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Abstract

Background: Congenital heart defect (CHD) account for 25% of all human congenital abnormalities. However, very
few CHD-causing genes have been identified so far. A promising approach for the identification of essential cardiac
regulators whose mutations may be linked to human CHD, is the molecular and genetic analysis of heart
development. With the use of a triple retinoic acid competitive antagonist (BMS189453) we previously developed a
mouse model of congenital heart defects (81%), thymic abnormalities (98%) and neural tube defects (20%). D-TGA
(D-transposition of great arteries) was the most prevalent cardiac defect observed (61%). Recently we were able to
partially rescue this abnormal phenotype (CHD were reduced to 64.8%, p = 0.05), by oral administration of folic
acid (FA). Now we have performed a microarray analysis in our mouse models to discover genes/transcripts
potentially implicated in the pathogenesis of this CHD.

Results: We analysed mouse embryos (8.5 dpc) treated with BMS189453 alone and with BMS189453 plus folic acid
(FA) by microarray and qRT-PCR. By selecting a fold change (FC) ≥ ± 1.5, we detected 447 genes that were
differentially expressed in BMS-treated embryos vs. untreated control embryos, while 239 genes were differentially
expressed in BMS-treated embryos whose mothers had also received FA supplementation vs. BMS-treated embryos.
On the basis of microarray and qRT-PCR results, we further analysed the Hif1a gene. In fact Hif1a is down-
regulated in BMS-treated embryos vs. untreated controls (FCmicro = -1.79; FCqRT-PCR = -1.76; p = 0.005) and its
expression level is increased in BMS+FA-treated embryos compared to BMS-treated embryos (FCmicro = +1.17;
FCqRT-PCR = +1.28: p = 0.005). Immunofluorescence experiments confirmed the under-expression of Hif1a protein in
BMS-treated embryos compared to untreated and BMS+FA-treated embryos and, moreover, we demonstrated that
at 8.5 dpc, Hif1a is mainly expressed in the embryo heart region.

Conclusions: We propose that Hif1a down-regulation in response to blocking retinoic acid binding may contribute
to the development of cardiac defects in mouse newborns. In line with our hypothesis, when Hif1a expression level
is restored (by supplementation of folic acid), a decrement of CHD is found. To the best of our knowledge, this is the
first report that links retinoic acid metabolism to Hif1a regulation and the development of D-TGA.

Background
Congenital heart defects affect 1-2% of newborns and
are the leading cause of death in infants under one year
of age [1]. While the overwhelming majority of congeni-
tal heart malformations do not segregate in Mendelian

ratios, they do show familial aggregation, which suggests
that genetic factors play a role in their development
[2,3]. Despite this, a limited number of CHD-causing
genes have been identified so far [4].
Isolated D-Transposition of great arteries (D-TGA,

OMIM 608808) accounts for 5% of all congenital heart
diseases [5]. Its incidence is estimated at 1 in 3,500-5,000
live births [6]. Most D-TGA cases are sporadic, but famil-
ial cases have also been reported [7]. A discrete number
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of causing genes have been identified so far (ZIC3, CFC1,
THRAP2, GDF1, NODAL), but their mutation explains
only a minority of cases [8-13]. Interestingly, many of
these genes participate in embryonic left-right axis
patterning [14]. Moreover, D-TGA has been observed to
be frequently related to laterality defects (failure to estab-
lish a normal left-right asymmetry during embryonic
development), in particular, in patients with asplenia/
right isomerism. Conversely, one of the most prevalent
types of CHD in lateralisation defects is D-TGA [15].
Transcriptome analysis using DNA microarrays has

become a standard approach for investigating the molecu-
lar basis of human disease in both clinical and experimen-
tal settings, as the pattern of transcriptional deregulation
may provide insights into the cause of abnormal pheno-
types, including congenital defects [16-20].
In the present study we have analysed the transcrip-

tome of mouse embryos whose development was drama-
tically altered by temporarily blocking retinoic acid
signalling and of embryos in which the abnormal devel-
opmental phenotype was rescued by a concomitant
supplementation with folic acid [21,22].
We previously administered to pregnant mice

BMS189453, a synthetic retinoic acid (RA) antagonist
having good (82-98%) oral bioavailability in rats and
monkeys [21]. BMS189453 binds, but does not activate,
the a, b, and g retinoid receptors [23]. Oral administra-
tion of BMS189453 to pregnant mice twice, at 7.25/7.75
dpc (days post coitum), induces cardiac defects (81%),
thymic abnormalities (98%) and neural tube defects
(20%) at birth [21]. Concomitant oral supplementation
with FA, during pregnancy, partially rescues this abnor-
mal phenotype [22]. In particular, FA reduces congenital
heart diseases from 81.3% to 64.8%, neural tube defects
from 20.3% to 3.7% and thymic abnormalities from
98.4% to 27.8%, restoring a normal number of differen-
tiated thymic cells [22].
To better identify genes/transcripts involved in the

pathogenesis of the congenital defects observed in our
mouse models, we performed a global microarray analy-
sis on embryos. To identify the best developmental
stage for microarray screening, we first analysed the
gene expression pattern of Rara, a retinoic acid respon-
sive gene in mouse embryos, at 8.5, 9.5 and 11.5 dpc. At
8.5 dpc, all embryos analysed showed down-regulation
of Rara mRNA, compared to only 70% of the embryos
at 9.5 dpc and 50% of embryos at 11.5 dpc (data not
shown). Thus, we thus decided to analyse the gene
expression pattern in 8.5 dpc embryos.
The data presented in this paper reveal that changes

in the expression level of Hif1a (hypoxia-inducible fac-
tor 1 alpha subunit) during mouse embryogenesis are
associated with CHD observed in our mouse models.

Methods
BMS-189453 and folic acid treatment protocol and
embryo recovery
Outbred CD1, Swiss mice (Charles River, Calco, Italy)
were housed and mated under standard laboratory con-
ditions that conform to the Guide for the Care and Use
of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85-23, revised
1996); an Italian ministerial authorization (DL 116/92)
was obtained to carry out the experimental treatment
protocols. During the experimental period, all animals
had free access to water and a conventional laboratory
diet (Standard diet n.48) until sacrifice. Room tempera-
ture was kept at 21 ± 2°C and 12 h of light was automa-
tically alternated with 12 h of darkness.
Pregnant mice were randomly divided into three

experimental groups of 6 mice each (untreated controls,
BMS-treated and BMS+FA-treated group). Administra-
tion of BMS189453 (Bristol-Myers-Squibb, Princeton,
NJ, USA) both alone and together with folic acid to
pregnant mice was performed as described [21,22].
Mouse embryos were collected at 8.5 dpc, and placen-

tas were removed from embryonic tissue. Three to five
embryos were pooled within each litter, and stored in
RNAlater (Ambion) until RNA extraction.

RNA extraction, preparation and hybridisation of cDNA
probe
Total RNA was extracted and purified using TriZol
reagent (Invitrogen), and its quality and quantity was
assessed using a Nanodrop spectrophotometer (Thermo
Scientific) and agarose gel electrophoresis.
Synthesis of the labelled first strand cDNA was con-

ducted according to manufacturer’s instructions (Super-
script Indirect cDNA labelling system, Invitrogen, USA)
with starting material of 10 μg of total RNA. Briefly, the
amino-allyl labelled dNTP mix was added to the reaction
to generate amino-allyl labelled second strand cDNA.
Following the hydrolysis reaction, single-stranded cDNA
probes were purified using a Purification Module (Invi-
trogen). Probe mixtures where then evaporated in a
vacuum centrifuge, and the cDNA pellet resuspended in
3 μL of water. The dye-coupling reactions were per-
formed by mixing the cDNA samples with AlexaFluor
Dyes 555 or 647 and were incubated for overnight in the
dark. The reactions were purified with a Purification
Module (Invitrogen) to remove the unincorporated/
quenched dyes. After the purification, samples were com-
bined for hybridisation. The labelled cDNAs were co-
hybridised to slides in duplicate with one dye swap.
Microarray slides contained approximately 33.000 oli-

gonucleotides corresponding to the whole mouse genome
(AECOM, USA, http://microarray1k.aecom.yu.edu/).
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Image Analysis and Processing
Each slide was scanned on the GenePix 4000B Microar-
ray Scanner at the optimal wavelength for the Alexa555
(F532) and Alexa647 (F635) dyes.
The spots were automatically segmented; total intensi-

ties as well as the fluorescence ratios of the two dyes for
each spot were then calculated. The spots were flagged
when they exhibited poor hybridisation signals and
when they were saturated (F635 or F532 median =
65535). Spots with a signal to background ratio below
1.5 were filtered together with flagged spots. We decided
to subtract the local spot background signal from the
foreground signal depending on the correlation of fore-
ground to background intensity ratios, as in the method
suggested by Scharpf e al. [24].
We removed systematic bias in the data by applying

lowess (smoother span 2/3) [25] and dye-swap normali-
sations to have the least possible information loss.
Dye-swap normalisation makes use of reverse labelling
in the two microarray replicates directly [26]. To estab-
lish the significance of the observed regulation for each
gene, we used a one sample t-test and corrected the
p-value for multiple comparisons controlling the
false discovery rate [27]. We transformed FC < 1 in
FC* = -1/FC. Finally, only genes with a satisfactory effect
(Fold Change, FC≥ ± 1.5) were considered.

Validation of relative gene expression by real-time
RT-PCR
Two μg of total RNA was reverse-transcribed into cDNA
according to manufacturer’s instructions (High-Capacity
cDNA Archive Kit, Applied Biosystems, Foster City, CA
USA). The expression levels of the selected genes and an
internal reference (ribosomal 18S) were measured by
multiplex PCR using Assay-on-Demand™ gene expression
products (Applied Biosystems, Foster City, CA USA)
labelled respectively with 6 carboxyfluorescein (FAM)
(selected genes) and VIC (internal reference) (Applied
Biosystems). We analysed the following genes: Hif1a
(Mm00468869_m1), Mospd3 (Mm00551672_g1), Mgp
(Mm00485009_m1), Sat1 (Mm01198850_m1), Canx
(Mm00500330_m1), Tfpi (Mm00803534_m1), Rara
(Mm00436264_m1), Cited2 (Mm00516121_m1). We per-
formed PCRs using the TaqMan Universal PCR Master
Mix and the ABI PRISM 7000 Sequence Detection
System. All samples were run in triplicate and average
values were calculated. Each qRT-PCR experiment was
repeated at least twice.
Relative quantification of gene expression among each

sample was achieved by normalisation against ribosomal
18S endogenous control using the ΔΔCt method of
quantification. The relative amount of mRNA was calcu-
lated as 2-ΔΔCt. Data are mean ± standard error of the
mean (SEM). A one-way analysis of variance (ANOVA)

and t-test were applied to look for significant differences
between experimental conditions for each candidate
gene. A p value < 0.05 was considered statistically signif-
icant. Calculations were performed using the 2.9.1
version of R software (http://www.r-project.org/).

Immunofluorescence analysis
Embryos at 8.5 dpc were fixed in 4% paraformaldehyde
overnight at 4°C and processed for paraffin embedding
and sectioning, following standard procedures. After
blocking non-specific antibody binding in 10% normal
donkey serum for 1 h at room temperature, 10-μm
sections were incubated with antibodies against Hif1a
(10 μg/ml; Novus Biologicals) and a-actinin (2 μg/ml;
Abcam) overnight at 4°C. After several washes in PBS,
sections were incubated with donkey anti-rabbit Alexa-
Fluor488 or donkey anti-rat Alexa568 (2 μg/ml; Invi-
trogen), depending on the primary antibody used.
Nuclei were counterstained with 0.5 μg/ml Hoechst
33258 in PBS. Slides were mounted with Möwiol and
fluorescent images were taken with a Zeiss Axioplan2
microscope.

In silico search for RARE elements
We searched for retinoic acid response elements (RARE)
in the aligned human and murine 5-Kb region upstream
of the transcription start site of Hif1a gene. RAREs con-
sist of direct repeats (DR) of two nucleotide motifs PuG
(G/T)TCA usually separated by 5, 2 or 1 intervening
nucleotides. However, few other forms of RARE have
been characterised, with different half-site consensus
sequences or with diverse spacer length [28,29].
The 5-kb human and murine regions were obtained

from the UCSC Genome Bioinformatics Site (http://
genome.ucsc.edu) and potential RARE sequences were
searched using in-house written codes.

Results
Transcriptome analysis of BMS189453-treated embryos
We previously reported that BMS189453 oral adminis-
tration to pregnant mice was responsible for congenital
defects in newborns [21], while a concomitant FA sup-
plementation during pregnancy partially rescued the
abnormal phenotype [22].
In this study, we first analysed the transcriptome dys-

regulation induced by altering RA binding in 8.5 dpc
mouse embryos using a comparative microarray
approach. The expression data of all of the experiments
are available as a specific GEO Sample record with
accession number GSE19012 (http://www.ncbi.nlm.nih.
gov/geo/).
After data normalisation 447 genes were differentially

expressed in BMS-treated embryos vs. untreated control
embryos (Additional file 1: Table S1). Among these
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genes, 276 were down-regulated while 171 were up-
regulated. According to GO classification, the down-
regulated genes code for proteins involved in the cell
cycle and differentiation (9.0%), signal transduction
(8.3%), cellular metabolism (7.6%) and protein metabo-
lism (7.6%), while the up-regulated genes were mainly
involved in transport (11.1%), cellular metabolism
(10.5%) and protein metabolism (10.5%) (Figure 1A).

Comparison of the gene expression profiles of BMS-
treated and BMS+FA-treated embryos
Next, we analysed the gene expression pattern of
embryos exposed to BMS-189453 only with that of
embryos exposed to FA supplementation as well. In
BMS-treated embryos whose mothers had also received
FA supplementation vs. BMS-treated ones, 239 genes
were differentially expressed after data normalisation.
Interestingly, among these 239 genes, 235 were down-
regulated, while only four were up-regulated (Additional
file 2: Table S2). According to GO classification, the
down-regulated genes were mainly involved in protein
metabolism (14%) and cellular metabolism (8%) while
the four up-regulated genes code for proteins involved
in signal transduction (Figure 1B).

We then compared the 447 differentially expressed
genes from the first experiment (BMS-treated embryos
vs. untreated ones) with those (239) of the second
experiment (BMS+FA-treated vs. BMS-treated-embryos).
A total of 140 genes were commonly expressed in both
the experiments. Furthermore, we analysed the potential
involvement of these 140 genes in the development of
the heart region by a combination of extensive database
mining and in silico analysis of gene expression (Gene-
Paint database). We identified 44 genes that might be
potentially relevant to mouse cardiogenesis (Table 1,
Table 2).

qRT-PCR assays
Additionally, to confirm the expression pattern revealed
by our microarray assays, we analysed six differentially
expressed genes (Mgp, Tfpi, Hif1a, Mospd3, Canx, Sat1)
by qRT-PCR (Table 1 and Table 2, in bold). We
selected genes that had a similar expression pattern
(up-regulated or down-regulated) in both embryos
groups (Canx, Sat1, Mospd3; Table 1) and genes that
showed a different expression pattern in both embryos
groups (i.e. if down-regulated in the BMS-treated group,
they were up-regulated in the BMS+FA-treated group,

Figure 1 Graphic illustration of GO classification of up- and down-regulated genes (FC≥ ± 1.5) in BMS-treated (A) and BMS+FA-treated
embryos (B).
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and vice-versa) (Mgp, Tfpi, Hif1a; Table 2). The house-
keeping gene 18SRNA was used as an internal control.
The mRNA expression values of these selected genes

in untreated controls, and BMS- and BMS+FA-treated
embryos are represented in Figure 2A. We also evalu-
ated the expression level of each gene in BMS+FA- vs.
BMS-treated embryos (Figure 2B). As indicated in Fig-
ure 2, the qRT-PCR results are in very good agreement
with the expression patterns of the microarray experi-
ments (Table 1 and Table 2).

Hif1a mRNA and protein are down-regulated in BMS-
treated embryos, but their expression is recovered by
supplementation with folic acid
Among the six genes analysed by qRT-PCR, Hif1a
expression pattern was noteworthy; in fact,
Hif1a was down-regulated in BMS-treated embryos

(FCmicro = -1.79; FCqRT-PCR = -1.76, p = 0.005 Table
1, Figure 2A and 2B) but its mRNA level increased by
about 73% in BMS+FA-treated embryos (FCmicro =
+1.17; FCqRT-PCR = +1.28, p = 0.005; Table 1; Figure
2A and 2B).
To investigate whether changes in Hif1a mRNA

expression are accompanied by variations at the protein
level and to analyse Hif1a localisation in 8.5 dpc mouse
embryos, an immunofluorescence analysis was per-
formed on paraffin sections.
Hif1a is particularly expressed in the myocardium of

untreated controls (Figure 3A’) compared to the control
gene a-actinin (Figure 3A’’), while it is clearly under-
expressed in BMS-treated embryos (Figure 3B’) com-
pared to the control gene (Figure 3B’’) and compared to
untreated controls (Figure 3A’) and BMS+FA-treated
animals (Figure 3C’).

Table 1 List of the 26 genes that have similar expression patterns in BMS- and BM+FA-treated embryos

Gene
symbol

Gene name FC
BMS/untreated

controls

FC
BMS+FA/

BMS

GO classification

Tmem176b transmembrane protein 176B -2.58 -1.08 cellular differentiation

Pcsk5 proprotein convertase subtilisin/kexin type 5 -2.06 -1.08 cardiac development

Ankrd13c ankyrin repeat domain 13c -1.58 -1.06 unknown biological process

Slc7a15 solute carrier family 7 member 15 -2.23 -1.12 amino acid transporter

Canx calnexin -1.51 -1.07 protein folding

Rab11b RAB11B, member RAS oncogene family -1.60 -1.31 signal transduction

Ralbp1 ralA binding protein 1 -1.53 -1.12 signal transduction

Sat1 spermidine/spermine N1-acetyl transferase1 -1.62 -2.28 regulation of cell proliferation

Fn1 fibronectin 1 -1.58 -1.24 cell-matrix adhesion

Pcbp1 poly(rC) binding protein 1 -1.57 -1.59 mRNA processing

Naca nascent polypeptide-associated complex alpha
polypeptide

-1.64 -1.70 regulation of transcription

Rpl39 ribosomal protein L39 1.71 -2.10 translation

Mospd3 motile sperm domain containing 3 -1.92 -1.24 cardiac development

Eif4a1 eukaryotic translation initiation factor 4A1 -1.56 -1.19 translation initiation factor activity

Rps15a ribosomal protein S15a -1.77 -2.54 translation

Gpr82 G protein-coupled receptor 82 -1.59 -1.21 G-protein coupled receptor protein
signalling pathway

Eif5a eukaryotic translation initiation factor 5A -1.81 -1.36 translation initiation factor activity

EG23
4159

predicted gene, EG234159 -1.50 -1.01 unknown

LOC63
3468

similar to H3 histone, family 3B -1.77 -1.27 unknown

XM_920276 / -1.58 -3.10 unknown

XM_921367 / -4.86 -1.00 unknown

OTTMUSG
0000000
4999

predicted gene, OTTMUSG
00000004999

-1.64 -2.14 unknown

XM_980000 / -1.96 -2.42 unknown

XM_990335 / -4.16 -1.04 unknown

XR_002657 / -2.11 -6.27 unknown

Genes in bold have been analysed by qRT-PCR
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In silico-identification of RARE elements in the promoter
region of Hif1a
There is no evidence in the literature of a specific regu-
lation of the expression of Hif1a by retinoic acid. Luo
et al. (1997), who cloned and characterised the 2,000 bp
region upstream of the ATG of mouse Hif1a, described
its GC-rich promoter as typical of the so-called house-
keeping genes [30].
To verify the presence of putative RAREs far from the

ATG, we analysed the aligned mouse and human 5,000
bp sequences. Interestingly, we found numerously
sequences with high homology to RAREs. Within a
highly conserved region of 476 nt (Figure 4), we found a
putative RARE at -2,177nt in the mouse promoter
region (Figure 4, bottom sequence). This putative RARE
is comprised of a direct repeat (DR) separated by a 2 bp
(DR2) element (Figure 4, underlined). In the same highly
conserved region of 476 nt, we found a motif resembling
a DR3 in the human genomic region (Figure 4, top
sequence, in grey).

Gene expression analysis of Hif1a downstream
target genes
Hif1a gene encodes the alpha subunit of the heterodi-
meric transcription factor HIF-1 (Hypoxia Inducible Fac-
tor-1), which can promote or repress the transcription of

a broad range of genes that are involved in maintaining
biological homeostasis.
To test whether the observed expression pattern of Hif1a

in our embryos is correlated with that of a HIF-1 target
gene, Cited2, we performed qRT-PCR assays. We choose to
analyse Cited2 for three reasons: 1. it was not present in
our microarray slides; 2. it is an important negative regula-
tor of Hif1a; 3. several papers demonstrated its role in
cardiac looping and TGA [31]. As expected, Cited2 is
down-regulated in BMS-treated embryos (FC = -1.94,
p < 0.001), but it also remains down-regulated in BMS+FA-
treated embryos (FC = -2.36, p < 0.001) (Figure 5).
To assess the expression level of Hif1a and Cited2

during normal mouse development we analysed total
RNA isolated from 6.5 to 18.5 dpc mouse embryos by
qRT-PCR (Seegene Inc, Korea). Both these genes are
widely expressed throughout embryonic development,
with a higher level of Hif1a compared to Cited2 (Figure
6). Hif1a shows its highest expression between 7.5 and
8.5 dpc, while for Cited2, a peak is observed between
8.5 and 9.5 dpc (Figure 6). Because it is known that the
stages from 7.5 to 11.5 dpc are relevant for normal car-
diac development, these data further suggest the essen-
tial role of a correct dosage of Hif1a and its
downstream targets, such as Cited2, for a normal mor-
phogenesis of the heart.

Table 2 List of the 18 genes that have different expression patterns in BMS- and BMS+FA-treated embryos

Gene
symbol

Gene name FC
BMS/untreated

controls

FC BMS+FA/
BMS

GO classification

Tfpi tissue factor pathway inhibitor -1.79 +1.18 coagulation

Mgp Matrix Gla protein +1.73 -2. 77 cell differentiation

Rragb Ras-related GTP binding B -1.589 +1.11 signal transduction

Hs3st6 heparan sulphate (glucosamine) 3-O-sulfotransferase 6 -1.55 +1.40 heparan sulphate synthesis

B2m beta-2 microglobulin -1.71 +1.28 immune response

Hif1a hypoxia inducible factor 1, alpha subunit -1.79 +1.17 cardiac looping

Rpn2 ribophorin II +1.78 -1.59 protein glycosylation

Rhoj ras homolog gene family, member J -1.67 +1.30 signal transduction

Spcs2 signal peptidase complex subunit 2 homolog (S.
cerevisiae)

+1.70 1.38 signal peptide processing

Atp6v1b1 ATPase, H+ transporting, lysosomal V1 subunit B1 +2.08 1.01 proton transport

Lmbrd2 LMBR1 domain containing 2 -1.88 +1.16 unknown biological
process

Rnf217 ring finger protein 217 +2.05 -1.26 unknown biological
process

Vmn2r52 vomeronasal 2, receptor 52 -1.67 +1.26 transmembrane receptor

D14Abb1e DNA segment, Chr 14, Abbott 1 expressed -1.70 +1.38 unknown

XM_981869 +1.78 -1.75 unknown

XM_991521 +1.55 -1.24 unknown

XM_994830 -2.37 +1.13 unknown

NM_133970 -1.51 +1.40 unknown

Genes in bold have been analysed by qRT-PCR.
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Discussion
Hif1a down-regulation might be responsible for the
cardiac defects of mouse embryos
Heart defects are a common feature of congenital
human syndromes, as they are present in 25% of all con-
genital abnormalities, suggesting that genes important in
patterning the heart may also have a role in the develop-
ment of other embryonic structures [1,3,4].
It is well known that a precisely regulated supply of

RA is essential for normal cardiogenesis, because both
an excess and a deficiency of RA (or vitamin A) have

been found to cause teratogenic effects during early
heart development [21,32-35].
We previously developed a mouse model for congenital

defects, in particular cardiac and thymic abnormalities,
by administration to pregnant mice of BMS-189453, an
antagonist of retinoic acid that selectively binds to RAR
receptors (a, b and g), and blocks the intake of RA inside
the cells. Mice born from pregnant females treated with
BMS-189453 showed thymic abnormalities (98%), cardiac
defects (81%, 61% of which were D-TGA) and neural
tube defects (20%) [21]. These abnormal phenotypes

Figure 2 Quantitative RT-PCR gene expression analysis in BMS treated and BMS+FA-treated embryos. Fold change in gene expression
was analysed by the 2-ΔΔCt (see methods for details) of six selected genes in untreated controls, BMS- and BMS+FA-treated embryos (A) and in
BMS+FA vs. BMS-treated embryos (B). Data are mean ± S.E.M., n = 6; * p < 0.05, ** p < 0.01, *** p < 0.0001.
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could be partly rescued by oral administration of FA to
the pregnant females exposed to BMS-189453 [22].
A comparative analysis of microarray gene expression

patterns, identified Hif1a as a gene that is down-regulated
in BMS-treated embryos and whose expression level is
restored (73% vs untreated control) by FA administration.
Microarray data were confirmed by qRT-PCR. In parallel,

to further support the mRNA results, we used specific
antibodies and immunofluorescence analysis, to evaluate
Hif1a expression and localisation in mouse embryos at
8.5 dpc. We found that at this embryonic stage Hif1a is
expressed in the myocardium (Figure 3A’) and that, in line
with our microarray and qRT-PCR observations, Hif1a
was not detected in sections of BMS-exposed embryos

Figure 3 Immunofluorescence results of Hif1a expression in untreated controls (A’), BMS- (B’) and BMS+FA-treated (C’) embryos at
8.5dpc. Transverse sections of untreated controls (A), BMS-treated (B) and BMS+FA-treated (C) embryos at 8.5 dpc were counterstained with
Hoechst to show nuclei (blue). Positive Hif1a staining is evident in the myocardium of untreated controls (A’) and BMS+FA-treated embryos (C’).
Bc = bulbus cordis; Da = dorsal aorta; Ec = endocardium or endocardial tissue; Fd = foregut diverticulum; Lhsv = wall of the left horn of sinus
venosus; Mc = myocardium; Nt = neural tube; Pv = primitive ventricle
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(Figure 3B’), while untreated control (Figure 3A’) and
BMS+FA-treated embryos (Figure 3C’) displayed compar-
able levels of expression.
Hif1a has an essential role in cardiovascular develop-

ment, as mice lacking this transcription factor show car-
dia bifida and cardiac looping defects [36]. Moreover, it
has been recently demonstrated that cardiac develop-
ment in the mouse is characterised by a hypoxic envir-
onment with high levels of Hif1a protein [37]. In
particular Hif1a is expressed in wild type hearts
between E8.0 to E11.5; the highest levels were found at
8.5 and 9.5 dpc, with a decrement at 10.5 that became
undetectable by 11.5dpc. In particular, the hypoxic
environment in the developing heart initiates a HIF-1
mediated transcriptional program that facilitates the

Figure 4 Alignment of a common 476 bp sequence in the human HIF1a (top sequence) and mouse Hif1a (bottom sequence)
promoter region. The putative DR2 RARE element in the mouse promoter region is underlined, while the putative DR3 RARE element in the
human promoter region is grey coloured.

Figure 5 Cited2 expression in treated embryos. Fold change in
gene expression analysed by the 2-ΔΔCt (see methods for details) of
Cited2 in untreated controls, and BMS- and BMS+FA-treated
embryos (8.5 dpc). Data are mean ± S.E.M., n = 6; *p < 0.05, **p <
0.01, ***p < 0.0001.
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development of a functional heart [37]. These data con-
firm that Hif1a is not only expressed, but it is func-
tional in the 8.5 dpc developing heart, which is the
developmental stage we analysed in our mouse models.
Interestingly, Cited2, which is a negative Hif1a regula-

tor and also a HIF-1 inducible gene [38], has an impor-
tant role in heart development and morphogenesis, in
particular, in controlling left-right patterning through a
Nodal-Pitx2c pathway [39]. Intriguingly, the human
homologue was found to be mutated in patients with
D-TGA and heterotaxia [40]. Because Cited2 was not
present in our microarray, we analysed its mRNA by
qRT-PCR. As expected, Cited2 is down-regulated in
BMS-treated embryos, but it is further down-regulated in
BMS+FA-treated embryos (Figure 5). This last result
might indicate that when Hif1a expression is raised by
supplementation of FA, there is a time window necessary
to recover Cited2 expression. This is reasonable because
it is known that Cited2 and Hif1a participate to a unique
regulatory feedback mechanism to limit excess HIF-1
activation and to maintain normal tissue homeostasis; in
this regulatory mechanism, Cited2 dissociates p300 from
Hif1a and represses Hif1a activity [41,42]. In line with
this hypothesis, we found that the Hif1a expression pat-
tern during mouse embryogenesis follows a trend
sequentially to Cited2 (Figure 6). In fact, Hif1a highest
expression levels are found at 7.5 and 8.5 dpc, while the
highest Cited2 levels are at 8.5 and 9.5 dpc (Figure 6).
Finally, while an important role has been well estab-

lished for HIFa in many human cancers, especially for
those that are highly hypoxic [43], and in the pathophy-
siological responses to hypoxia in pulmonary hyperten-
sion and myocardial ischemia [44], the present are the
first data linking Hif1a to human CHDs to the best of
our knowledge.

What is the link between Hif1a and retinoic acid?
Both excess RA administration and vitamin A deficiency
can disturb cardiac looping in embryos [32,33,45,46].
Moreover, it was demonstrated that treatment with reti-
noic acid induced D-TGA in mice [21,46]. Because it is
also well known that Hif1a deficiency causes cardiac
looping disturbance [36,37,47], it is reasonable to think
that a alterations in the metabolism of retinoic acid
might influence a correct dosage of Hif1a.
However, there is no evidence that RA directly regu-

lates the expression of Hif1a, and in fact it was elegantly
demonstrated that at E8.5, RA activity is present only in
the posterior portion of the heart (atria and inflow
tract), whereas Hif1a is expressed throughout the heart
[48]. Moreover, in a different system, it was demon-
strated that ATRA (all-trans retinoic acid) increases
HIF1a protein levels [49]. By microarray and qRT-PCR
assays, we found that Hif1a is down-regulated when RA
signalling is inhibited; moreover, an in silico search per-
formed on the 5,000 bp genomic region upstream the
ATG revealed a conserved region of approximately
500 nt in both human and mouse Hif1a, containing a
putative RARE element resembling a DR2 in the mouse
promoter (top sequence, Figure 4). Because it is known
that the heterodimer RXR/RAR interacts preferentially
with DR2 and DR5 [50]; it would be interesting to verify
whether this RARE sequence is functional.

What is the link between Hif1a and folic acid?
Folic acid is an essential vitamin for a wide spectrum of
biochemical reactions involved in DNA and RNA meta-
bolism. Impaired folate-dependent metabolism can lead
to several pathologies including megaloblastic anaemia,
cardiovascular diseases and neural tube and congenital
heart defects [51]. While it is well known that maternal

Figure 6 Hif1a and Cited2 mRNA expression pattern during normal mouse embryogenesis. Data are mean ± S.E.M., n = 3.

Amati et al. BMC Genomics 2010, 11:497
http://www.biomedcentral.com/1471-2164/11/497

Page 10 of 13



supplementation with folic acid during pregnancy lowers
the risk of congenital birth defects, the molecular
mechanism of action for this phenomenon is still unclear
[51,52]. It has recently been shown that in the mouse,
maternal folate deficiency significantly affects myocardial
cell proliferation with no change in apoptosis levels [53].
Considering that Hif1a does not belong to the cate-

gory of genes involved in FA metabolism, it is difficult
to establish what relationship exists with FA. Due to the
well-known ability of FA to affect DNA methylation
[54], it may be speculated that FA might epigenetically
regulate Hif1a expression.

Conclusions
A finely tuned regulation of gene expression during
embryogenesis and development is crucial for a normal
anatomy and physiology. Though very little is currently
known regarding factors that influence and regulate
developmental gene expression of the cardiovascular
system, emerging large-scale technologies should be of
great help to unravel the complex and highly regulated
interplay of genes and cell-cell interactions in the devel-
oping heart by permitting a complete analysis of
embryos transcriptomes [18,20,55].
In this paper, we have identified a discrete number of

altered genes that might be involved in congenital
defects in the mouse. These defects, in particular CHD
and D-TGA, caused by a dysregulation of RA metabo-
lism, were consistently rescued by exogenous adminis-
tration of folic acid in vivo.
Among the altered genes, we have more extensively

analysed the expression pattern of Hif1a. The down-reg-
ulation of Hif1a (both at the mRNA and protein levels)
following blocking of retinoic acid intake in the develop-
ing mouse, its recovery after oral supplementation with
folic acid and its localisation in the cardiac primordia
suggest that the observed congenital heart malformation
might be due to a de-regulation of Hif1a and its down-
stream targets (e.g. Cited2). Because alteration of both
of these genes causes defects in left-right patterning of
developing embryos, and the major cardiac defect in our
mouse model was D-TGA, the present data support the
suggestion to include D-TGA in the group of hetero-
taxy, a disorder characterised by abnormal lateralisation
of normally asymmetric thoracic and abdominal organs.
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