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Abstract

Background: Mycobacterium avium subsp. paratuberculosis (MAP) persistently infects intestines and mesenteric
lymph nodes leading to a prolonged subclinical disease. The MAP genome sequence was published in 2005, yet its
transcriptional organization in natural infection is unknown. While prior research analyzed regulated gene sets
utilizing defined, in vitro stress related or advanced surgical methods with various animal species, we investigated
the intracellular lifestyle of MAP in the intestines and lymph nodes to understand the MAP pathways that function
to govern this persistence.

Results: Our transcriptional analysis shows that 21%, 8% and 3% of the entire MAP genome was represented either
inside tissues, macrophages or both, respectively. Transcripts belonging to latency and cell envelope biogenesis were
upregulated in the intestinal tissues whereas those belonging to intracellular trafficking and secretion were
upregulated inside the macrophages. Transcriptomes of natural infection and in vitro macrophage infection shared
genes involved in transcription and inorganic ion transport and metabolism. MAP specific genes within large
sequence polymorphisms of ancestral M. avium complex were downregulated exclusively in natural infection.

Conclusions: We have unveiled common and unique MAP pathways associated with persistence, cell wall
biogenesis and virulence in naturally infected cow intestines, lymph nodes and in vitro infected macrophages. This
dichotomy also suggests that in vitro macrophage models may be insufficient in providing accurate information
on the events that transpire during natural infection. This is the first report to examine the primary transcriptome
of MAP at the local infection site (i.e. intestinal tissue). Regulatory pathways that govern the lifecycle of MAP
appear to be specified by tissue and cell type. While tissues show a “shut-down” of major MAP metabolic genes,
infected macrophages upregulate several MAP specific genes along with a putative pathogenicity island
responsible for iron acquisition. Many of these regulatory pathways rely on the advanced interplay of host and
pathogen and in order to decipher their message, an interactome must be established using a systems biology
approach. Identified MAP pathways place current research into direct alignment in meeting the future challenge of
creating a MAP-host interactome.

Background
Mycobacterium avium subsp. paratuberculosis (MAP)
causes one of the most well documented chronic dis-
eases of ruminants worldwide (Johne’s disease (JD)) and
yet the cues leading to its intracellular survival live in

obscurity [1]. Major hindrances involved in examining
gene regulation during MAP infection are the low
amounts of bacterial RNA isolated from an infected
host and the lack of an appropriate animal model [2]. In
order to overcome the limited quantity of RNA, pre-
vious transcriptomic studies interrogating genes used in
pathogenic mycobacterial infection were conducted uti-
lizing mimetic conditions of infection in an in vitro
environment (i.e. hypoxia, nutrient starvation, acid and
nitric oxide (NO) stresses, etc.) [2,3].
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While these studies provided insight into a limited
number of genes regulated by specific cues, it is not
representative of natural infection since mycobacteria
will encounter more than one stress at a time. Multiple
stressors may change which genes are utilized as well as
potential for gene:gene or protein:protein interactions
that influence survival and dissemination in the host.
Therefore, current investigations into the intracellular
fate of MAP and host responses rely on in vitro macro-
phage models, specifically bovine and murine cells [3-8].
Studies from our laboratory using an in vitro bovine
macrophage infection model in conjugation with selec-
tive capture of transcribed sequences (SCOTS) revealed
upregulation of MAP genes involved in combating oxi-
dative stress, metabolic and nutritional starvation and
cell survival at 48 and 120 hrs post infection [9]. These
results indicate that common sets of genes are required
for MAP to persist within a multifaceted host environ-
ment. Furthermore, consistent with another study using
SCOTS analysis with Mycobacterium avium, MAP
expresses several genes involved in fatty acid degrada-
tion, which has been suggested as a universal theme
used by pathogenic mycobacteria to successfully efface
and invade macrophages and other cell types [10-12].
The utility of results from in vitro macrophage infec-

tions, as well as small animal models, is controversial as
it is currently unknown if these applications faithfully
reflect natural infection in MAP’s preferred host.
A recent study by Meyer-Barber et al. shows discrepant
requirements for Toll expression between isolated mur-
ine bone marrow derived macrophages from in vitro
and in vivo M. tuberculosis infection [10]. Since patho-
gens initiate and inhibit host signaling (i.e. recognition
or evasion), there is also a potential for MAP regulatory
networks to differ during in vivo infection. Additionally,
a number of articles investigating host-MAP interactions
use BOMAC (bovine macrophage) cells due to the
advantage of having a cell line [13,14]. However,
BOMAC cells are inherently dysfunctional; lacking sev-
eral receptors and possessing an insufficient capability
to phagocytose MAP [8,15]. Therefore, macrophage stu-
dies to date may 1) underestimate the speed of MAP
responses and/or 2) may be serving as an apparition of
rather than being an accurate representation of infec-
tion. More importantly, in vitro macrophage studies do
not address the initial events that set the venue for
MAP’s transition into the macrophage. Prior to residing
inside gut macrophages, MAP must first encounter the
intestinal epithelium [1]. The intestinal epithelium
represents a formidable fortress that actively secretes
IgA and antimicrobial peptides, which is shielded by the
glycocalyx and a thick layer of mucus, produced by
intestinal goblet cells [16]. Therefore, it is of little sur-
prise that most of the disease signs associated with JD

(i.e. transmural inflammation, corrugation, and gross
lesions) are inflicted upon the intestinal tissue. Despite
MAP’s successful siege against the intestinal barrier as
evidence of its infiltration into lamina propria macro-
phages, the exact genes and pathways MAP employs
within the intestinal epithelium remains a black hole in
our understanding of overall pathogenesis [17]. Further-
more, it has been suggested that MAP processing by the
epithelium may aid in efficiency of invasion in macro-
phages by pre-exposure to a hyperosmolar environment
or expression of a MAP oxidoreductase (MAP3464)
[17,18]. Thus, it seems short sighted to assume that no
disparate mechanisms are used to survive in the intest-
inal tissue and macrophage given two different cell types
with varying function. Furthermore, data compiled by
the Immune Epitope Database and Analysis (IEDB) sug-
gest that specific mycobacterial epitopes are present
only within a given host. Studies using small animal
models, such as the mouse, may not capture a compre-
hensive MAP epitope profile as well as transcriptome
representative of the cow. The elucidation of host-speci-
fic epitopes and MAP genes required for survival during
natural infection are expected to aid in the rational
design of JD vaccines.
The aim of this study was to characterize the func-

tional MAP transcriptional profiles in the ileum and
mesenteric lymph node (MLN) of naturally infected
cattle as well as an in vitro bovine monocyte deri-
ved macrophages (MDMs) infection model. We have
employed advanced molecular techniques, computa-
tional and bioinformatic analyses to identify and charac-
terize MAP gene expression during the natural infection
process.

Results
Isolation and identification of MAP
Postmortem examination of two subclinical JD cattle
revealed gross lesions and corrugation throughout the
intestine indicative of chronic inflammation, especially
within the ileum (Fig. 1A is a representative example).
Histopathological sections of the ileum identified MAP
by modified Ziehl-Neelson staining for acid-fast organ-
isms (Fig. 1B), which was later confirmed by standard
culture and PCR methods (Table 1). MAP was success-
fully isolated from intestinal lesion, mesenteric lymph
nodes, liver and spleen of both subclinically infected ani-
mals. All isolates were genotyped by SSR analysis as
>13G and 5GGT repeats, which was identical to MAP
K-10 culture (15G and 5GGT) used for macrophage
infection.

Gene expression of MAP during natural infection
Analysis of MAP from infected tissues showed differen-
tial expression of 2167 genes compared to broth
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cultures. After multiple test corrections, 1795 genes
were significantly different at q ≤ 0.05 by unpaired t-
test. Amongst these, 1684 genes were altered at ≥1.5
fold change and 1054 genes at fold change ≥2.0 com-
pared with corresponding MAP isolates in broth culture.
Table 2 shows a list of operons and Additional file 1
Tables S1, S2 and S3 show complete lists of genes dif-
ferentially regulated during natural infection.
Shared and variable genes between the ileum and MLN

are represented in Additional files 1, Tables S2 and S3.
Genes were classified into various functional groups based
on clusters of orthologous genes (COG) classification and
the percent gene expression of each group was calculated.
Functional groups enriched in both ileum and MLN
belonged to virulence (i.e. MAP1575c, MAP3162c),
unknown function or poorly described cellular path-
ways (i.e. MAP3812c, MAP4269c). Genes belonging to

transcription (i.e.: MAP1736, MAP2418) and lipid metabo-
lism and transport (i.e.: MAP0556c, MAP1451) were
specifically enriched in the ileum, while energy produc-
tion and conversion (i.e.: MAP1171, MAP2620c) and inor-
ganic ion transport and metabolism (i.e.: MAP0982c,
MAP3141c) were enriched in MLN (Fig. 2).

Gene expression of MAP in an in vitro macrophage
infection assay
A total of 562 MAP genes were differentially expressed
during macrophage infection compared with broth cul-
ture. Amongst them, 556 genes had a ≥1.5 fold change

Figure 1 MAP infection in subclinically infected animals. (A) Section of bovine ileum infected with MAP: Longitudinal section of ileum
showing inflammation and corrugated appearance of inner mucosal layer from a dairy cow with subclinical Johne’s disease.(B) Histopathology of
bovine ileum with MAP: Acid fast stain (400×) (left) and hematoxylin and eosin stain (100×) (right) of an ileal section of subclinical JD cow in
Fig. 1A showing MAP organisms.

Table 1 Fecal culture results of MAP isolated from
intestinal tissues

Animal ID Organ Colony Count Test Result

386 Ileum >100 positive

386 Mesenteric lymp node >100 positive

39 Ileum 1-10 positive

39 Mesenteric lymp node >100 positive

MAP organisms were grown in Herrold’s egg yolk medium for 12 weeks at
37°C. The colonies were counted.

Table 2 List of operons expressed in tissues

Operon Function

MAP0150c-MAP0152c Acetyl-coA dehydrogenase

MAP0232c-MAP0237c Cell wall biosynthesis

MAP0564-MAP0569 MCE family

MAP1778c-MAP1780c Lipid metabolism

MAP0107-MAP0116 MCE family

MAP2171c-MAP2177c Mycobactin biosynthesis

MAP3464-MAP3465 ABC transporters

MAP2310c-MAP2314c Fatty acid degradation

MAP1712-MAP1716 Fatty acid biosynthesis

MAP1522-MAP1523 Fatty acid biosynthesis

MAP2569c-MAP2571c Glycosyl transferase
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and 462 genes had ≥ 2.0 fold change (p ≤ 0.05). At 6 hr
post infection (PI), upregulated genes of significant inter-
est included serine/threonine protein kinase, pknB
(MAP0016c), ATPase, AAA family protein (MAP0167)
and PPE family protein (MAP1675). At 48 hour PI MAP
upregulated PE family proteins (MAP0140; MAP0339,
MAP1507), transcriptional regulators (MAP0475;
MAP2428c) and fadD27 protein (MAP3156). Finally, at
120 hr PI MAP displayed higher induction of genes con-
cerning major membrane protein, mmpL4 (MAP0076,
MAP1240c), MCE-family proteins (MAP0566, MAP0759),
PE-family proteins (MAP0140; MAP4076), oxidoreductase
(MAP0444; MAP3507), lipase, lipE (MAP0248) and ABC
transporters (MAP0563). A total of 55 genes were shared
across different time points in the macrophage infection
assay using MAP K-10 strain. Fig. 2 shows the distribution
of the differentially expressed genes across three time
points and Additional file 1, Tables S4, S5 and S6 shows
the detailed list of genes.

Comparisons of gene expression profiles of naturally
infected tissues and in vitro macrophage infection
While a total of 126 genes were commonly expressed
between infected tissues and macrophages, 928 and
336 genes were specifically represented in tissues or macro-
phages, respectively (Fig. 2, Additional File 1, Tables S1

and S7). Functional categories belonging to transcrip-
tion (MAP1631c, MAP1634, MAP3967) and inorganic
ion transport and metabolism (MAP1110, MAP3773c,
MAP4171) were represented both in tissues and macro-
phages (Additional Fig. 2). Macrophage specific gene
expression represented functional categories belonging to
cell cycle control (MAP2990c), cell wall biogenesis
(MAP0670c), cell motility (MAP1506) and secretion
(MAP1515). Tissue specific gene expression included genes
categorized into virulence mechanisms and those that were
not represented in any of the COG groups. Furthermore,
MAP regulates expression of persistence related genes such
as MAP0033c (WhiB family protein), MAP0038 (probable
biofilm regulator), and MAP0075 (mycobacterium specific
membrane protein) during natural infection.

Expression of MAP lineage specific genes during natural
infection
Approximately 96 genes distributed in six loci (LSP 4, 11,
12, 14 and 15) were recently described as MAP lineage
specific genomic insertions; majority of these genes were
consistently upregulated (fold change > 2.0, p < 0.05) in
the in vitro infected macrophages whereas downregulated
in the tissues of both the animals (Additional File 1, Tables
S8 and S9) [19]. Loci of interest include LSP 4 and 11,
which carry putative prophages, transposons and unique

Figure 2 Classification of differentially expressed MAP genes into Clusters of orthologous genes (COG) groups. Differentially expressed
genes in the tissues or infected macrophages were grouped based on clusters of orthologous genes (COG) classification. Significantly enriched
COGs under each condition are represented in the Venn diagram. Shown in the parenthesis is the code for each COG category.
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sequences with no hits in NCBI. MAP0858, located within
LSP 4, has conserved domains resembling those of a viru-
lence factor (proteophosphoglycan) belonging to Leishma-
nia. LSP11 contains MAP2149c, which has conserved
domains to that of SARP (Streptomyces Antibiotic Regu-
latory Protein) family transcriptional factor. Located
within LSP 12 includes a mammalian cell entry (mce)
operon (MAP2190 - MAP2194) which was downregulated
in the tissues whereas MAP2189 (mce) and MAP2180c
(a beta lactamase like protein) were upregulated in the
macrophages. Downregulated genes located within LSP
14 belong to ABC transporter operon (MAP3731c -
MAP3736c), siderophore biosynthesis operon (MAP3741 -
MAP3746) and oxidoreductase (MAP3756c). However, an
oxidoreductase (MAP3744), and ABC type transporter
(MAP3739c) and a polyketides synthase (MAP3763c)
belonging to LSP14 were all upregulated in macrophage
infections. An ABC transporter operon (MAP3774c -
MAP3776c), which is located on LSP 15, was downregu-
lated in infected tissues. Interestingly, MAP3773c, a
probable Ferric Uptake Regulator protein on LSP 15, was
downregulated in the tissues and upregulated in experi-
mentally infected macrophages. Lastly, located within the
LSP specific for cattle MAP strains is an enzyme involved
in xenobiotic biodegradation and metabolism (MAP1728c
yfnB) was downregulated in the tissues whereas upregu-
lated in the in vitro infected macrophages.

Real-time validation of microarray data
We selected seven genes for real-time PCR to validate
microarray results. These genes were chosen based on
their roles in diverse pathways. Selected genes included
membrane protein (MAP0283c), inorganic ion transport
(MAP0782, MAP2488), iron acquisition (MAP2173c),
energy production and metabolism (MAP3898,
MAP4120) and finally an LSP specific for cattle strains
of MAP (MAP1728c). RNA extracts used for microarray
analysis (ileum, MLN and macrophages) were also ana-
lyzed for their level of expression by real-time PCR
assay with primers designed using universal probe
library (Roche, Indianapolis, IN). The expression of
these genes in the tissues of JD cows shows the same
trend in microarray and the real-time analyses. MAP
K-10 broth culture was used as a control to determine
fold change. Fig. 3 demonstrates the fold change ratios
of selected MAP genes in the microarrays as compared
to their gene expression in real-time after normalization
with a housekeeping gene secA.

Discussion
The hallmark of MAP infection is the subclinical mani-
festation of a persistent intestinal infection. Yet, surpris-
ingly, there remains a paucity of studies investigating
the intracellular lifestyle of MAP in the intestinal

epithelium in comparison to research involving macro-
phage and/or lymphocyte models [4,9]. We sought to fill
this critical knowledge gap by reporting the first tran-
scriptome analysis of MAP in infected tissues and
macrophages. Both the ileum and mesenteric lymph
node have been suggested to act as potential MAP
reservoirs within the host; therefore, it is critical to
understand the MAP pathways that function to govern
this persistence [1,20,21]. The current trend in MAP
research is to isolate and analyze regulated gene sets
given defined, in vitro stress related cues or during a
particular infection stage using surgical methods and
various animal species [3,22,23]. However, we have
taken a more directed approach to uncover common
and unique pathways utilized by MAP in intestinal tis-
sues using the natural host under natural infection. Elu-
cidation of the transcriptome active in local infection
sites is expected to not only augment our knowledge of
MAP pathogenesis, which will lend itself to the estab-
lishment of a host-pathogen interactome, as well as
rational design of vaccines and/or antimycobacterial
therapeutic modalities.

MAP residing within the ileum is primed for persistence
in subclinical infection
Pathogenic mycobacteria have the uncanny ability to
persist within the host for an indefinite period of time
that can last several years [24,25]. Although the genes
and signals that induce persistence remain unclear,
mycobacteria entering this phase are characterized by a
state of chronic or prolonged non-replication [24]. One
cue that primes the cell to enter into the non-replication
stage is the stringent response, which is characterized by
the relA controlled production of hyperphosphorylated
guanosine ((p)ppGpp) activated upon nutrient depriva-
tion, hypoxia and oxidative stress [26,27]. Together relA
and (p)ppGpp are able to combat hostile environments
by negatively regulating bacterial “life” signals such as
DNA and protein machinery. Interestingly, we have
identified a unifying theme from naturally infected host
tissue as the downregulation of several energy, carbohy-
drate, amino acid and lipid metabolism as well as tran-
scriptional and DNA replication related genes. Similar
attributes of the stringent response were found to be
selectively upregulated within the ileum. For example,
the RelA/SpoT domain-containing protein has a three-
fold upregulation in the ileum. Recently Geiger and
colleagues have shown that the RelA/SpoT domain-
containing protein, RSH synthetase/hydrolase enzyme,
in Staphylococcus aureus is responsible for maintained
production of (p)ppGpp and concomitant repression of
genes regulating translational machinery [28]. Further-
more, a single metabolism gene regulating menaquinone
biosynthesis and consequent production of vitamin K

Janagama et al. BMC Genomics 2010, 11:561
http://www.biomedcentral.com/1471-2164/11/561

Page 5 of 11



(MAP4052) was uniquely upregulated in the ileum [29].
In addition to initiating the synthesis of mycobactins,
menaquinone biosynthesis genes have been shown to be
a critical factor in maintaining non-replicating mycobac-
terial cell viability [30].
Stringent response priming of MAP cells is most likely

due to host inflicted stresses, particularly nitric oxide
resultant in DNA damage [26]. Previous studies examin-
ing MAP “scrapings” from the intestinal wall of JD clini-
cal cattle show significant upregulation of katG, a
bacterial catalase gene used to combat oxidative stress
[31]. Furthermore, granulomatous lesions within the
ileum or lymph node isolated from cattle naturally
infected with either MAP or M. bovis, respectively, have
enhanced immune-staining for natural resistance-asso-
ciated macrophage protein 1 (NRAMP1) and inducible
nitric oxide synthase (iNOS), which together synthesize
nitric oxide [32,33]. Although we did not identify enrich-
ment of katG in the ileum, we show upregulation of
MAP2836, a LexA repressor, which is stimulated upon
DNA damage and stress and results in the arrest of cell
division and induction of DNA repair [34]. Similarly,
increase in a LysR transcriptional regulator (MAP2442)
within the ileum is indicative of an oxidative stress
response [35]. These data suggest that during the early
stages of infection, MAP is primed for persistence by the
stringent response in order to avoid oxidative stress and
DNA damage. This appears to be a “watershed moment”
in the intracellular lifecycle of MAP as persistence during
subclinical infection will ensure its survival and future
dissemination into other organs.

MAP evades immune detection in the MLN
Similar to MAP pathways found in the ileum, the major-
ity of MAP genes involved in energy, carbohydrate,

inorganic ion, DNA repair, transcription and translation
pathways are downregulated. However, there is a lack of
stringent response as well as persistence-associated
expression. The MLN contains populations of circulating
effector cells, such as T and B cells; therefore, MAP may
downregulate the aforementioned pathways to avoid
detection by the host immune system [16]. Furthermore,
common to both ileum and MLN, MAP upregulates sev-
eral genes associated with cell envelope and outer mem-
ber biogenesis (MAP1905c, MAP3019c and MAP3979).
It is well established that mycobacterial cell wall compo-
nents have immunomodulatory functions that enable
pathogenic mycobacteria to escape immune surveillance
by suppression of pro-inflammatory cytokines, phago-
some-lysosome fusion and MHC class II presentation
[5,36-38]. Thus, MAP may surround itself with complex
cell wall associated glycolipids to prevent recognition and
continue t unabated by the host immune system.

Expression of lineage specific large sequence
polymorphisms (LSPs) during natural and in vitro
macrophage infection
Comparative genomics of the M. avium complex (MAC)
revealed that MAP evolved as a pathogen by acquiring
large segments of DNA (i.e. pathogenicity islands) via
horizontal gene transfer [19,39-41]. Our study is the
first to directly show that some of these putative patho-
genicity islands are associated with virulence. Contrary
to expression found within the tissues, genes belonging
to the LSPs were upregulated in macrophage infection.
Qt-RT-PCR analysis also demonstrated that MAP1728c
(yfnB), a gene involved in xenobiotic biodegradation and
metabolism located within the LSP (deletion 2) specific
for cattle MAP strains was downregulated in the tissues
[19]. This is consistent with the regulation of other

Figure 3 Comparisons of fold changes of selected genes by microarray and real time RT PCR. (A) Selected MAP genes that were
differentially regulated (up or down) after subtraction with broth culture (data in linear scale). (B) These genes were validated for their
expression pattern by real-time PCR to demonstrate similar trends in gene expression (data in logarithmic scale).
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MAP genes, which suggests that MAP transcriptional
machinery remains silent in the tissues. Several iron
related genes were downregulated in tissues including
LSP15, a MAP unique pathogenicity island that encodes
a ferric uptake regulator (MAP3773c), as well as
the ABC transporter (MAP3731c - MAP3736c), and a
possible siderophore biosynthesis operon (MAP3741-
MAP3746) that contains a FUR binding box within the
intergenic region [42]. This is of significant interest as
part of this region (MAP3731c-MAP3736c) has pre-
viously been shown to be immunogenic and preliminary
studies indicate its use as a potential vaccine candidate
[43]. Furthermore, our genome analysis revealed that a
type VII secretory system (esx3) was located immedi-
ately downstream of LSP15. Esx3 has recently been
shown to be essential for mycobactin synthesis and we
have identified its repression by the MAP iron depen-
dent regulator (IdeR) in the presence of iron [44,45].
Taken together, transcriptional analysis suggests that
LSP14, 15 and esx-3 form a major pathogenicity island
that may play a potential role in maintaining iron home-
ostasis and hence survival within the macrophage.

Conclusions
MAP is an extremely resilient pathogen that employs a
number of regulatory pathways to ensure its survival.
Regulatory pathways that govern the lifecycle of MAP
appear to be specified by tissue and cell type. While
tissues show a “shut-down” of major MAP metabolic
genes, infected macrophages upregulate several MAP
specific genes along with a putative pathogenicity
island responsible for iron acquisition. Despite differ-
ences in gene programs found within tissues and cell
types, the overriding rule of MAP is to progress by
deception either by entering a persistent state, shield-
ing by complex cell wall components or hiding in the
macrophage. Many of these programs rely on the
advanced interplay of host and pathogen and in order
to decipher their message, an interactome must be
established using a systems biology approach [25,46].
Preliminary interactomes for the current study are
reminiscent of those being developed for S. pyogenes
and H. pylori and show promising networks that may
aid in our understanding of overall pathogenesis as
well as potential targets for novel vaccines and thera-
peutics [47,48]. The findings presented in this study
will lend themselves in meeting this future challenge
of creating a MAP-host interactome.

Methods
All cattle work in this study was performed according to
institutional guidelines and approved animal care and
use protocols at the University of Minnesota.

Sampling from subclinical JD cows
Two sub-clinically infected but apparently healthy dairy
cattle, identified as low shedders by routine serological
and fecal culture methods at the University of Minnesota
Veterinary Diagnostic Laboratory, were purchased from a
farmer and euthanized for this study. The infection status
of the animals were established using standard serology
for MAP-specific antibody (Idexx Laboratories, Inc.,
Westbrook, ME) [49] and fecal culture [50]. At necropsy,
sections from affected portions of the intestines ileum,
ileocecal junctions, and the surrounding enlarged mesen-
teric lymph nodes (MLN) were harvested, wrapped in
aluminum foil and either snap-frozen in liquid nitrogen
or fixed in formalin for RNA extraction and histopatho-
logical examination, respectively. All samples were stored
at -80.0°C until RNA extraction. Furthermore organs
were triturated and cultured for of the presence MAP
using standard mycobacterial culture techniques.
Sections of the MLN and ileum were taken for micro-
scopy using hematoxylin and eosin staining and acid fast
staining. A total of seven slides were created and imaged
for each stain.

Genotyping of MAP
MAP colonies were sub-cultured in Middlebrook 7H9
broth (MB7H9) (DIFCO, Lawrence, KS) supplemented
with oleic acid-albumin-dextrose-catalase (OADC)
enrichment medium (Fischer Scientific, Inc., Pittsburgh,
PA) and mycobactin J (2 mg/L) (Allied Monitor, Inc.,
Fayette, Missouri) at 37°C with subtle shaking. MAP iso-
lates were determined free of contaminant bacteria by
absence of growth on Brain-Heart Infusion (BHI) agar
at 37°C. Following genomic DNA extraction using a
standardized protocol (Qiagen, Valencia, CA), isolates
were confirmed for MAP specific IS900 insertion
sequence by PCR and agarose gel electrophoresis. MAP
isolates from infected tissues as well as MAP cattle
strain K-10 (MAP K-10) were genotyped based on short
sequence repeats (SSR) from two polymorphic (G and
GGT) loci as described [48,49].

Macrophage infection assay
Monocyte derived macrophages (MDMs) were prepared
using a previously described method [4,51]. Briefly,
blood was collected from the jugular vein of a JD-free
healthy cow and mixed with an equal portion of acid-
citrate dextrose to prevent coagulation. Blood was trans-
ferred in 40 mL aliquots into DNase/RNAse free conical
tubes and centrifuged at 2,200 rpm for 20 min. at room
temperature. Buffy coats were separated, washed in 1X
D-PBS and layered on a 58% percoll gradient (Sigma-
Aldrich, St. Louis, MO). Cells were collected from per-
coll, washed 1X PBS and expanded in RPMI containing
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20 percent autologous serum at 37°C in 5 percent CO2.
MDMs were allowed to incubate for 4 days prior to
seeding. MDMs were subsequently seeded at ~2.0 × 107

cells/flask in 25 cm2 flasks and allowed to adhere for 2
hr. A seed stock of MAP K-10 was sub-cultured and
grown to mid-logarithmic growth phase (OD600 = 1.0)
in MB7H9 broth (supplemented with OADC enrich-
ment medium and 2 μg/ml of mycobactin J) at 37°C on
a shaker set at 120 rpm. MAP K-10 was used at a 20:1
multiplicity of infection (MOI) in all infections. Infection
was conducted in RPMI containing 2% autologous
serum. Following infection after 2 hr,, MDMs were
washed twice with fresh, pre-warmed serum-free RPMI
1640 (Gibco(r) Invitrogen, Inc., Carlsbad, CA) to remove
non-adherent bacteria and the cultures were subse-
quently grown in RPMI 1640 with 2% autologous serum
for 6, 48 and 120 hrs in duplicate at each time point.

Nucleic acid extraction
Prior to RNA extraction, all surfaces and equipment
were treated with RNAse Away (Molecular Bioproducts,
Inc., San Diego, Inc.). For total RNA extraction, ~30 mg
of mesenteric lymph nodes and ileum were ground
separately in liquid nitrogen using a mortar and pestle
and dissolved in 600 μL of RLT buffer (Qiagen Inc.,
Valencia, CA). Total RNA from infected MDMs (6, 48
and 120 hrs p.i,) and MAP K-10 broth cultures were
extracted by TRIzol reagent (Invitrogen Inc., Carlsbad,
CA) per manufacturer’s instructions. Samples were
homogenized in a mini bead-beater (Biospec) with 0.3
ml of 0.1 mm sterile RNase-free zirconium beads for 4
min. followed by RNA extraction using RNeasy (Mini)
kit (Qiagen Inc., Valencia, CA). All samples were treated
with RNase-free DNase I (Ambion, Inc., Austin, TX) to
eliminate genomic DNA contamination. The purity and
yield of total RNA samples was examined using Nano-
drop spectrophotometer (Thermo Scientific Inc.,
Wilmington, DE) and Agilent 2100E Bioanalyzer
(Agilent Technologies, Inc., Santa Clara, CA). Purity of
RNA samples were validated by the absence of MAP
locus 251 amplification via PCR. All samples were
stored at -80°C until later analysis.

Enrichment and confirmation of MAP transcripts
Total RNA obtained from naturally infected tissues and
experimentally infected MDMs were processed to
remove host RNA as well as ribosomal RNA. Similarly,
the total RNA from broth cultures of tissue isolates and
MAP K-10 were enriched for bacterial messenger RNA
by removing ribosomal RNA. All samples were sub-
jected to RNA amplification and analyzed on a regular
denaturing agarose gel and Agilent 2100 bioanalyzer
(Agilent Technologies, Santa Clara, CA). Furthermore,
the presence of MAP specific genes was confirmed

using RT-PCR, sequencing and BLAST analyses (data
not shown) prior to use in microarrays.

Sample processing and microarray hybridizations
All microarray experiments were conducted using the
minimal information about a microarray experiment
(MIAME) guidelines. Polyadenylated host mRNA and bac-
terial rRNA were eliminated by processing the samples
with MICROBEnrich and MICROBExpress Bacterial
mRNA Purification Kits (Ambion Inc., Austin, TX),
respectively. RNA samples were amplified using Messa-
geAmp(tm) II-Bacteria Kit for prokaryotic RNA amplifica-
tion system (Ambion Inc., Austin, TX) and labeled with
SuperScript(tm) Plus Direct cDNA Labeling System (Invi-
trogen Inc., Carlsbad, CA). MAP transcripts from infected
tissues (two sections each for ileum and mesenteric lymph
node) and macrophage infection assay (performed in
duplicates) were combined individually with sheared geno-
mic DNA of MAP K-10 labeled with BioPrime(r) Plus
Array CGH Genomic Labeling System (Invitrogen Inc.,
Carlsbad, CA) and hybridized onto 70-mer oligonucleotide
microarrays (obtained from Dr. Michael Paustian, NADC,
Iowa). Every predicted open reading frame in the MAP
strain K-10 genome is represented on this array. One
70-mer was designed for each gene with a total length of
less than 4000 bp, while longer genes were split in half
and one 70-mer oligo was designed for each half. Addi-
tional details of this microarray design can be found else-
where [52]. RNA from MAP K-10 broth culture and tissue
isolates was also processed in the same manner. After
overnight hybridization, microarray slides were washed
and scanned using the HP Scanarray 5000 (PerkinElmer
Inc., Waltham, MA). Images were collected and stored for
expression analyses. Microarray experiments were
repeated twice for each sample.

Microarray data analysis
Numeric data was extracted from the two-channel
hybridization images using the microarray image analy-
sis software, BlueFuse (BlueGnome Ltd, Cambridge).
Following normalization by global lowess, the gene
expression data was analyzed by GeneSpring GX 10.0
(Agilent Technologies Inc., Foster city, CA). Two group
T test was performed to identify the differentially
expressed MAP genes (DEGs) and multiple test correc-
tion was applied to the T test. The DEGs in natural
infected tissues (ileum and mesenteric lymph nodes)
and in vitro infected macrophages were identified after
normalizing the data with MAP in broth culture. The
lists of genes obtained from the above were analyzed
using Basic Local Alignment Search Tool (BLAST) algo-
rithm in National Center for Biotechnology Information
(NCBI) database against the MAP K-10 genome and the
11 mycobacterial genomes listed in the NCBI databank.
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Gene IDs were categorized into various functional
groups based on Clusters of Orthologous Groups
(COGs). Differentially regulated genes were also
uploaded in Pathway Studio 6.0 (Ariadne genomics Inc.,
Rockville, MD) with the M. tuberculosis H37Rv database
to explore the cellular context of differentially expressed
genes by computational methods of protein network
identification.

Quantitative Real-time PCR validation
Selected genes from microarray data were validated
using two-step SYBR-green based quantitative real-time
PCR (Roche, Indianapolis, IN) analysis in Roche Light-
Cycler 480 II (Roche Inc., Indianapolis, IN). Primers
were designed using web-based tools, Primer3 http://
frodo.wi.mit.edu/primer3/ or Universal Probe Library
(Roche Inc., Indianapolis, IN) and verified by BLAST
searches to confirm their specific binding to target
sequences (Table 3). The following cycle program was
used: denaturation at 95°C for 15 min. and PCR at 95°C
for 10 s, 65°C for 15 s, 72°C for 22 s for 55 cycles. RNA
(ileum, MLN and macrophage) used in microarray ana-
lysis was also used in real-time PCR. MAP K-10 broth
culture served as a control for all RNA samples. Test
and control samples were normalized using the house
keeping gene, secA, and relative expression was calcu-
lated by 2-ΔΔCT method [53]. Results are reported as
fold change. Each sample was conducted in triplicate.
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Additional file 1: MAP identified genes in ileum, mesenteric lymph
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between natural and in vitro infection. S8: Expression of MAP lineage
specific LSPs in the tissues of naturally infected cattle. S9: Expression of
MAP lineage specific LSPs in the in vitro infected macrophages.

Additional file 2: Pathway analysis of COGs enriched in tissues and
macrophages. COGs enriched in tissues or macrophages were used to
identify interactions with other groups and their diverse roles in various
cellular processes using Pathway Studio 6.0 (Ariadne genomics Inc.,
Rockville, MD). Pictorial representation of the interactions of (A) Lipid
metabolism genes centered on kasA (MAP 1998), a cell wall biogenesis
gene upregulated in the tissues and (B) Intracellular trafficking and
secretion genes centered on PE_PGRS4, a PPE family gene upregulated
in macrophages. kasA interacts with other proteins such as pknL
(MAP1914) and plays a role in lipid metabolism and cell survival.
PE_PGRS4 interacts with other proteins such as prrC, rpiA and plays a
role in colonization and virulence. Green ovals indicate metabolites, red
ovals indicate genes and gold rectangles indicate processes.
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