
with more than 93% of examined genomes clearly show-
ing OSC overrepresentation under the nucleotide-based
Markov models. In further support for the ambush
hypothesis, the magnitude of OSC overrepresentation is
found to be significantly correlated with G+C content.
The results showed that genomes with higher G+C con-
tent tend to have a higher degree of OSC overrepresen-
tation. As the same genomes have less OSCs as shown
in the first part of the study, the increased OSC overre-
presentation might well be a compensatory mechanism
to boost the number of OSCs. This observation

Table 2 Expected versus observed OSC frequencies of selected genomes with non-standard genetic codes.

Species Expected OSC counts (per 100 codons) Observed OSC counts (per 100 p-value
(mean * SD) codons)
Entomoplasmatales &Mycoplasmatales
(translation table 4)
Mesoplasma florum L1 16.653 + 0.066 17.233 ]]g,%w X 107
Mycoplasma agalactiae PG2 16.698 + 0.069 17.053 ?496 x 107
Ureaplasma urealyticum 18.169 + 0.076 18.154 0.00512
Vertebrate mitochondria (translation table 2)
Homo sapiens 16.107 £ 0.688 16.176 0.162
Rattus norvegicus strain Wistar 17937 £ 0674 17.950 0.777
Yeast mitochondria (translation table 3)
Saccharomyces cerevisiae 23.178 + 0.399 23.154 0408
Candida glabrata 25924 + 0675 26.008 0.0809
Ascidian mitochondria (translation table 13)
Ciona savignyi 18447 + 0.545 18.506 0.127

Values are expressed as number of OSC per 100 codons.
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highlighted a previously overlooked aspect of the
ambush hypothesis — the selection for OSCs can occur
simultaneously at multiple levels and there exists a com-
plex layer of interaction among them.

On the other hand, the magnitude of OSC overrepre-
sentation was found to be quite modest, and does not
exceed 6% in the most pronounced case. However,
before dismissing the practical significance of the effect,
it should be reminded that the present calculations were
done on a per genome basis. Taking the case of Yersinia
enterocolitica as an example, OSC overrepresentation of
around 0.64 per 1000 codons in its 4.6 MB genome
would translate to an excess of over 800 OSCs. Even a
weak selection of OSCs can sometimes produce unex-
pected and significant effects in the phenotype, as exem-
plified by the recent discovery of a positive association
between numbers of mitochondrial OSCs and the accu-
racy of vertebrate morphogenetic development [39]. In
our results, OSC overrepresentation is negatively corre-
lated with optimal growth temperature of the organism
in general. We hypothesize that low temperatures may
promote non-specific binding of transcriptional or initia-
tion factors to incorrect sites and thus confer a selec-
tional advantage to a greater abundance of OSCs. While
there is insufficient data to indicate that translational or
transcriptional error rates are elevated in low tempera-
tures, we note that our proposed mechanism shares
conceptual and functional similarities with the arrest of
initiation factor-dependent translation initiation
mediated by the cold shock response [40].

Our results provide a picture of OSC selection aver-
aged over the whole genome. As the probability and
adverse effects associated with frameshift occurrences
may vary with individual genes, so will the “selection
pressure” to incorporate additional OSCs into its coding
sequence. Thus, it is possible that excess OSCs are not
evenly distributed but more concentrated in a subset of
genes, in which they may exert a pronounced effect
against frameshift peptide translation. Logically, genes
with frameshift-prone slippage regions such as homopo-
lymeric tracts [41] would benefit most from excess
OSCs. Alternatively, it may be possible that highly
expressed genes would also be under selection for more
OSCs, as the absolute number of errors would increase
with greater transcription and translation activity. While
the uneven distribution of OSCs in the genes and gen-
omes was not explored in the present study, we calcu-
lated the ratio of OSCs in the +2 and +3 frames, which
showed significant variation among the different gen-
omes and could not be fully explained by the genomic
G+C content as shown in figure 2. With respect to the
importance of the physical distribution of OSCs, the
concept of the “tri-frame model” and its application of
the ribosome occupancy distribution may provide a

Page 11 of 13

useful framework for understanding the uneven distribu-
tion of OSCs with respect to reducing mistranslation
and modulating gene expression [42].

The diversity of results from the detailed analysis on
selected genomes is useful in showing that codon or
dipeptide biases alone could not explain the near-uni-
versal observation of OSC overrepresentation in prokar-
yotic genomes. We notice that the expected OSC
frequencies under the dicodon bias model closely match
the actually observed freqencies, suggesting that dicodon
bias may play an important part in affecting OSC occur-
rences. However, there appears to be exceptions, like
Pyrococcus furiosus, for which the dicodon bias model
failed to model the observed OSC frequency (Table 1).
A related observation is that the simpler models appear
inadequate in describing the compositional biases in the
coding sequences. For example, the zeroth-order codon-
based Markov model assumed complete independence
of each codon from its neighbors, thus implying the
absence of dinucleotide or other compositional biases
across codon boundaries. Hence, the presence of biolo-
gically inaccurate assumptions renders the model irrele-
vant for comparison. Since the above results have
largely ruled out the role of the lower-order composi-
tional biases, another prime candidate for contributing
to the OSC overrepresentation is local synonymous
codon usage. This possibility could not be confirmed
with the current methods and deserve exploration in
future studies.

Maintenance of the reading frame of a coding
sequence is a complex and error-prone process. During
the transfer of genetic information from DNA to pro-
tein, errors resulting in frameshifts may occur during
DNA replication, mRNA transcription and ribosomal
translation. It is also possible that some errors may arise
from DNA and RNA mutations, that may occur sponta-
neously or be induced by mutagens. To minimize the
metabolic impact of these errors, the cell has several
layers of defense. Firstly, the relevant cellular processes
have been highly optimized to avoid the errors in the
first place. For example, higher fidelity of DNA replica-
tion could be achieved with the use of proofreading
DNA polymerase. Next, if errors had nonetheless
occurred, the appropriate response mechanisms will be
engaged. Damaged DNA may be recognized and cor-
rected with the cellular DNA repair machinery while
translational frameshifts may be reduced with frameshift
suppressor tRNAs. Finally, the cell possesses a certain
degree of metabolic robustness to resist the negative
effects of these errors, such as the presence of alterna-
tive metabolic pathways. In this framework, the selection
of OSCs in coding sequences could be considered a pas-
sive second layer of defense against frameshift errors. It
is uncertain if there is greater selective pressure against
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transcriptional than translational frameshifts, given that
the effect of OSCs is identical in both cases. A related
mechanism identified to play a similar role in potentially
reducing mistranslation errors is the selection on
codon-pair context during gene evolution to maximize
mRNA decoding fidelity by optimizing translational effi-
ciency [43]. This effect would be independent of and
additive to that provided by OSCs.

As a final note, we would like to explore the differ-
ences between the present results and those from a
previous study [17]. In that study, the authors exam-
ined the preferred and avoided dicodons in different
genomes and noted that some avoided dicodons allows
for out-of-frame UAA/UAG stop codons (but not
UGA stop codons) in alternate reading frames. How-
ever, to put their findings in perspective, we noticed
that the set of preferred dicodons also included dico-
dons that encode such OSCs, and no calculations were
performed to confirm whether the net effect of the
dicodon bias actually decreased OSC frequencies.
Thus, there was no direct demonstration of OSC
avoidance in the genomes. More importantly, by calcu-
lating the odds ratio of dicodon frequencies based on
the constituent codon frequencies, they have shown
only the effect of dicodon bias on overall OSC fre-
quencies and not the actual difference between
observed and expected OSC frequencies. For instance,
our analysis on Laribacter hongkongensis strain HLHK9
[44] (Table 1) revealed OSC overrepresentation in its
genome though its dicodon bias actually decreased the
OSC abundance relative to its codon usage and dipep-
tide biases. Hence, it is clear that the results from the
previous study are not sufficiently informative in the
investigation of OSC selection in genomes.

Conclusions

We have presented the largest and most comprehen-
sive study to date of OSCs in prokaryotic genomes
using Markov models and the Monte Carlo method.
Results showed widespread overrepresentation of OSCs
and the degree of overrepresentation increases with G
+C content of the coding sequence. The latter observa-
tion is postulated to be a compensatory mechanism to
make up for the decrease of OSC frequency with G+C
content. Taken together, the findings of the study pro-
vided evidence in support of selection for OSCs at the
genomic level, in agreement with the ambush hypoth-
esis which stated that OSCs can reduce the metabolic
cost associated with unintended frameshift events.

Page 12 of 13

Additional material

Additional file 1: Supplementary Table S1 and Supplementary
Figures S1 to S3. Table S1, list of analyzed genomes; Figure S1, scree
plot of the principal component analysis (PCA) on the relative codon
frequencies of off-frame stop codons (OSC); Figure S2, biplot of the PCA
results; Figure S3, relationship of the Markov models used.

Additional file 2: Results from Monte Carlo simulations of OSC
frequencies in prokaryotic genomes. Excel file containing simulated
OSC frequencies under different Markov models from each Monte Carlo
run.

Acknowledgements

We thank Tom Ho for his encouragement and comments during
preparation of the manuscript. We acknowledge the support from the
University Development Fund of the University of Hong Kong, and the
HKSAR Research Fund for the Control of Infectious Diseases of the Health,
Welfare and Food Bureau.

Author details

'Carol Yu Centre for Infection, Department of Microbiology, The University of
Hong Kong, Hong Kong, China. “Research Centre of Infection and Immunity,
The University of Hong Kong, Hong Kong, China. *Department of Biology,
Stanford University, Stanford, California, USA. 4Department of Veterinary
Integrative Biosciences, College of Veterinary Medicine, Texas A&M

University, Texas, USA.

Authors’ contributions

HT conceived and designed the study. HT and JJC wrote the manuscript.
HT, HWT and EPTL performed data analysis. KYY performed critical revision
of the manuscript for important intellectual content. All authors have read
and approved the manuscript.

Received: 13 March 2010 Accepted: 9 September 2010
Published: 9 September 2010

References

1. Akashi H, Eyre-Walker A: Translational selection and molecular evolution.
Curr Opin Genet Dev 1998, 8(6):688-693.

2. Duret L: Evolution of synonymous codon usage in metazoans. Curr Opin
Genet Dev 2002, 12(6):640-649.

3. lkemura T: Codon usage and tRNA content in unicellular and
multicellular organisms. Mol Biol Evol 1985, 2(1):13-34.

4. dos Reis M, Sawa R, Wernisch L: Solving the riddle of codon usage
preferences: a test for translational selection. Nucleic Acids Res 2004,
32(17):5036-5044.

5. Kanaya S, Yamada Y, Kinouchi M, Kudo Y, lkemura T: Codon usage and
tRNA genes in eukaryotes: correlation of codon usage diversity with
translation efficiency and with CG-dinucleotide usage as assessed by
multivariate analysis. J Mol Evol 2001, 53(4-5):290-298.

6. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV,
Gottesman MM: A “silent” polymorphism in the MDR1 gene changes
substrate specificity. Science 2007, 315(5811):525-528.

7. Fung KL, Gottesman MM: A synonymous polymorphism in a common
MDR1 (ABCB1) haplotype shapes protein function. Biochim Biophys Acta
2009, 1794(5):860-871.

8. Boulling A, Le Gac G, Dujardin G, Chen JM, Ferec C: The c.1275A>G
putative chronic pancreatitis-associated synonymous polymorphism in
the glycoprotein 2 (GP2) gene decreases exon 9 inclusion. Mol Genet
Metab 2010, 99(3):319-324.


http://www.biomedcentral.com/content/supplementary/1471-2164-11-491-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-491-S2.XLS
http://www.ncbi.nlm.nih.gov/pubmed/9914211?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12433576?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3916708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3916708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15448185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15448185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11675589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11675589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11675589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11675589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17185560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17185560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19285158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19285158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19919903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19919903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19919903?dopt=Abstract

Tse et al. BMC Genomics 2010, 11:491
http://www.biomedcentral.com/1471-2164/11/491

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Maquat LE: Nonsense-mediated mRNA decay in mammals. J Cell Sci 2005,
118(Pt 9):1773-1776.

Atkins JF, Bjork GR: A gripping tale of ribosomal frameshifting: extragenic
suppressors of frameshift mutations spotlight P-site realignment.
Microbiol Mol Biol Rev 2009, 73(1):178-210.

Clarke CH, Miller PG: Consequences of frameshift mutations in the trp A,
trp B and lac | genes of Escherichia coli and in Salmonella typhimurium. J
Theor Biol 1982, 96(3):367-379.

Wong TY, Fernandes S, Sankhon N, Leong PP, Kuo J, Liu JK: Role of
premature stop codons in bacterial evolution. J Bacteriol 2008,
190(20):6718-6725.

Seligmann H, Pollock DD: The ambush hypothesis: hidden stop codons
prevent off-frame gene reading. DNA Cell Biol 2004, 23(10):701-705.
ltzkovitz S, Alon U: The genetic code is nearly optimal for allowing
additional information within protein-coding sequences. Genome Res
2007, 17(4):405-412.

Singh TR, Pardasani KR: Ambush hypothesis revisited: Evidences for
phylogenetic trends. Comput Biol Chem 2009, 33(3):239-244.

Rima BK, McFerran NV: Dinucleotide and stop codon frequencies in
single-stranded RNA viruses. J Gen Virol 1997, 78(Pt 11):2859-2870.

Tats A, Tenson T, Remm M: Preferred and avoided codon pairs in three
domains of life. BMC Genomics 2008, 9:463.

Sabath N, Graur D, Landan G: Same-strand overlapping genes in bacteria:
compositional determinants of phase bias. Biol Direct 2008, 3:36.

Chong PK, Gan CS, Pham TK, Wright PC: Isobaric tags for relative and
absolute quantitation (iTRAQ) reproducibility: Implication of multiple
injections. J Proteome Res 2006, 5(5):1232-1240.

Suzuki H, Saito R, Tomita M: A problem in multivariate analysis of codon
usage data and a possible solution. FEBS Lett 2005, 579(28):6499-6504.
Gromping U: Relative importance for linear regression in R: The package
relaimpo. J Stat Softw 2006, 17(1).

Karlin S, Ladunga |, Blaisdell BE: Heterogeneity of genomes: measures and
values. Proc Natl Acad Sci USA 1994, 91(26):12837-12841.

Ponty Y, Termier M, Denise A: GenRGenS: software for generating random
genomic sequences and structures. Bioinformatics 2006, 22(12):1534-1535.
Matsumoto M, Nishimura T: Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans
Model Comput Simul 1998, 8(1):3-30.

Huang SL, Wu LC, Liang HK, Pan KT, Horng JT, Ko MT: PGTdb: a database
providing growth temperatures of prokaryotes. Bioinformatics 2004,
20(2):276-278.

Mazurie A, Bonchev D, Schwikowski B, Buck GA: Evolution of metabolic
network organization. BMC Syst Biol 2010, 4:59.

Grémping U: Variable Importance Assessment in Regression: Linear
Regression versus Random Forest. The American Statistician 2009,
63(4):308-319.

Nicolas P, Bessieres P, Ehrlich SD, Maguin E, van de Guchte M: Extensive
horizontal transfer of core genome genes between two Lactobacillus
species found in the gastrointestinal tract. BMC Evol Biol 2007, 7:141.
Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP: The bacterial species
challenge: making sense of genetic and ecological diversity. Science
2009, 323(5915):741-746.

Bove JM: Molecular features of mollicutes. Clin Infect Dis 1993, 17(Suppl
1):510-31.

Seligmann H: Cost minimization of ribosomal frameshifts. J Theor Biol
2007, 249(1):162-167.

Karlin' S, Campbell AM, Mrazek J: Comparative DNA analysis across diverse
genomes. Annu Rev Genet 1998, 32:185-225.

Gentles AJ, Karlin S: Genome-scale compositional comparisons in
eukaryotes. Genome Res 2001, 11(4):540-546.

Phillips GJ, Arnold J, Ivarie R: Mono- through hexanucleotide composition
of the Escherichia coli genome: a Markov chain analysis. Nucleic Acids Res
1987, 15(6):2611-2626.

Bohlin J, Skjerve E: Examination of genome homogeneity in prokaryotes
using genomic signatures. PLoS One 2009, 4(12):e8113.

Coward E: Shufflet: shuffling sequences while conserving the k-let
counts. Bioinformatics 1999, 15(12):1058-1059.

Salzberg SL, Delcher AL, Kasif S, White O: Microbial gene identification
using interpolated Markov models. Nucleic Acids Res 1998, 26(2):544-548.

38.

39.

40.

42.

43.

Page 13 of 13

Borodovsky M, McIninch JD, Koonin EV, Rudd KE, Medigue C, Danchin A:
Detection of new genes in a bacterial genome using Markov models for
three gene classes. Nucleic Acids Res 1995, 23(17):3554-3562.

Seligmann H: The ambush hypothesis at the whole-organism level: Off
frame, ‘hidden’ stops in vertebrate mitochondrial genes increase
developmental stability. Comput Biol Chem 2010, 34(2):80-85.
Vila-Sanjurjo A, Schuwirth BS, Hau CW, Cate JH: Structural basis for the
control of translation initiation during stress. Nat Struct Mol Biol 2004,
11(11):1054-1059.

Wernegreen JJ, Kauppinen SN, Degnan PH: Slip into something more
functional: Selection maintains ancient frameshifts in homopolymeric
sequences. Mol Biol Evol 2010, 27(4):833-839.

Pienaar E, Viljoen HJ: The tri-frame model. J Theor Biol 2008,
251(4):616-627.

Moura G, Pinheiro M, Arrais J, Gomes AC, Carreto L, Freitas A, Oliveira JL,
Santos MA: Large scale comparative codon-pair context analysis unveils
general rules that fine-tune evolution of mRNA primary structure. PLoS
One 2007, 2(9):e847.

Woo PC, Lau SK, Tse H, Teng JL, Curreem SO, Tsang AK, Fan RY, Wong GK,
Huang Y, Loman NJ, et al: The complete genome and proteome of
Laribacter hongkongensis reveal potential mechanisms for adaptations to
different temperatures and habitats. PLoS Genet 2009, 5(3):21000416.

doi:10.1186/1471-2164-11-491

Cite this article as: Tse et al: Natural selection retains overrepresented
out-of-frame stop codons against frameshift peptides in prokaryotes.
BMC Genomics 2010 11:491.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/15860725?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19258537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19258537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6181349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6181349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18708500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18708500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15585128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15585128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17293451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17293451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19473880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19473880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9367373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9367373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18842120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18842120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18717987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18717987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16674113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16674113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16674113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16289058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16289058?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7809131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7809131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16574695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16574695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14734322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14734322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20459825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20459825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17708761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17708761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17708761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19197054?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19197054?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7691196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17706680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9928479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9928479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11282969?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11282969?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3550699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3550699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19956556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19956556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10745997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10745997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9421513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9421513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7567469?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7567469?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20347394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20347394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20347394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15502846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15502846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19955479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19955479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19955479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18237749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17786218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17786218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19283063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19283063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19283063?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Genome sequences
	Distribution and usage bias of OSCs in alternate reading frames
	Analysis of OSC relative abundance in the coding sequence
	Origin of OSC bias in selected genomes
	Relationship between OSC overrepresentation and optimal growth temperature
	Statistical analysis

	Results
	Distribution of OSCs in alternate reading frames
	OSC usage bias in alternate reading frames
	Analysis of OSC relative abundance in the coding sequence
	Origin of OSC bias in selected genomes
	OSC selection in genomes utilizing alternate genetic codes
	Relationship between OSC overrepresentation and optimal growth temperature

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

