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Abstract

Background: Computational methods that infer single nucleotide polymorphism (SNP) interactions from
phenotype data may uncover new biological mechanisms in non-Mendelian diseases. However, practical aspects of
such analysis face many problems. Present experimental studies typically use SNP arrays with hundreds of
thousands of SNPs but record only hundreds of samples. Candidate SNP pairs inferred by interaction analysis may
include a high proportion of false positives. Recently, Gayan et al. (2008) proposed to reduce the number of false
positives by combining results of interaction analysis performed on subsets of data (replication groups), rather than
analyzing the entire data set directly. If performing as hypothesized, replication groups scoring could improve
interaction analysis and also any type of feature ranking and selection procedure in systems biology. Because
Gayan et al. do not compare their approach to the standard interaction analysis techniques, we here investigate if
replication groups indeed reduce the number of reported false positive interactions.

Results: A set of simulated and false interaction-imputed experimental SNP data sets were used to compare the
inference of SNP-SNP interactions by means of replication groups to the standard approach where the entire data
set was directly used to score all candidate SNP pairs. In all our experiments, the inference of interactions from the
entire data set (e.g. without using the replication groups) reported fewer false positives.

Conclusions: With respect to the direct scoring approach the utility of replication groups does not reduce false
positive rates, and may, depending on the data set, often perform worse.

Background

Onsets of many common chronic diseases are governed
by genetic factors that do not follow “Mendelian” or
“single gene” patterns. Such diseases include hyperten-
sion, diabetes, various cancers, Alzheimer’s disease,
heart disease, Parkinson’s disease, and others. Genetics
governing the susceptibility to these diseases remains
largely unknown. Their onset may be triggered by poly-
morphisms across the genome whose effects do not sim-
ply (linearly) sum up but instead interact in complex,
non-linear fashion. Such interactions are also referred to
as epistasis [1].

A number of computational methods for detection of
epistasis of single nucleotide polymorphisms (SNPs)
have been proposed [2]. They can be based either on
regression models [3], data mining [4], goodness of fit
tests [5] or information theory [6,7]. These methods
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consider data sets that include phenotype observations
(presence or absence of a disease) in several hundreds
to several thousands cases and controls, each character-
ized by a whole-genome profile consisting of several
hundred thousands SNPs. Synergistic SNPs may in the
extreme provide no information on the disease by them-
selves, so the search for interesting SNP-SNP interac-
tions needs to consider all candidate pairs. In a study
using SNP chips with a million probes, analysis of epis-
tasis requires scoring of about 5.10*" hypotheses - one
for each candidate pair. Due to limited number of sam-
ples, the number of spurious false positive results can be
overwhelming.

To reduce the number of reported false positive inter-
actions, Gayan et al. (2008) have recently proposed a
scoring approach called Hypothesis Free Clinical Clon-
ing (HFCC). The part of HFCC used for interaction
scoring is based on so-called replication groups, which
splits the available samples into non-overlapping sub-
sets, and reports only on SNP interactions with minimal
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interaction score across all subsets above a certain
threshold. Authors hypothesize that this approach may
allow identification of frequent and consistent epistatic
effects at the expense of lower test power, improving
the filtering of false positive results at the expense of
increasing false negative rate.

Gayan et al. demonstrate the utility of HFCC in a
practical application, but do not specifically address
their otherwise intuitive assertion on the reduction of
false positive rate by HFCC. We were curious if the uti-
lity of replication groups indeed performs as suggested.
Namely, if so, the approach would not only advance the
field of epistasis analysis, but could also spark new
improvements in techniques for SNP, gene and protein
scoring and ranking, where standard feature selection
procedures face similar problems due to low samples-
to-features rate.

We compared the SNP interaction scoring with repli-
cation groups to the standard procedure which uses the
entire data set. We performed experiments on simulated
data and five data sets from Gene expression Omnibus
(GEO) [8]. We were unable to confirm that the use of
replication groups reduces the number of false positive
results. On the contrary, the standard approach per-
formed better in all our experiments.

Data

We performed the evaluation on simulated data, where
false positive interactions are known, and on false inter-
action-imputed GEO data sets.

Simulated data sets

We followed the data synthesis protocol as proposed by
Ritchie et al. (2003). The simulated data sets were
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generated according to six two-SNP epistasis models
(see Figure 1). Unlike Ritchie et al. (2003), our data sets
included multiple interactions, but such that each SNP
was involved in interaction with at most one other SNP.
Two different types of data sets with respect to the
number of SNPs were crafted, each comprising 200 con-
trol and 200 disease samples:

1. data sets with 100 SNPs (synl), where each data
set included 24 SNP interactions (four interac-
tions for each of six epistasis models),

2. data sets with 500 SNPs (syn2), where each data
set included 60 SNP interactions (ten interactions
for each model).

Several simulated data sets were subject to different
types of noise including missing data (mN), genotyping
error (gN), phenocopies (pN), and genetic heterogeneity
(hN). Noise was imputed according to methods
described by Ritchie et al. (2003). Throughout this
report, data set names indicate the number of SNPs
(synl or syn2) and the type of the noise used (either no
suffix where no noise was applied, noise type where a
single type of noise was applied, or AN where all types
of noise were applied simultaneously).

SNP data from Gene Expression Omnibus

Gene Expression Omnibus [8] was considered for SNP
data sets that contain at least 200 samples with approxi-
mately equal case/control distribution. Five data sets
met these criteria:

+ GSE6754 [9] describing families with two indivi-
duals affected by autism spectrum disorders.

Model 1
‘BB Bb bb

Model 2
‘BB Bb bb

Model 3
‘BB Bb bb

AA 0 .10 0

Aa | .10 0 .10

aa 0 .10 0
p=0.5,g=0.5

Model 4
‘BB Bb bb

AA 0 0 .10

Aa 0 .05 0

aa .10 0 0
p=0.5,¢g=0.5

Model 5
‘BB Bb bb

AA | 08 .07 .05

Aa | .10 0 .10

aa 03 .10 .04
p=0.25,q =0.75

Model 5
| BB Bb bb

AA 0 .01 .09

Aa | .04 .01 .08

aa 07 .09 .03
p=20.25,¢9q=0.75

genotypes have the disease.

AA | .07 .05 .02

Aa | 05 .09 .01

aa .02 .01 .03
p=20.1,¢g=0.9

AA | .09 .001 .02

Aa | .08 .07 .005

aa | .003 .007 .02
p=0.1,q=0.9

Figure 1 Disease penetrance models. Penetrance models used to simulate epistasis between two SNPs. Allele frequencies are denoted with p
and g. For example, model 1 specifies that 10% of individuals with genotypes AABb, AaBB, Aabb or aaBb and none of individuals with other
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Individuals were classified as affected (2459 samples)
or unaffected (3473 samples) and described with
around 10,000 SNPs each.

» GSE8054 [10] comprising 901 SNPs for each of the
121 cancerous samples and 87 controls.

+ GSE8055 [10] comprising 1,189 SNPs for each of
the 141 cancerous samples and 89 controls.

« GSE7226 [11] with platform designation GPL2004,
comprising around 50,000 SNPs for each of the 102
samples from mentally retarded children and 213
controls from their unaffected siblings or parents.

« GSE7226 [11] with platform designation GPL2005,
comprising around 50,000 SNPs for each of the 103
samples from mentally retarded children and 210
controls from their unaffected siblings or parents.

True and false interactions in these data sets are in
general unknown. To enable our evaluation, we have
destroyed any potential interaction for one half of the
SNPs by randomly permuting their values across the
samples. Pairs which include permuted SNPs are consid-
ered as false positives when chosen by the epistasis ana-
lysis method.

Methods

Interaction analysis

Let X and Y be a pair of SNPs and S a data set that
includes these two SNPs and records the phenotype
observations. Let fs(X, Y) be an interaction score, that is,
the degree of synergy between SNPs X and Y when
these two combined are used to predict the phenotype.
In our study, we use two different measures of synergy:
a measure that is a part of HFCC program suite [5], and
a estimate based on information theory called interac-
tion gain [6,7]. In short, HFCC considers a set of two-
SNP disease models [12] and for each assesses how
likely these fit the data. The model with the best fit is
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used to compute the interaction score of a pair of SNPs.
The interaction gain approach estimates information
gained by considering the two SNPs together as com-
pared to when they are considered separately [6].

In our study we compare the approach where the
measures of synergy are computed from the entire data
set to the replication group-based approach, which esti-
mates the synergies from data subsets and then returns
the minimal score. SNP interaction scoring by replica-
tion groups proceeds as follows (Figure 2):

1. Randomly split the samples in the data set S into r
disjunct sets S; of approximately equal sizes and
class distributions.

2. Compute an interaction score fo (X, Y) for each
SNP pair (X, Y) and for each of the subsets S,.

3. Given a threshold 7, SNP pair (X, Y) is relevant if
fS(X, Y) > T for all 0 < i <r or, equivalently, SNP
pair (X, Y) is relevant if ming., f Si(X, V) > T.

For the purpose of ranking, replication groups scoring
assigns the SNP interaction score equal to ming.;., f Si (X,
Y), that is, the minimal score across the r data subsets.

We used the binary version of HFCC software pro-
vided as a supplement to Gayan et al. (2008), perform-
ing exhaustive two-locus searches with nine simple
disease models that, as in the original article, include
only one high-risk two-locus combination. Due to expli-
citly imposed limitations of this freely-available software
we could only analyze data sets with fewer than 600
samples. In this implementation, the size of the file
holding intermediate results of HFCC can not exceed 2
gigabytes; as we were interested in ranking of entire set
of SNP pairs, this limited our studies to about 2,000
SNPs. Therefore we only considered the first 2,000
SNPs of each data set, and a stratified sample of 500
individuals was used for the GSE6754 data set.

2

S| e f

Figure 2 Replication groups scoring. Replication groups scoring involves three steps: (1) data partitioning, (2) assessment of score fsi XY
for a given SNP pair (X, ¥) on a replication group S, and (3) computation of the final score ming<;<, fsi X, Y.

3 min( £S5, 15
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Experimental methodology

Feature scoring assigns interaction scores to all pairs of
SNPs, resulting in a ranked list of SNP pairs. Either
pairs of SNPs with scores exceeding a certain threshold
or a fixed number of top-scored pairs are usually
reported. As these thresholds are in general unknown,
we considered sets of k best candidate interactions,
where k ranged from 1 to the number of all SNP pairs.
We report the results graphically, showing the depen-
dency of false positive count on the number of consid-
ered best-scored SNP pairs. In addition to using three
replication groups, as proposed in Gayan et al. (2008),
we also performed experiments with two replication
groups. To discount random variation in observed qual-
ity scores, we report performance score averages across
50 bootstrap samples for experimental data sets. Simi-
larly, the results for simulated data sets are averaged
across 100 repetitions of data sets created using different
random seeds.

Results and discussion

Figure 3 presents typical results on three different data
sets, where SNP interactions are scored either using
HFCC or interaction gain. In all three data sets, inde-
pendently of interaction scoring method, the replication
groups scoring increased the proportion of false
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positives. Similar was found in all other data sets (see
Additional file 1 for performance graphs on other data
sets). That is, consistently across our array of experi-
ments, scoring SNP interactions directly from the entire
data sets performed better than replication groups scor-
ing with either two or three replications.

Replication groups scoring uses non-overlapping data
samples. With three groups, the scoring technique con-
siders samples of one third of the original data set size.
This undersampling may be the main reason for consis-
tently better performance of direct scoring. Better per-
formance of replication groups scoring that uses two
groups instead of three supports this hypothesis. To
investigate this further, we additionally experimented
with bootstrap sampling (sampling with replacement)
and used it instead of data partitioning. The results
(Additional file 2) show improved performance against
replication groups scoring, and similar performance as
the direct scoring, especially with increased number of
bootstrap samples. Direct scoring performed consistently
better than bootstrap sampling in all simulated data sets,
and better in two out of five data sets from GEO.

An alternative hypothesis for poor performance of
replication groups scoring is the low number of samples
in the data sets. Results using the interaction gain
(Additional file 3) show that increasing the number of

syn2, interaction gain

GSE6754, interaction gain

Legend: — direct scoring; - - 2 RG; - -+ 3 RG

GSE7226-GPL2004, interaction gain
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Figure 3 Performance graphs. The dependency of false positive counts given the number of selected best candidate interactions. A direct
scoring (solid curves) was compared to scoring with two (dashed curves) or three (dotted curves) replication groups (RG). Curves closer to
lower-right corner of the graph indicate better performance. The axes are in logarithmic scale to emphasize the results for smaller numbers of
best candidates. The theoretically best and worst possible performance curves are shown in light gray.

selected best candidates
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samples reduces false positive rate for both the direct
approach and replication groups scoring, with the direct
approach still performing consistently better.

From the viewpoint of statistics, we are trying to rank
the interactions based on the HFCC score or another
measure of interaction. To estimate the true score from
a sample data, we can use either a direct approach or
compute the score on multiple subsets of the data and
aggregate them in some way. The usual aggregation
method is computing the average score; such aggregates
are conveniently distributed normally around the true
value, according to the central limit theorem. Replica-
tion groups scoring aggregates by taking the minimal
interaction score. Minima are not governed by the cen-
tral limit theorem but are instead distributed by the
Gumbel’s extreme value distribution, which depends on
the number of subsets (2 or 3 in Gayan’s paper, more in
bootstrap) and the shape of the distribution of the
score. Minima are not estimators of the true value, yet
the ranking of interactions by minima could correspond
to the underlying unknown true ranking. As we showed,
this is mostly not the case, except in some experiments
with bootstrap sampling. The reasons for the apparent
success of bootstrap in those particular cases are diffi-
cult to explain and may be a random fluke or they may
indicate that the distribution of the observed score on
interacting pairs is different (e.g. have a larger variance)
than that of the non-interacting ones.

See Additional file 4 for source code and data sets
needed to replicate the experiments.

Conclusions

We found that for a set of simulated and false interac-
tion-imputed experimental data sets, the utility of repli-
cation groups as described by Gayan et al. (2008) does
not improve upon the direct scoring of SNP interac-
tions. In all our experiments, estimating interaction
scores directly from the entire data set performed con-
sistently better.

The aim of using replication groups was to decrease
the number of false positive cases at expense of lower
power of the test. As we have shown, the same decrease,
but with a higher power, can be achieved with the stan-
dard method by simply raising the significance thresh-
old. Alternatively, at the same power of the test, the
standard method will provide less false positives than
the replication group method.

We would like to stress that our study investigated a
particular data sampling approach used in HFCC. We
show that either with the originally proposed scoring
method or another SNP interaction measure, the utility
of replication groups should be replaced by more effec-
tive direct estimation of interaction scores from the
entire data set.
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Additional file 1: Performance graphs for all data sets. Graphs
presenting the dependency of false positive counts given the number of
selected best candidate interactions for all 12 simulated and 5 GEO data
sets.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
58-S1.ZIP]

Additional file 2: Performance graphs obtained with bootstrap
sampling. Graphs presenting the dependency of false positive counts
given the number of selected best candidate interactions for all 12
simulated and 5 GEO data sets. In addition to direct scoring and scoring
with replication groups we report results obtained with bootstrap
sampling.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
58-S2.ZIP]

Additional file 3: Performance graphs for differently sized subsets
of GSE6754. Performance graphs for data subsets of 100, 200, 500, 1000,
2000, and 5000 samples drawn from GSE6754.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
58-S3.ZIP]

Additional file 4: Source code and data sets. Source code and data
sets needed to replicate the experiments.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
58-S4.ZIP]

Acknowledgements
This work was supported by grants from the Slovenian Research Agency
(P2-0209, J2-9699, L2-1112).

Author details

"Faculty of Computer and Information Science, University of Ljubljana,
Trzaska 25, SI-1000 Ljubljana, Slovenia. “Department of Molecular and
Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX
77030, USA.

Authors’ contributions

MT, TC, JD, and BZ conceived the study and designed the experiments. MT
performed the experiments. MT and BZ wrote the manuscript. All authors
revised the manuscript and approved its final version.

Received: 24 August 2009
Accepted: 22 January 2010 Published: 22 January 2010

References

1. Moore JH: A global view of epistasis. Nature Genetics 2005, 37(1):13-14.

2. Cordell HJ: Detecting gene-gene interactions that underlie human
diseases. Nat Rev Genet 2009, 10(6):392-404.

3. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D,

Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC: PLINK: A Tool Set for
Whole-Genome Association and Population-Based Linkage Analyses.
American Journal of Human Genetics 2007, 81(3):559-575.

4. Ritchie MD, Hahn LW, Moore JH: Power of multifactor dimensionality
reduction for detecting gene-gene interactions in the presence of
genotyping error, missing data, phenocopy, and genetic heterogeneity.
Genetic Epidemiology 2003, 24(2):150-157.

5. Gayan J, Gonzalez-Perez A, Bermudo F, Saez M, Royo J, Quintas A, Galan J,
Moron F, Ramirez-Lorca R, Real L, Ruiz A: A method for detecting epistasis
in genome-wide studies using case-control multi-locus association
analysis. BMC Genomics 2008, 9:360.

6. Jakulin A, Bratko I: Analyzing attribute dependencies. PKDD LNAI, Springer-
Verlag 2003, 2838:229-240.

7. Anastassiou D: Computational analysis of the synergy among multiple
interacting genes. Mol Syst Biol 2007, 3(83).


http://www.ncbi.nlm.nih.gov/pubmed/15624016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17701901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17701901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12548676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12548676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12548676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18667089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18667089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18667089?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17299419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17299419?dopt=Abstract

Toplak et al. BMC Genomics 2010, 11:58 Page 6 of 6
http://www.biomedcentral.com/1471-2164/11/58

8. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF,
Soboleva A, Tomashevsky M, Edgar R: NCBI GEO: mining tens of millions
of expression profiles-database and tools update. Nucl Acids Res 2007, 35:
D760-765.

9. Szatmari P, Paterson A, Zwaigenbaum L, et al: Mapping autism risk loci
using genetic linkage and chromosomal rearrangements. Nature Genetics
2007, 39(3):319-328.

10.  Tan AC, Fan JB, Karikari C, Bibikova M, et al- Allele-specific expression in
the germline of patients with familial pancreatic cancer: an unbiased
approach to cancer gene discovery. Cancer biology & therapy 2008,
7(1):135-144.

11. Friedman J, Baross A, Delaney AD, Ally A, et al- Oligonucleotide microarray
analysis of genomic imbalance in children with mental retardation. The
American Journal of Human Genetics 2006, 79(3):500-513.

12. Li W, Reich J: A complete enumeration and classification of two-locus
disease models. Hum Hered 2000, 50(6):334-349.

doi:10.1186/1471-2164-11-58

Cite this article as: Toplak et al: Does replication groups scoring reduce
false positive rate in SNP interaction discovery?. BMC Genomics 2010
11:58.

Publish with BioMled Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral

http://www.biomedcentral.com/info/publishing_adv.asp



http://www.ncbi.nlm.nih.gov/pubmed/17099226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17099226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17322880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17322880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10899752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10899752?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Data
	Simulated data sets
	SNP data from Gene Expression Omnibus

	Methods
	Interaction analysis
	Experimental methodology

	Results and discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

